Collection Efficiency of Cyclone Separators: Comparison between New Machine Learning-Based Models and Semi-Empirical Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Backpropagation Artificial Neural Networks
2.2. Proposed BPNN Model of the Cyclone
2.3. Support Vector Regression Model
2.4. Present SVR Model
2.5. Dataset for the Training and Testing of BPNN
2.6. Dataset for BPNN Validation and Comparison with Existing Methods
2.7. Classical Models to Predict Collection Efficiency
- 2.
- Clift et al. [11] (Equation (10)) proposed the following equation to find the cyclone collection efficiency from the particle residence time inside the cyclone body ():
- 3.
- 4.
- Li & Wang [14] derived the removal efficiency of the cyclone from the distribution of the particles concentration inside the cyclone body.
3. Results and Discussion
3.1. BPNN Training and Testing
3.2. SVR Training and Testing
3.3. BPNN and SVR Validation and Comparison with Classical Models
4. Conclusions
- The BPNN model is the best performing model, showing an improvement of the predictions capabilities between 40% and 90% compared to the other models. Only the semi-empirical model of Mothes et al. achieved results comparable to those obtained with the present BPNN.
- The SVR model yielded better predictions than the semi-empirical and statistical approaches. However, it demonstrated to be less performing than the BPNN model.
- Focusing on the efficiency predicting capabilities related to small particles only, the BPNN model showed an overall mean squared error that is between 2 and 20 times lower than that all the other models.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
a | cyclone inlet height [m] |
b | cyclone inlet width [m] |
bij | ANN linear function bias |
B | cyclone dust-outlet diameter [m] |
C1, C2 | cyclone dimensionless parameters |
d50 | particle cut-off diameter [m] |
D | cyclone diameter [m] |
Dp | particle diameter [m] |
Dpmax | maximum particle diameter [m] |
Min | mass of particles that enters the cyclone [kg] |
Mout | mass of successfully separated particles [kg] |
h | cyclone cylindrical body height [m] |
H | cyclone total height [m] |
Q | cyclone inlet volumetric flow rate [m3/s] |
Re | cyclone Reynolds number |
S | cyclone vortex finder height [m] |
Stk | particle Stokes number |
tc | cyclone characteristic time [s] |
tres | particle residence time inside cyclone body [s] |
vt | gas tangential velocity inside cyclone body [m/s] |
w | particle mean radial velocity [m/s] |
wij | BPNN weight |
Xi | BPNN input layer node |
Yi | BPNN output layer node |
zij | BPNN hidden layer output |
particle mass density [kg/m3] | |
air mass density [kg/m3] | |
cyclone efficiency parameter | |
gas dynamic viscosity [Pa·s] | |
particle average angular position inside cyclone body [°] |
References
- Bhasker, C. Flow simulation in industrial cyclone separator. Adv. Eng. Softw. 2010, 41, 220–228. [Google Scholar] [CrossRef]
- Kashani, E.; Mohebbi, A.; Heidari, M.G. CFD simulation of the preheater cyclone of a cement plant and the optimization of its performance using a combination of the design of experiment and multi-gene genetic programming. Powder Technol. 2018, 327, 430–441. [Google Scholar] [CrossRef]
- Frolov, S.M.; Smetanyuk, V.A.; Silantiev, A.S.; Sadykov, I.A.; Frolov, F.S.; Hasiak, J.K.; Shiryaev, A.A.; Sitnikov, V.E. Thermo-Mechano-Chemical Processing of Printed Circuit Boards for Organic Fraction Removal. Waste 2024, 2, 153–168. [Google Scholar] [CrossRef]
- Shepherd, C.B.; Lapple, C.E. Flow pattern and pressure drop in cyclone dust collectors cyclone without intel vane. Ind. Eng. Chem. 1940, 32, 1246–1248. [Google Scholar] [CrossRef]
