Sustainable Exploitation of Waste Orange Peels: Enrichment of Commercial Seed Oils and the Effect on Their Oxidative Stability
Abstract
:1. Introduction
2. Materials and methods
2.1. Reagents and Chemicals
2.2. Seed Oil Procurement
2.3. Collection and Handling of Waste Orange Peels (WOP)
2.4. Extraction Procedure and Protocol
2.5. Seed Oil Enrichment and Treatment
2.6. Determination of Total Polyphenols
2.7. Rancimat
2.8. Determination of Peroxide Value (PV)
2.9. Determination of Thiobarbituric Acid Reactive Substances (TBARS)
2.10. Determination of p-Anisidine Value
2.11. Determination of Antioxidant Capacity (TEAC)
2.12. Chromatographic Determinations
2.13. Statistical Processing and Analyses
3. Results and Discussion
3.1. Extract Preparation and Polyphenolic Profile
3.2. Oil Enrichment and Protection Factor (PF)
3.3. Formation of Primary and Secondary Lipid Peroxidation Products
3.4. Changes in Antiradical Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortiz-Sanchez, M.; Solarte-Toro, J.; Orrego-Alzate, C.; Acosta-Medina, C.; Cardona-Alzate, C. Integral use of orange peel waste through the biorefinery concept: An experimental, technical, energy, and economic assessment. Biomass Convers. Bioref. 2021, 11, 645–659. [Google Scholar] [CrossRef]
- Drescher, A.; Kienberger, M. A Systematic Review on Waste as Sustainable Feedstock for Bioactive Molecules—Extraction as Isolation Technology. Processes 2022, 10, 1668. [Google Scholar] [CrossRef]
- Martins, R.; Sales, H.; Pontes, R.; Nunes, J.; Gouveia, I. Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants 2023, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Varatharajan, V.; Oh, W.Y.; Peng, H. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Boateng, N.A.S.; Ma, H. Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends Food Sci. Technol. 2020, 99, 375–388. [Google Scholar] [CrossRef]
- Dassoff, E.S.; Guo, J.X.; Liu, Y.; Wang, S.C.; Li, Y.O. Potential development of non-synthetic food additives from orange processing by-products—A review. Food Qual. Saf. 2021, 5, fyaa035. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Recent advances in valorization of citrus fruits processing waste: A way forward towards environmental sustainability. Food Sci. Biotech. 2021, 30, 1601–1626. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, D. Plant-derived antioxidants as food additives. Plants Source Nat. Antioxid. 2014, 398, 169–190. [Google Scholar]
- Blasi, F.; Cossignani, L. An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes 2020, 8, 956. [Google Scholar] [CrossRef]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M. Innovative and sustainable technologies to enhance the oxidative stability of vegetable oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J. Funct. Foods 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition. Beverages 2022, 8, 71. [Google Scholar] [CrossRef]
- Kalantzakis, G.; Blekas, G.; Pegklidou, K.; Boskou, D. Stability and radical-scavenging activity of heated olive oil and other vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 108, 329–335. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron processing wastes as a bioresource of high-value added compounds: Development of a green extraction process for polyphenol recovery using a natural deep eutectic solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [PubMed]
- Bersuder, P.; Hole, M.; Smith, G. Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J. Am. Oil Chem. Soc. 1998, 75, 181–187. [Google Scholar] [CrossRef]
- International Dairy Federation (1991) FIL-IDF 74A Method: Anhydrous Milkfat, Determination of Peroxide Value.
- Qiu, C.; Zhao, M.; Decker, E.A.; McClements, D.J. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chem. 2015, 175, 249–257. [Google Scholar] [CrossRef]
- ISO 6885:2016; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. International Organization for Standardization: Geneva, Switzerland.
