Mechanical Properties of a Bio-Composite Produced from Two Biomaterials: Polylactic Acid and Brown Eggshell Waste Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Eggshell Preparation
2.3. Composite Formulations
2.4. Mechanical Characterization
2.5. Scanning Electron Microscopy
2.6. Water Uptake
2.7. Leaching Measurements
2.8. pH Measurements
2.9. Statistical Analysis
3. Results and Discussion
3.1. Mechanical Properties
3.1.1. Tensile Properties
3.1.2. Flexural Properties
3.1.3. Charpy Impact Properties
3.1.4. Scanning Electron Microscopy
3.1.5. Statistical Analysis
3.1.6. Water Uptake
3.1.7. Mass Loss
3.1.8. Leaching Measurements
3.1.9. pH Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; et al. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 4666. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Market—European Bioplastics. 2022. Available online: https://www.european-bioplastics.org/market/ (accessed on 20 July 2023).
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef]
- Chariyachotilert, C.; Joshi, S.; Selke, S.E.; Auras, R. Assessment of the properties of poly (L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly (L-lactic acid). J. Plast. Film Sheeting 2012, 28, 314–335. [Google Scholar] [CrossRef]
- Iñiguez-Franco, F.; Auras, R.; Dolan, K.; Selke, S.; Holmes, D.; Rubino, M.; Soto-Valdez, H. Chemical recycling of poly (lactic acid) by water-ethanol solutions. Polym. Degrad. Stab. 2018, 149, 28–38. [Google Scholar] [CrossRef]
- Zuiderduin, W.C.J.; Westzaan, C.; Huetink, J.; Gaymans, R.J. Toughening of polypropylene with calcium carbonate particles. Polymer 2003, 44, 261–275. [Google Scholar] [CrossRef]
- Leong, Y.W.; Abu Bakar, M.B.; Ishak, Z.M.; Ariffin, A.; Pukanszky, B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl. Polym. Sci. 2004, 91, 3315–3326. [Google Scholar] [CrossRef]
- McNeill, I.C.; Mohammed, M.H. Thermal analysis and degradation mechanisms of blends of low density polyethylene, poly(ethyl acrylate) and ethylene ethyl acrylate copolymer with calcium carbonate. Polym. Degrad. Stab. 1995, 49, 263–273. [Google Scholar] [CrossRef]
- Osman, M.A.; Atallah, A.; Suter, U.W. Influence of excessive filler coating on the tensile properties of LDPE–calcium carbonate composites. Polymer 2004, 45, 1177–1183. [Google Scholar] [CrossRef]
- Wang, W.Y.; Zeng, X.F.; Wang, G.Q.; Chen, J.F. Preparation and characterization of calcium carbonate/low-density-polyethylene nanocomposites. J. Appl. Polym. Sci. 2007, 106, 1932–1938. [Google Scholar] [CrossRef]
- Mantia, F.P.L.; Morreale, M.; Scaffaro, R.; Tulone, S. Rheological and mechanical behavior of LDPE/calcium carbonate nanocomposites and microcomposites. J. Appl. Polym. Sci. 2013, 127, 2544–2552. [Google Scholar] [CrossRef]
- Bomal, Y.; Godard, P. Melt viscosity of calcium-carbonate-filled low density polyethylene: Influence of matrix-filler and particle-particle interactions. Polym. Eng. Sci. 1996, 36, 237–243. [Google Scholar] [CrossRef]