- Lapple, C.E.; Shepherd1, C.B. Calculation of Particle Trajectories. Ind. Eng. Chem. 1940, 32, 605–617. [Google Scholar] [CrossRef]
- Hoffmann, A.C.; Stein, L.E. Gas Cyclones and Swirl Tubes: Principles, Design and Operation. Appl. Mech. Rev. 2003, 56, B28–B29. [Google Scholar] [CrossRef]
- Fayed, M.E.; Otten, L. Handbook of Powder Science and Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Stairmand, C.J. The design and performance of cyclone separators. Trans. Instn. Chem. Engrs. 1951, 29, 356–383. [Google Scholar]
- Barth, W. Design and layout of the cyclone separator on the basis of new investigations. Brenn. Warme Kraft 1956, 8, 9. [Google Scholar]
- Iozia, D.L.; Leith, D. Effect of cyclone dimensions on gas flow pattern and collection efficiency. Aerosol Sci. Technol. 1989, 10, 491–500. [Google Scholar] [CrossRef]
- Lapple, C.E. Gravity and Centrifugal Separation. Am. Ind. Hyg. Assoc. Q. 1950, 11, 40–48. [Google Scholar] [CrossRef]
- Leith, D. The collection efficiency of cyclone type particle collectors—A new theoretical approach. AIChE Symp. Ser. 1972, 68, 196–206. [Google Scholar]
- Clift, R.; Ghadiri, M. A Critique of Two Models for Cyclone Performance. AIChE J. 1991, 37, 285–289. [Google Scholar] [CrossRef]
- Dietz, P.W. Collection efficiency of cyclone separators. AIChE J. 1981, 27, 888–892. [Google Scholar] [CrossRef]
- Mothes, H. Prediction removal in cyclone separators. Int. Chem. Engng. 1988, 28, 231–240. [Google Scholar]
- Enliang, L.; Yingmin, W. A New Collection Theory of Cyclone Separators. AIChE J. 1989, 35, 666–669. [Google Scholar] [CrossRef]
- Mumcu, A.G.; Avci, A. Parametric and General Evaluation of Mathematical Models Used for Critical Diameter Determination in Cyclone Separators. Separations 2023, 10, 284. [Google Scholar] [CrossRef]
- Zhao, B. Development of a dimensionless logistic model for predicting cyclone separation efficiency. Aerosol Sci. Technol. 2010, 44, 1105–1112. [Google Scholar] [CrossRef]
- Leith, D. The logistic function and cyclone fractional efficiency. Aerosol Sci. Technol. 1990, 12, 598–606. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Wang, R.; Wang, X.; Tian, R.; Sun, Q. Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM. Adv. Powder Technol. 2019, 30, 227–239. [Google Scholar] [CrossRef]
- Mirzaei, M.; Jensen, P.A.; Nakhaei, M.; Wu, H.; Zakrzewski, S.; Zhou, H.; Lin, W. CFD-DDPM coupled with an agglomeration model for simulation of highly loaded large-scale cyclones: Sensitivity analysis of sub-models and model parameters. Powder Technol. 2023, 413, 118036. [Google Scholar] [CrossRef]
- Pandey, S.; Brar, L.S. On the performance of cyclone separators with different shapes of the conical section using CFD. Powder Technol. 2022, 407, 117629. [Google Scholar] [CrossRef]
- Ijaz, M.; Farhan, M.; Farooq, M.; Moeenuddin, G.; Nawaz, S.; Soudagar, M.E.M.; Saqib, H.M.; Ali, Q. Numerical investigation of particles characteristics on cyclone performance for sustainable environment. Part. Sci. Technol. 2021, 39, 495–503. [Google Scholar] [CrossRef]
- Nti, I.K.; Adekoya, A.F.; Weyori, B.A.; Nyarko-Boateng, O. Applications of artificial intelligence in engineering and manufacturing: A systematic review. J. Intell. Manuf. 2022, 33, 1581–1601. [Google Scholar] [CrossRef]
- Islam, M.; Chen, G.; Jin, S. An Overview of Neural Network. Am. J. Neural Netw. Appl. 2019, 5, 7. [Google Scholar] [CrossRef]
- Queiroz, L.H.; Santos, F.P.; Oliveira, J.P.; Souza, M.B. Physics-Informed deep learning to predict flow fields in cyclone separators. Digit. Chem. Eng. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Elsayed, K.; Lacor, C. Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technol. 2011, 212, 115–133. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y. Artificial neural network-based modeling of pressure drop coefficient for cyclone separators. Chem. Eng. Res. Des. 2010, 88, 606–613. [Google Scholar] [CrossRef]