- Anagnostopoulou, M.A.; Kefalas, P.; Kokkalou, E.; Assimopoulou, A.N.; Papageorgiou, V.P. Analysis of antioxidant compounds in sweet orange peel by HPLC–diode array detection–electrospray ionization mass spectrometry. Biomed. Chrom. 2005, 19, 138–148. [Google Scholar] [CrossRef]
- Abdoun, R.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P. Process optimization and stability of waste orange peel polyphenols in extracts obtained with organosolv thermal treatment using glycerol-based solvents. ChemEngineering 2022, 6, 35. [Google Scholar] [CrossRef]
- Lakka, A.; Lalas, S.; Makris, D.P. Hydroxypropyl-β-cyclodextrin as a green co-solvent in the aqueous extraction of polyphenols from waste orange peels. Beverages 2020, 6, 50. [Google Scholar] [CrossRef]
- Jabri-Karoui, I.; Marzouk, B. Bioactive compounds, antioxidant activities and heat stability of corn oil enriched with Tunisian Citrus aurantium L. peel extract. J. Am. Oil Chem. Soc. 2014, 91, 1367–1375. [Google Scholar] [CrossRef]
- Jimenez, P.; Masson, L.; Barriga, A.; Chávez, J.; Robert, P. Oxidative stability of oils containing olive leaf extracts obtained by pressure, supercritical and solvent-extraction. Eur. J. Lipid Sci. Technol. 2011, 113, 497–505. [Google Scholar] [CrossRef]
- Salta, F.; Mylona, A.; Chiou, A.; Boskou, G.; Andrikopoulos, N. Oxidative stability of edible vegetable oils enriched in polyphenols with olive leaf extract. Food Sci. Technol. Inter. 2007, 13, 413–421. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Rubio-Senent, F.; Bermúdez-Oria, A.; Fernández-Prior, Á.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Synergistic effect of 3, 4-dihydroxyphenylglycol with hydroxytyrosol and α-tocopherol on the Rancimat oxidative stability of vegetable oils. Innov. Food Sci. Emerg. Technol. 2019, 51, 100–106. [Google Scholar] [CrossRef]
- Soldo, B.; Anđelić, I.; Nikolov, N.; Skroza, D.; Šimat, V.; Ljubenkov, I.; Generalić Mekinić, I. The effect of selected herb extracts on oxidative stability of vegetable oils. Croat. Chem. Acta 2019, 92, 331–336. [Google Scholar] [CrossRef]
- Upadhyay, R.; Mishra, H.N. Multivariate analysis for kinetic modeling of oxidative stability and shelf life estimation of sunflower oil blended with sage (Salvia officinalis) extract under Rancimat conditions. Food Bioproc. Technol. 2015, 8, 801–810. [Google Scholar] [CrossRef]
- Şahin, S.; Elhussein, E.; Gülmez, Ö.; Kurtulbaş, E.; Yazar, S. Improving the quality of vegetable oils treated with phytochemicals: A comparative study. J. Food Sci. Technol. 2020, 57, 3980–3987. [Google Scholar] [CrossRef]
- Redondo-Cuevas, L.; Castellano, G.; Torrens, F.; Raikos, V. Revealing the relationship between vegetable oil composition and oxidative stability: A multifactorial approach. J. Food Compos. Anal. 2018, 66, 221–229. [Google Scholar] [CrossRef]
- Islam, A.-A.; Mohamed, R.; Abdelrahman, S.; Dalia, M.; Ahmed, E.-B. Oxidative stability of edible oils via addition of pomegranate and orange peel extracts. Foods Raw Mater. 2018, 6, 413–420. [Google Scholar]
- Symoniuk, E.; Ratusz, K.; Ostrowska-Ligęza, E.; Krygier, K. Impact of selected chemical characteristics of cold-pressed oils on their oxidative stability determined using the rancimat and pressure differential scanning calorimetry method. Food Anal. Methods 2018, 11, 1095–1104. [Google Scholar] [CrossRef]
- Benakmoum, A.; Abbeddou, S.; Ammouche, A.; Kefalas, P.; Gerasopoulos, D. Valorisation of low quality edible oil with tomato peel waste. Food Chem. 2008, 110, 684–690. [Google Scholar] [CrossRef]
- Yalcin, H.; Karaman, S.; Ozturk, I. Evaluation of antioxidant efficiency of potato and orange peel and apple pomace extract in sunflower oil. Ital. J. Food Sci. 2011, 23, 55–61. [Google Scholar]
- Tuberoso, C.I.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chem. 2007, 103, 1494–1501. [Google Scholar] [CrossRef]
- Castelo-Branco, V.N.; Torres, A.G. Generalized linear model describes determinants of total antioxidant capacity of refined vegetable oils. Eur. J. Lipid Sci. Technol. 2012, 114, 332–342. [Google Scholar] [CrossRef]