- Teixeira, S.C.S.; Moreira, M.M.; Lima, A.P.; Santos, L.S.; Da Rocha, B.M.; De Lima, E.S.; da Costa, R.A.; da Silva, A.L.N.; Rocha, M.C.; Coutinho, F.M. Composites of high density polyethylene and different grades of calcium carbonate: Mechanical, rheological, thermal, and morphological properties. J. Appl. Polym. Sci. 2006, 101, 2559–2564. [Google Scholar] [CrossRef]
- Cree, D.; Rutter, A. Sustainable bio-inspired limestone eggshell powder for potential industrialized applications. ACS Sustain. Chem. Eng. 2015, 3, 941–949. [Google Scholar] [CrossRef]
- Pliya, P.; Cree, D. Limestone derived eggshell powder as a replacement in Portland cement mortar. Constr. Build. Mater. 2015, 95, 1–9. [Google Scholar] [CrossRef]
- Toro, P.; Quijada, R.; Yazdani-Pedram, M.; Arias, J.L. Eggshell, a new bio-filler for polypropylene composites. Mater. Lett. 2007, 61, 4347–4350. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Z.; Mai, K. Preparation and properties of eggshell/β-polypropylene bio-composites. J. Appl. Polym. Sci. 2012, 125, 61–66. [Google Scholar] [CrossRef]
- Ghabeer, T.; Dweiri, R.; Al-Khateeb, S. Thermal and mechanical characterization of polypropylene/eggshell biocomposites. J. Reinf. Plast. Compos. 2013, 32, 402–409. [Google Scholar] [CrossRef]
- Feng, Y.; Ashok, B.; Madhukar, K.; Zhang, J.; Zhang, J.; Reddy, K.O.; Rajulu, A.V. Preparation and characterization of polypropylene carbonate bio-filler (eggshell powder) composite films. Int. J. Polym. Anal. Charact. 2014, 19, 637–647. [Google Scholar] [CrossRef]
- Kumar, R.; Dhaliwal, J.S.; Kapur, G.S.; Shashikant. Mechanical properties of modified biofiller-polypropylene composites. Polym. Compos. 2014, 35, 708–714. [Google Scholar] [CrossRef]
- Shuhadah, S.; Supri, A.G. LDPE-isophthalic acid modified egg shell powder composites (LDPE/ESPI). J. Phys. Sci. 2009, 20, 87–98. [Google Scholar]
- Sivarao; Salleh, M.R.; Kamely, A.; Tajul, A.; Taufik, R.S. Mechanical properties modification of polyethylene (PE) for CaCO3 particulated composites. Adv. Mater. Res. 2011, 264, 880–887. [Google Scholar]
- Nwanonenyi, S.C.; Obidiegwu, M.U.; Onuchukwu, T.S.; Egbuna, I.C. Studies on the properties of linear low density polyethylene filled oyster shell powder. Int. J. Eng. Sci. 2013, 2, 42. [Google Scholar]
- Hassan, S.B.; Aigbodion, V.S.; Patrick, S.N. Development of polyester/eggshell particulate composites. Tribol. Ind. 2012, 34, 217. [Google Scholar]
- Hassan, T.A.; Rangari, V.K.; Jeelani, S. Value-added biopolymer nanocomposites from waste eggshell-based CaCO3 nanoparticles as fillers. ACS Sustain. Chem. Eng. 2014, 2, 706–717. [Google Scholar] [CrossRef]
- Ashok, B.; Naresh, S.; Reddy, K.O.; Madhukar, K.; Cai, J.; Zhang, L.; Rajulu, A.V. Tensile and thermal properties of poly (lactic acid)/eggshell powder composite films. Int. J. Polym. Anal. Charact. 2014, 19, 245–255. [Google Scholar] [CrossRef]