- Brar, L.S.; Elsayed, K. Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network. Powder Technol. 2017, 311, 465–483. [Google Scholar] [CrossRef]
- Elsayed, K.; Lacor, C. CFD modeling and multi-objective optimization of cyclone geometry using desirability function, Artificial neural networks and genetic algorithms. Appl. Math. Model. 2013, 37, 5680–5704. [Google Scholar] [CrossRef]
- Le, D.K.; Yoon, J.Y. A hybrid CFD—Deep learning methodology for improving the accuracy of cut-off diameter prediction in coarse-grid simulations for cyclone separators. Chem. Eng. Res. Des. 2023, 190, 296–311. [Google Scholar] [CrossRef]
- Tang, X.; Yue, Y.; Shen, Y. Prediction of separation efficiency in gas cyclones based on RSM and GA-BP: Effect of geometry designs. Powder Technol. 2023, 416, 118185. [Google Scholar] [CrossRef]
- Zhao, B. Modeling pressure drop coefficient for cyclone separators: A support vector machine approach. Chem. Eng. Sci. 2009, 64, 4131–4136. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, B.; Sun, D. Multi-objective optimization of guide vanes for axial flow cyclone using CFD, SVM, and NSGA II algorithm. Powder Technol. 2020, 373, 637–646. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Yang, J.; Hao, X.; Guan, G.; Gao, Z. An experimental modeling of cyclone separator efficiency with PCA-PSO-SVR algorithm. Powder Technol. 2019, 347, 114–124. [Google Scholar] [CrossRef]
- Bülbül, M.A. Optimization of artificial neural network structure and hyperparameters in hybrid model by genetic algorithm: IOS–android application for breast cancer diagnosis/prediction. J. Supercomput. 2024, 80, 4533–4553. [Google Scholar] [CrossRef]
- Konak, F.; Bülbül, M.A.; Türkoǧlu, D. Feature Selection and Hyperparameters Optimization Employing a Hybrid Model Based on Genetic Algorithm and Artificial Neural Network: Forecasting Dividend Payout Ratio. Comput. Econ. 2024, 63, 1673–1693. [Google Scholar] [CrossRef]
- Lillicrap, T.P.; Santoro, A.; Marris, L.; Akerman, C.J.; Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 2020, 21, 335–346. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Athaiya, A. Activation Functions in Neural Networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310–316. [Google Scholar] [CrossRef]
- Belete, D.M.; Huchaiah, M.D. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int. J. Comput. Appl. 2022, 44, 875–886. [Google Scholar] [CrossRef]
- Projects, L.; Sarang, P. Artificial Neural Networks with Tensorflow 2; Apress: Berkeley, CA, USA, 2021. [Google Scholar]
- Awad, M.; Khanna, R. Efficient Learning Machines; Springer Nature: Berlin/Heidelberg, Germany, 2015; pp. 67–80. [Google Scholar]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Oommen, T.; Misra, D.; Twarakavi, N.K.C.; Prakash, A.; Sahoo, B.; Bandopadhyay, S. An objective analysis of support vector machine based classification for remote sensing. Math. Geosci. 2008, 40, 409–424. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, S.; Zhang, P.; Ma, B.; Ma, P.; Feng, X. Prediction of jacking force using PSO-BPNN and PSO-SVR algorithm in curved pipe roof. Tunn. Undergr. Sp. Technol. 2023, 138, 105159. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, M.; Liang, W. A Comparative Study of SSA-BPNN, SSA-ENN, and SSA-SVR Models for Predicting the Thickness of an Excavation Damaged Zone around the Roadway in Rock. Mathematics 2022, 10, 1351. [Google Scholar] [CrossRef]
- Sci Kit Learn. Available online: https://pypi.org/project/scikit-learn/ (accessed on 20 July 2023).