- Castelo-Branco, V.N.; Torres, A.G. Potential application of antioxidant capacity assays to assess the quality of edible vegetable oils. Lipid Technol. 2009, 21, 152–155. [Google Scholar] [CrossRef]
- Castelo-Branco, V.N.; Santana, I.; Di-Sarli, V.O.; Freitas, S.P.; Torres, A.G. Antioxidant capacity is a surrogate measure of the quality and stability of vegetable oils. Eur. J. Lipid Sci. Technol. 2016, 118, 224–235. [Google Scholar] [CrossRef]
- Janu, C.; Kumar, D.S.; Reshma, M.; Jayamurthy, P.; Sundaresan, A.; Nisha, P. Comparative study on the total phenolic content and radical scavenging activity of common edible vegetable oils. J. Food Biochem. 2014, 38, 38–49. [Google Scholar] [CrossRef]
- Anagnostopoulou, M.A.; Kefalas, P.; Papageorgiou, V.P.; Assimopoulou, A.N.; Boskou, D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 2006, 94, 19–25. [Google Scholar] [CrossRef]
- Park, J.-H.; Lee, M.; Park, E. Antioxidant activity of orange flesh and peel extracted with various solvents. Prev. Nutr. Food Sci. 2014, 19, 291. [Google Scholar] [CrossRef]
- Spiegel, M.; Andruniów, T.; Sroka, Z. Flavones’ and flavonols’ antiradical structure-activity relationship—A quantum chemical study. Antioxidants 2020, 9, 461. [Google Scholar] [CrossRef]
- Elias, R.J.; Decker, E.A. Antioxidants and Their Mechanisms of Action. In Food Lipids—Chemistry, Nutrition, and Biotechnology; Akoh, C.C., Ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
Polyphenol | Content (μg g−1 Extract) ± sd |
---|---|
Phenolic acids | |
Neochlorogenic acid | 16.34 ± 1.52 |
Chlorogenic acid | 34.77 ± 2.22 |
Caffeic acid | 6.54 ± 0.58 |
Ferulic acid | 105.47 ± 8.41 |
Total | 163.13 |
Flavanones | |
Narirutin | 547.07 ± 41.23 |
Hesperidin | 2037.64 ± 169.02 |
Total | 2584.72 ± 187.73 |
Flavones | |
Didymin | 322.90 ± 28.00 |
Sinensetin | 85.93 ± 7.89 |
Nobiletin | 355.66 ± 30.18 |
Dimethylnobiletin | 174.99 ± 12.33 |
Total | 939.48 |
Sum | 3687.32 |
Index | Sample | ||
---|---|---|---|
SnO | SbO | CnO | |
CTP (mg GAE kg−1 oil) | 19.99 ± 5.66 | 12.58 ± 1.59 | 13.63 ± 3.14 |
PV (mm H2O2 kg−1 oil) | 0.38 ± 0.08 | 1.77 ± 0.54 | 0.11 ± 0.04 |
TBARS (mmol MDE eq kg−1 oil) | 0.52 ± 0.04 | 0.66 ± 0.04 | 0.71 ± 0.05 |
p-AnV | 9.73 ± 1.02 | 2.34 ± 0.54 | 4.23 ± 0.89 |
Sample | Induction Period (h) | PF |
---|---|---|
SnO | 1.2 | - |
SnO + WOP | 1.4 | 1.17 |
SnO + BHT | 1.9 | 1.61 |
SbO | 5.8 | |
SbO + WOP | 6.2 | 1.07 |
SbO + BHT | 6.8 | 1.17 |
CnO | 7.3 | |
CnO + WOP | 7.4 | 1.01 |
CnO + BHT | 8.0 | 1.09 |
Sample | PV (mm H2O2 kg−1 Oil) | TBARS (mm MDA kg−1 Oil) |
---|---|---|
SnO | 88.96 ± 3.45 | 2.89 ± 0.05 |
SnO + WOP | 78.16 ± 1.29 | 3.34 ± 0.30 |
SnO + BHT | 74.99 ± 3.33 | 2.81 ± 0.06 |
SbO | 34.03 ± 3.75 | 9.56 ± 0.10 |
SbO + WOP | 33.17 ± 1.78 | 9.29 ± 0.82 |
SbO + BHT | 31.75 ± 2.58 | 8.85 ± 0.95 |
CnO | 58.44 ± 1.84 | 3.91 ± 0.42 |
CnO + WOP | 55.92 ± 1.19 | 3.82 ± 0.44 |
CnO + BHT | 52.59 ± 4.55 | 4.47 ± 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalompatsios, D.; Athanasiadis, V.; Chatzimitakos, T.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Sustainable Exploitation of Waste Orange Peels: Enrichment of Commercial Seed Oils and the Effect on Their Oxidative Stability. Waste 2023, 1, 761-774. https://doi.org/10.3390/waste1030045
Kalompatsios D, Athanasiadis V, Chatzimitakos T, Palaiogiannis D, Lalas SI, Makris DP. Sustainable Exploitation of Waste Orange Peels: Enrichment of Commercial Seed Oils and the Effect on Their Oxidative Stability. Waste. 2023; 1(3):761-774. https://doi.org/10.3390/waste1030045
Chicago/Turabian StyleKalompatsios, Dimitris, Vassilis Athanasiadis, Theodoros Chatzimitakos, Dimitrios Palaiogiannis, Stavros I. Lalas, and Dimitris P. Makris. 2023. "Sustainable Exploitation of Waste Orange Peels: Enrichment of Commercial Seed Oils and the Effect on Their Oxidative Stability" Waste 1, no. 3: 761-774. https://doi.org/10.3390/waste1030045
APA StyleKalompatsios, D., Athanasiadis, V., Chatzimitakos, T., Palaiogiannis, D., Lalas, S. I., & Makris, D. P. (2023). Sustainable Exploitation of Waste Orange Peels: Enrichment of Commercial Seed Oils and the Effect on Their Oxidative Stability. Waste, 1(3), 761-774. https://doi.org/10.3390/waste1030045