- Cree, D.; Soleimani, M. Bio-Based White Eggshell as a Value-Added Filler in Poly (Lactic Acid) Composites. J. Compos. Sci. 2023, 7, 278. [Google Scholar] [CrossRef]
- Liang, J.Z. Toughening and reinforcing in rigid inorganic particulate filled poly (propylene): A review. J. Appl. Polym. Sci. 2002, 83, 1547–1555. [Google Scholar] [CrossRef]
- Rong, M.Z.; Zhang, M.Q.; Ruan, W.H. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review. Mater. Sci. Technol. 2006, 22, 787–796. [Google Scholar] [CrossRef]
- Tan, M.A.; Yeoh, C.K.; Teh, P.L.; Rahim, N.A.A.; Song, C.C.; Voon, C.H. Effect of zinc oxide suspension on the overall filler content of the PLA/ZnO composites and cPLA/ZnO composites. e-Polymers 2023, 23, 20228113. [Google Scholar] [CrossRef]
- Wei, T.; Jin, K.; Torkelson, J.M. Isolating the effect of polymer-grafted nanoparticle interactions with matrix polymer from dispersion on composite property enhancement: The example of polypropylene/halloysite nanocomposites. Polymer 2019, 176, 38–50. [Google Scholar] [CrossRef]
- Moreno, J.F.; da Silva, A.L.N.; da Silva, A.H.M.D.F.T.; de Sousa, A.M.F. Preparation and characterization of composites based on poly (lactic acid) and CaCO3 nanofiller. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2015; Volume 1664. [Google Scholar] [CrossRef]
- Nakagawa, H.; Sano, H. Improvement of Impact Resistance of Calcium Carbonate Filled Polypropylene and Poly-Ethylene Block Copolymer; Polymer Preprints, Division of Polymer Chemistry; American Chemical Society: Chicago, IL, USA, 1985; pp. 249–250. [Google Scholar]
- Toro, P.; Quijada, R.; Arias, J.L.; Yazdani-Pedram, M. Mechanical and morphological studies of poly (propylene)-filled eggshell composites. Macromol. Mater. Eng. 2007, 292, 1027–1034. [Google Scholar] [CrossRef]
- Pukánszky, B.; Fekete, E. Aggregation tendency of particulate fillers: Determination and consequences. Polym. Polym. Compos. 1998, 6, 313–322. [Google Scholar]
- Lazzeri, A.; Thio, Y.S.; Cohen, R.E. Volume strain measurements on CaCO3/polypropylene particulate composites: The effect of particle size. J. Appl. Polym. Sci. 2004, 91, 925–935. [Google Scholar] [CrossRef]
- DeArmitt, C. Understanding filler interactions improves impact resistance. Plast. Addit. Compd. 2006, 8, 34–39. [Google Scholar] [CrossRef]
- Zhu, Y.D.; Allen, G.C.; Jones, P.G.; Adams, J.M.; Gittins, D.I.; Heard, P.J.; Skuse, D.R. Dispersion characterisation of CaCO3 particles in PP/CaCO3 composites. Compos. Part A Appl. Sci. Manuf. 2014, 60, 38–43. [Google Scholar] [CrossRef]
- Eselini, N.; Tirkes, S.; Akar, A.O.; Tayfun, U. Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. J. Elastomers Plast. 2020, 52, 701–716. [Google Scholar] [CrossRef]
- Dugan, J.S. Novel properties of PLA fibers. Int. Nonwovens J. 2001, 3, 1558925001OS-01000308. [Google Scholar]
- Mitchell, C. High purity limestone quest. Ind. Miner. 2011, 531, 48–51. [Google Scholar]