- Hsiao, T.C.; Huang, S.H.; Hsu, C.W.; Chen, C.C.; Chang, P.K. Effects of the geometric configuration on cyclone performance. J. Aerosol Sci. 2015, 86, 1–12. [Google Scholar] [CrossRef]
- Kenny, L.C.; Gussman, R.A. A direct approach to the design of cyclones for aerosol-monitoring applications. J. Aerosol Sci. 2000, 31, 1407–1420. [Google Scholar] [CrossRef]
- Kim, J.C.; Lee, K.W. Experimental study of particle collection by small cyclones. Aerosol Sci. Technol. 1990, 12, 1003–1015. [Google Scholar] [CrossRef]
- Xiang, R.; Park, S.H.; Lee, K.W. Effects of cone dimension on cyclone performance. J. Aerosol Sci. 2001, 32, 549–561. [Google Scholar] [CrossRef]
- Ray, M.B.; Hoffmann, A.C.; Postma, R.S. Performance of different analytical methods in evaluating grade efficiency of centrifugal separators. J. Aerosol Sci. 2000, 31, 563–581. [Google Scholar] [CrossRef]
- Bohnet, M. Influence of the gas temperature on the separation efficiency of aerocyclones. Chem. Eng. Process. 1995, 34, 151–156. [Google Scholar] [CrossRef]
- Zhu, Y.; Lee, K.W. Experimental study on small cyclones operating at high flowrates. J. Aerosol Sci. 1999, 30, 1303–1315. [Google Scholar] [CrossRef]
- Hoekstra, A.J. Gas Flow Field and Collection Efficiency of Cyclone Separators. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2000; pp. 1–165. [Google Scholar]
- Yoshida, H.; Kwan-Sik, Y.; Fukui, K.; Akiyama, S.; Taniguchi, S. Effect of apex cone height on particle classification performance of a cyclone separator. Adv. Powder Technol. 2003, 14, 263–278. [Google Scholar] [CrossRef]
- Lim, K.S.; Kim, H.S.; Lee, K.W. Characteristics of the collection efficiency for a cyclone with different vortex finder shapes. J. Aerosol Sci. 2004, 35, 743–754. [Google Scholar] [CrossRef]
- Kim, H.T.; Lee, K.W.; Kuhlman, M.R. Exploratory design modifications for enhancing cyclone performance. J. Aerosol Sci. 2001, 32, 1135–1146. [Google Scholar] [CrossRef]
- Zhao, B. Development of a new method for evaluating cyclone efficiency. Chem. Eng. Process. Process Intensif. 2005, 44, 447–451. [Google Scholar] [CrossRef]
- Yang, J.; Sun, G.; Gao, C. Effect of the inlet dimensions on the maximum-efficiency cyclone height. Sep. Purif. Technol. 2013, 105, 15–23. [Google Scholar] [CrossRef]
- Huang, A.N.; Maeda, N.; Shibata, D.; Fukasawa, T.; Yoshida, H.; Kuo, H.P.; Fukui, K. Influence of a laminarizer at the inlet on the classification performance of a cyclone separator. Sep. Purif. Technol. 2017, 174, 408–416. [Google Scholar] [CrossRef]