- Alamillo-López, V.M.; Sánchez-Mendieta, V.; Olea-Mejía, O.F.; González-Pedroza, M.G.; Morales-Luckie, R.A. Efficient removal of heavy metals from aqueous solutions using a bionanocomposite of eggshell/Ag-Fe. Catalysts 2020, 10, 727. [Google Scholar] [CrossRef]
- Hincke, M.T.; Nys, Y.; Gautron, J.; Mann, K.; Rodriguez-Navarro, A.B.; McKee, M.D. The eggshell: Structure, composition and mineralization. Front. Biosci.-Landmark 2012, 17, 1266–1280. [Google Scholar] [CrossRef]
- Walker, R.A.; Wilson, K.; Lee, A.F.; Woodford, J.; Grassian, V.H.; Baltrusaitis, J.; Rubasinghege, G.; Cibin, G.; Dent, A. Preservation of York Minster historic limestone by hydrophobic surface coatings. Sci. Rep. 2012, 2, 880. [Google Scholar] [CrossRef]
- Hakim, S.S.; Olsson, M.H.M.; Sørensen, H.O.; Bovet, N.; Bohr, J.; Feidenhans’l, R.; Stipp, S.L.S. Interactions of the calcite {10.4} surface with organic compounds: Structure and behaviour at mineral–organic interfaces. Sci. Rep. 2017, 7, 7592. [Google Scholar] [CrossRef] [PubMed]
- Cassar, J. Deterioration of the Globigerina Limestone of the Maltese Islands; Special Publications; Geological Society: London, UK, 2002; Volume 205, pp. 33–49. [Google Scholar]
- Baxter-Jones, C. Egg hygiene: Microbial contamination, significance and control. In Avian Incubation, Proceedings of the Poultry Science Symposium, West of Scotland College, Auchincruive, Ayr, Scotland, 12–15 September 1989; No. 22; Tullett, S.G., Ed.; Butterworth: London, UK, 1991; pp. 269–276. [Google Scholar]
- Mueller, C.A.; Burggren, W.W.; Tazawa, H. The physiology of the avian embryo. In Sturkie’s Avian Physiology; Academic Press: Cambridge, MA, USA, 2022; pp. 1015–1046. [Google Scholar]
- Ndazi, B.S.; Karlsson, S. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym. Lett. 2011, 5, 119–131. [Google Scholar] [CrossRef]
- Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol. 2019, 7, 259. [Google Scholar] [CrossRef] [PubMed]
- Taib, R.M.; Ramarad, S.; Ishak, Z.A.M.; Todo, M. Properties of kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym. Compos. 2010, 31, 1213–1222. [Google Scholar] [CrossRef]
- Lunt, J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 1998, 59, 145–152. [Google Scholar] [CrossRef]
- Ortenzi, M.A.; Gazzotti, S.; Marcos, B.; Antenucci, S.; Camazzola, S.; Piergiovanni, L.; Farina, H.; Di Silvestro, G.; Verotta, L. Synthesis of polylactic acid initiated through biobased antioxidants: Towards intrinsically active food packaging. Polymers 2020, 12, 1183. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; He, D.; Yao, W.; Liu, C.; Shen, C. “Nucleation density reduction” effect of biodegradable cellulose acetate butyrate on the crystallization of poly (lactic acid). Mater. Lett. 2014, 128, 85–88. [Google Scholar] [CrossRef]
- Oliaei, E.; Heidari, B.S.; Davachi, S.M.; Bahrami, M.; Davoodi, S.; Hejazi, I.; Seyfi, J. Warpage and shrinkage optimization of injection-molded plastic spoon parts for biodegradable polymers using Taguchi, ANOVA and artificial neural network methods. J. Mater. Sci. Technol. 2016, 32, 710–720. [Google Scholar] [CrossRef]
- Fukushima, K.; Feijoo, J.L.; Yang, M.C. Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur. Polym. J. 2013, 49, 706–717. [Google Scholar] [CrossRef]
- Limsukon, W.; Auras, R.; Selke, S. Hydrolytic degradation and lifetime prediction of poly (lactic acid) modified with a multifunctional epoxy-based chain extender. Polym. Test. 2019, 80, 106108. [Google Scholar] [CrossRef]
- Larson, T.E.; Sollo, F.W., Jr.; McGurk, F.F. Complexes affecting the solubility of calcium carbonate in water. In ISWS Contract Report CR 145; University of Illinois at Urbana-Champaign Water Resources Center: Urbana, IL, USA, 1973. [Google Scholar]
- Tegethoff, F.W.; Rohleder, J.; Kroker, E. (Eds.) Calcium Carbonate: From the Cretaceous Period into the 21st Century; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Tamboura, S.; Abdessalem, A.; Fitoussi, J.; Daly, H.B.; Tcharkhtchi, A. On the mechanical properties and damage mechanisms of short fibers reinforced composite submitted to hydrothermal aging: Application to sheet molding compound composite. Eng. Fail. Anal. 2022, 131, 105806. [Google Scholar] [CrossRef]
- Abdessalem, A.; Tamboura, S.; Fitoussi, J.; Ben Daly, H.; Tcharkhtchi, A. Bi-phasic water diffusion in sheet molding compound composite. J. Appl. Polym. Sci. 2020, 137, 48381. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Liu, S.; Tang, Y.; Mo, B.; Liao, H. New zonal structure and transition of the membrane to mammillae in the eggshell of chicken Gallus domesticus. J. Struct. Biol. 2018, 203, 162–169. [Google Scholar] [CrossRef]
- Kendall, J. XCVI. The solubility of calcium carbonate in water. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1912, 23, 958–976. [Google Scholar] [CrossRef]
- Vogt, E. Effects of Commercial modifiers on flow properties of hydrophobized limestone powders. Pol. J. Environ. Stud. 2013, 22, 1213–1218. [Google Scholar]
- Sabir, M.I.; Xu, X.; Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009, 44, 5713–5724. [Google Scholar] [CrossRef]
- Al-Shirawi, M.; Karimi, M.; Al-Maamari, R.S. Impact of carbonate surface mineralogy on wettability alteration using stearic acid. J. Pet. Sci. Eng. 2021, 203, 108674. [Google Scholar] [CrossRef]
Calcium Carbonate Contents | |||
---|---|---|---|
Sample | PLA (wt.%) | LS (wt.%) | BESP (wt.%) |
Virgin PLA | 100 | 0 | 0 |
LS-5 | 95 | 5 | 0 |
LS-10 | 90 | 10 | 0 |
LS-20 | 80 | 20 | 0 |
BESP-5 | 95 | 0 | 5 |
BESP-10 | 90 | 0 | 10 |
BESP-20 | 80 | 0 | 20 |
Composite | Ultimate Tensile Strength (MPa) | Tensile Modulus (GPa) | Ultimate Flexural Strength (MPa) | Flexural Modulus (GPa) | Charpy Impact Strength (kJm−2) |
---|---|---|---|---|---|
Virgin PLA | 50.9 ± 2.3 | 3.6 ± 0.10 | 78.9 ± 4.2 | 2.9 ± 0.03 | 17.3 ± 0.70 |
Filler size (63 µm) | |||||
LS-5 | 50.1 ± 1.8 | 3.7 ± 0.18 | 52.6 ± 5.0 | 3.1 ± 0.05 | 13.2 ± 0.90 |