- Obermair, S.; Staudinger, G. The dust outlet of a gas cyclone and its effects on separation efficiency. Chem. Eng. Technol. 2001, 24, 1259–1263. [Google Scholar] [CrossRef]
- Beeckmans, J.M.; Kim, C.J. Analysis of the efficiency of reverse flow cyclones. Can. J. Chem. Eng. 1977, 55, 640–643. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Li, Q.; Zhang, Y.H.; Wang, H.L. Simulation and experimental study of effect of vortex finder structural parameters on cyclone separator performance. Sep. Purif. Technol. 2022, 286, 120394. [Google Scholar] [CrossRef]
- Dirgo, J.; Leith, D. Cyclone collection efficiency: Comparison of experimental results with theoretical predictions. Aerosol Sci. Technol. 1985, 4, 401–415. [Google Scholar] [CrossRef]
- Marinos, C.; Economopoulou, A.A.; Economopoulos, A.P. Comparative Fractional Efficiency Predictions by Selected Cyclone Simulation Models. J. Environ. Eng. 2007, 133, 556–567. [Google Scholar] [CrossRef]
D [m] | De/D | a/D | b/D | Dp/D (10−4) | Re (105) | Stk (10−2) | |
---|---|---|---|---|---|---|---|
0.9 | 0.3 | 0.5 | 0.3 | 0.017–0.16 | 2208 | 7.577 | 0.029–2.38 |
0.0219 | 0.36 | 0.58 | 0.32 | 2–4.4 | 816 | 0.023–0.05 | 0.437–2.15 |
0.0219 | 0.45 | 0.58 | 0.32 | 3–4.2 | 816 | 0.023–0.05 | 1.016–2.93 |
0.0219 | 0.62 | 0.58 | 0.32 | 2.6–4.3 | 816 | 0.033–0.05 | 1.114–3.29 |
0.0219 | 0.79 | 0.58 | 0.32 | 3.5–4.5 | 816 | 0.033–0.05 | 1.946–3.80 |
0.0311 | 0.25 | 0.41 | 0.22 | 1.3–2.7 | 816 | 0.034–0.071 | 0.230–1.55 |
0.0311 | 0.32 | 0.41 | 0.22 | 1.3–2.7 | 816 | 0.034–0.071 | 0.249–1.72 |
0.0311 | 0.43 | 0.41 | 0.22 | 1.3–3 | 816 | 0.034–0.071 | 0.333–2.07 |
0.0311 | 0.56 | 0.41 | 0.22 | 2–3 | 816 | 0.034–0.071 | 0.504–2.06 |
0.0411 | 0.24 | 0.31 | 0.17 | 1–2.34 | 816 | 0.034–0.071 | 0.275–2.41 |
0.25 | 0.5 | 0.5 | 0.2 | 0.52–2.82 | 730 | 1.24–3.76 | 0.031–1.18 |
0.25 | 0.5 | 0.5 | 0.3 | 0.52–2.82 | 730 | 1.679 | 0.020–0.52 |
0.25 | 0.5 | 0.75 | 0.2 | 0.52–2.82 | 730 | 1.679 | 0.020–0.52 |
0.25 | 0.5 | 0.5 | 0.1 | 0.52–2.82 | 730 | 5.038 | 0.062–1.58 |
0.25 | 0.5 | 0.25 | 0.2 | 0.52–2.82 | 730 | 5.038 | 0.062–1.58 |
0.25 | 0.3 | 0.5 | 0.2 | 0.52–2.82 | 730 | 2.519 | 0.031–0.79 |
0.4 | 0.5 | 0.5 | 0.2 | 0.02–0.15 | 2250 | 2.92 | 0.024–0.8 |
0.15 | 0.23 | 0.53 | 0.13 | 0.06–0.26 | 2208 | 1.04 | 0.061–0.66 |
0.03 | 0.49 | 0.4 | 0.2 | 0.25–0.73 | 875 | 0.272–0.498 | 0.095–1.73 |
0.031 | 0.5 | 0.4 | 0.16 | 0.16–2.6 | 875 | 0.167–0.334 | 0.026–9.33 |
0.072 | 0.44 | 0.5 | 0.23 | 0.12–0.31 | 2416 | 0.83–1.07 | 0.18–1.54 |
0.03 | 0.5 | 0.4 | 0.2 | 0.16–1 | 875 | 0.23 | 0.034–1.27 |
0.076 | 0.5 | 0.46 | 0.19 | 0.04–1.3 | 3290 | 0.4–1.01 | 0.015–10.2 |
0.186 | 0.43 | 0.72 | 0.36 | 0.02–0.71 | 2250 | 2.47 | 0.017–9.6 |
0.072 | 0.44 | 0.47 | 0.12 | 0.1–0.53 | 1916 | 0.525–0.859 | 0.064–6.03 |
N° | D [m] | De/D | a/D | b/D | Dp/D (10−4) | Re (105) | Stk (10−3) | |
---|---|---|---|---|---|---|---|---|
1 | 0.2 | 0.375 | 0.5 | 0.2 | 0.05–0.25 | 2275 | 2.486 | 0.45–10.6 |
2 | 0.4 | 0.375 | 0.44 | 0.25 | 0.03–0.22 | 2308 | 3.341 | 0.39–21.8 |
3 | 0.152 | 0.5 | 0.542 | 0.25 | 0.04–0.31 | 1183 | 1.229 | 0.14–7.8 |
4 | 0.25 | 0.5 | 0.5 | 0.2 | 0.05–0.27 | 730 | 2.519 | 0.28–7.8 |
5 | 0.3 | 0.5 | 0.5 | 0.2 | 0.033–0.21 | 2250 | 2.39 | 0.35–1.3 |
6 | 0.305 | 0.5 | 0.5 | 0.2 | 0.045–0.19 | 725 | 2.022 | 0.17–3.1 |
7 | 0.3 | 0.5 | 0.5 | 0.2 | 0.001–0.22 | 2250 | 4.013 | 0.003–26.2 |
Training ID | Batch Size | Epochs | Optim. Algorithm | Act. Function | MTE [%] | MVE [%] | MTA [%] |
---|---|---|---|---|---|---|---|
1 | 5 | 90 | Adam | ReLu | 3.47 | 2.97 | 87.7 |
2 | 5 | 90 | Adam | Sigmoid | 6.23 | 6.6 | 83.3 |
3 | 5 | 90 | Adagrad | Relu | 12.1 | 12.3 | 72.7 |
4 | 5 | 90 | Adagrad | Sigmoid | 17.9 | 17.3 | 66.6 |
5 | 5 | 100 | Adam | ReLu | 2.66 | 2.87 | 89.8 |
6 | 5 | 100 | Adam | Sigmoid | 6.22 | 6.43 | 79.5 |
7 | 5 | 100 | Adagrad | ReLu | 14.3 | 14.5 | 73.5 |
8 | 5 | 100 | Adagrad | Sigmoid | 12.4 | 12.6 | 67.2 |
9 | 15 | 90 | Adam | ReLu | 3.87 | 3.39 | 87.9 |
10 | 15 | 90 | Adam | Sigmoid | 7.48 | 7 | 81 |
11 | 15 | 90 | Adagrad | ReLu | 13.9 | 13.9 | 70.3 |
12 | 15 | 90 | Adagrad | Sigmoid | 20.4 | 19.6 | 66.4 |
13 | 15 | 100 | Adam | ReLu | 3.59 | 2.94 | 85.7 |
14 | 15 | 100 | Adam | Sigmoid | 7.16 | 7.24 | 81.5 |
15 | 15 | 100 | Adagrad | ReLu | 19.7 | 19.9 | 71.6 |
16 | 15 | 100 | Adagrad | Sigmoid | 15.7 | 15.5 | 66.8 |
Training ID | Kernel Function | C | ε | MTE [%] | MTA [%] |
---|---|---|---|---|---|
1 | linear | 0.1 | 0.01 | 8.9 | 69 |
2 | polynomial | 1 | 0.01 | 8.4 | 73.8 |
3 | RBF | 10 | 0.1 | 2.9 | 85.6 |
4 | RBF | 100 | 0.01 | 1.7 | 89.8 |
5 | sigmoid | 10 | 0.1 | 8.7 | 69.5 |
6 | polynomial | 100 | 0.2 | 5.3 | 80 |
7 | RBF | 10 | 0.2 | 3.2 | 84.5 |
8 | polynomial | 10 | 0.2 | 5.9 | 77.9 |
9 | RBF | 0.1 | 0.5 | 12.4 | 64.7 |
10 | polynomial | 0.1 | 0.2 | 8.2 | 73.3 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | Overall | Diff | |