LS-10 | 46.6 ± 1.2 | 3.7 ± 0.28 | 76.9 ± 5.4 | 3.2 ± 0.09 | 11.1 ± 1.5 |
LS-20 | 43.9 ± 1.8 | 4.2 ± 0.35 | 71.4 ± 2.7 | 3.4 ± 0.04 | 10.3 ± 1.0 |
BESP-5 | 47.4 ± 2.0 | 3.6 ± 0.25 | 46.5 ± 5.5 | 3.1 ± 0.04 | 8.7 ± 1.3 |
BESP-10 | 33.4 ± 1.3 | 3.9 ± 0.15 | 63.7 ± 7.6 | 3.1 ± 0.20 | 6.9 ± 0.70 |
BESP-20 | 32.1 ± 0.60 | 4.0 ± 0.12 | 21.5 ± 6.1 | 3.4 ± 0.11 | 6.5 ± 1.1 |
Filler size (32 µm) | |||||
LS-5 | 51.3 ± 0.70 | 3.4 ± 0.19 | 67.2 ± 1.6 | 3.1 ± 0.03 | 14.8 ± 1.0 |
LS-10 | 49.8 ± 0.30 | 3.9 ± 0.08 | 92.7 ± 1.2 | 3.3 ± 0.03 | 14.0 ± 1.2 |
LS-20 | 43.5 ± 1.9 | 4.4 ± 0.09 | 91.0 ± 2.1 | 3.5 ± 0.05 | 11.2 ± 1.3 |
BESP-5 | 48.1 ± 2.6 | 3.7 ± 0.31 | 60.3 ± 1.1 | 3.1 ± 0.04 | 10.4 ± 1.1 |
BESP-10 | 48.0 ± 3.2 | 3.9 ± 0.43 | 66.8 ± 1.6 | 3.3 ± 0.10 | 7.8 ± 1.5 |
BESP-20 | 42.7 ± 1.2 | 4.5 ± 0.19 | 44.7 ± 1.5 | 3.4 ± 0.20 | 7.2 ± 1.4 |
Mechanical Property | Particle Size (µm) | Source of Variation | SS | df | MS | F-test | F-crit |
---|---|---|---|---|---|---|---|
Ultimate tensile strength (MPa) | |||||||
63 | BG | 1431 | 6 | 238.6 | 84.49 | 2.508 | |
WG | 67.77 | 24 | 2.824 | ||||
32 | BG | 286.4 | 6 | 47.73 | 11.99 | 2.528 | |
WG | 91.53 | 23 | 3.980 | ||||
Tensile modulus (GPa) | |||||||
63 | BG | 1.527 | 6 | 0.2546 | 5.011 | 2.459 | |
WG | 1.372 | 27 | 0.05080 | ||||
32 | BG | 4.457 | 6 | 0.7429 | 12.54 | 2.490 | |
WG | 1.482 | 25 | 0.0593 | ||||
Ultimate flexural strength (MPa) | |||||||
63 | BG | 11,664 | 6 | 1944 | 72.61 | 2.549 | |
WG | 589.0 | 22 | 26.77 | ||||
32 | BG | 8255 | 6 | 1376 | 268.1 | 2.490 | |
WG | 128.3 | 25 | 5.131 | ||||
Flexural modulus (GPa) | |||||||
63 | BG | 0.9917 | 6 | 0.1653 | 42.92 | 2.549 | |
WG | 0.0847 | 22 | 0.0039 | ||||
32 | BG | 1.095 | 6 | 0.1825 | 21.42 | 2.490 | |
WG | 0.2129 | 25 | 0.0085 | ||||
Charpy impact strength (KJ·m−2) | |||||||
63 | BG | 858.6 | 6 | 143.1 | 129.4 | 2.246 | |
WG | 69.68 | 63 | 1.106 | ||||
32 | BG | 832.9 | 6 | 138.8 | 99.05 | 2.246 | |
WG | 88.29 | 63 | 1.402 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cree, D.; Owuamanam, S.; Soleimani, M. Mechanical Properties of a Bio-Composite Produced from Two Biomaterials: Polylactic Acid and Brown Eggshell Waste Fillers. Waste 2023, 1, 740-760. https://doi.org/10.3390/waste1030044
Cree D, Owuamanam S, Soleimani M. Mechanical Properties of a Bio-Composite Produced from Two Biomaterials: Polylactic Acid and Brown Eggshell Waste Fillers. Waste. 2023; 1(3):740-760. https://doi.org/10.3390/waste1030044
Chicago/Turabian StyleCree, Duncan, Stephen Owuamanam, and Majid Soleimani. 2023. "Mechanical Properties of a Bio-Composite Produced from Two Biomaterials: Polylactic Acid and Brown Eggshell Waste Fillers" Waste 1, no. 3: 740-760. https://doi.org/10.3390/waste1030044
APA StyleCree, D., Owuamanam, S., & Soleimani, M. (2023). Mechanical Properties of a Bio-Composite Produced from Two Biomaterials: Polylactic Acid and Brown Eggshell Waste Fillers. Waste, 1(3), 740-760. https://doi.org/10.3390/waste1030044