---|---|---|---|---|---|---|---|---|---|
Present BPNN | 0.001 | 0.008 | 0.006 | 0.006 | 0.013 | 0.017 | 0.003 | 0.007 | 1 |
Present SVR | 0.0139 | 0.011 | 0.044 | 0.008 | 0.007 | 0.018 | 0.007 | 0.015 | 2.1 |
Clift et al. [13] | 0.204 | 0.218 | 0.103 | 0.145 | 0.233 | 0.090 | 0.118 | 0.158 | 22.6 |
Li & Wang [16] | 0.132 | 0.160 | 0.045 | 0.019 | 0.028 | 0.016 | 0.009 | 0.058 | 8.3 |
Zhao [18] | 0.022 | 0.016 | 0.027 | 0.011 | 0.005 | 0.012 | 0.001 | 0.013 | 1.85 |
Mothes et al. [15] | 0.009 | 0.003 | 0.005 | 0.028 | 0.005 | 0.017 | 0.007 | 0.011 | 1.6 |
Iozia et al. [10] | 0.016 | 0.033 | 0.038 | 0.027 | 0.008 | 0.005 | 0.008 | 0.020 | 2.85 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | Overall Small Dp | Diff | |
---|---|---|---|---|---|---|---|---|---|
Present BPNN | 0.001 | 0.009 | 0.003 | 0.002 | 0.003 | 0.002 | 0.002 | 0.003 | 1 |
Present SVR | 0.0183 | 0.016 | 0.027 | 0.001 | 0.011 | 0.015 | 0.014 | 0.014 | 4.6 |
Clift et al. [13] | 0.132 | 0.137 | 0.065 | 0.014 | 0.054 | 0.005 | 0.027 | 0.062 | 20.6 |
Li & Wang [16] | 0.166 | 0.100 | 0.034 | 0.014 | 0.005 | 0.006 | 0.014 | 0.048 | 16 |
Zhao [18] | 0.072 | 0.057 | 0.027 | 0.005 | 0.005 | 0.003 | 0.028 | 0.028 | 9.3 |
Mothes et al. [15] | 0.003 | 0.007 | 0.019 | 0.001 | 0.005 | 0.001 | 0.026 | 0.009 | 3 |
Iozia et al. [10] | 0.060 | 0.170 | 0.051 | 0.002 | 0.015 | 0.001 | 0.03 | 0.047 | 15.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bregolin, E.; Danieli, P.; Masi, M. Collection Efficiency of Cyclone Separators: Comparison between New Machine Learning-Based Models and Semi-Empirical Approaches. Waste 2024, 2, 240-257. https://doi.org/10.3390/waste2030014
Bregolin E, Danieli P, Masi M. Collection Efficiency of Cyclone Separators: Comparison between New Machine Learning-Based Models and Semi-Empirical Approaches. Waste. 2024; 2(3):240-257. https://doi.org/10.3390/waste2030014
Chicago/Turabian StyleBregolin, Edoardo, Piero Danieli, and Massimo Masi. 2024. "Collection Efficiency of Cyclone Separators: Comparison between New Machine Learning-Based Models and Semi-Empirical Approaches" Waste 2, no. 3: 240-257. https://doi.org/10.3390/waste2030014
APA StyleBregolin, E., Danieli, P., & Masi, M. (2024). Collection Efficiency of Cyclone Separators: Comparison between New Machine Learning-Based Models and Semi-Empirical Approaches. Waste, 2(3), 240-257. https://doi.org/10.3390/waste2030014