Integrated Application of Innovative Technologies for Oil Spill Remediation in Gran Tarajal Harbor: A Scientific Approach
Abstract
:1. Introduction
2. Description of the Accident
3. Operational Response and Methods
3.1. Responsibility and Contingency Plan
3.2. Organization of Cleaning Operations at the Port of Gran Tarajal
3.3. Mechanical Oil Collection
3.4. Oil Slick Containment Systems
3.5. Removal of Vessels and Equipment
3.6. Bioremediation
- (1)
- They are completely dependent on hydrocarbons for sustenance, preventing their progression in its absence.
- (2)
- They do not exhibit any form of parasitism and cannot proliferate in other organisms, posing no threat to humans or other living organisms.
- (3)
- They lack the capacity to form resistance stages, such as spores or photosynthetic capabilities, rendering them inactive in the absence of hydrocarbons.
- (4)
3.7. Sampling Cruises
3.7.1. Water Samples Description
- Trace elements: Zinc (Zn), Cadmium (Cd), Lead (Pb), Copper (Cu), Nickel (Ni), Cromium (Cr), Arsenic (As), Mercury (Hg), and Selenium (Se), analyzed using spectrophotometry (Ultraviolet UV-Visible).
- TBT’s (tributyl tin) and its degradation products DBT (dibutyl tin) and MBT (monobutyl tin), analyzed by gas chromatography and mass detector.
- PCB’s (polychlorinated biphenyls) with IUPAC numbers 28, 52, 101, 118, 138, 153, and 180, analyzed by gas chromatography and mass detector.
- Preliminary toxicity test (TPT) for luminescence inhibition.
- Total Petroleum Hydrocarbons (TPH’s) analyzed using Gas Chromatography and Flame Detector.
- Polycyclic Aromatic Hydrocarbons (16 PAH’s) analyzed using gas chromatography and flame detector.
3.7.2. Sediment Samples Description
- Trace elements: Zn, Cd, Pb, Cu, Ni, Cr, As, Hg, and Se, analyzed using VIS spectrophotometry.
- TBT’s (tributyl tin) and its degradation products DBT (dibutyl tin) and MBT (monobutyl tin), analyzed by gas chromatography and mass detector.
- PCB’s (polychlorinated biphenyls) with IUPAC numbers 28, 52, 101, 118, 138, 153, and 180, analyzed by gas chromatography and mass detector.
- Preliminary toxicity test (TPT) for luminescence inhibition.
- Total Petroleum Hydrocarbons (TPH’s) analyzed using Gas Chromatography and Flame Detector.
- Polycyclic Aromatic Hydrocarbons (16 PAH’s) analyzed using gas chromatography and flame detector.
- Organic matter content (%COT), determined by volumetry.
- Granulometry assessed through gravimetry and sieving of the material.
3.7.3. Organisms Samples
4. Results
4.1. Solid Material Removed from the Port
4.2. Contaminant Material Extracted
4.3. Data from Sampling Cruises
4.3.1. Water Samples Results
4.3.2. Sediment Samples
Contaminants in Organisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camus, L.; Smit, M.G.D. Environmental effects of Arctic oil spills and spill response technologies, introduction to a 5 year joint industry effort. Mar. Environ. Res. 2019, 144, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V. Arctic Marine Oil Spill Response Methods: Environmental Challenges and Technological Limitations. In Arctic Marine Sustainability. Springer Polar Sciences; Pongrácz, E., Pavlov, V., Hänninen, N., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Kuyukina, M.S.; Krivoruchko, A.V.; Elkin, A.A.; Makarov, S.O.; Cunningham, C.J.; Peshkur, T.A.; Atlas, R.M.; Philp, J.C. Oil spill problems and sustainable response strategies through new technologies. Environ. Sci. Process. Impacts 2015, 17, 1201–1219. [Google Scholar] [CrossRef] [PubMed]
- Lehr, W.; Bristol, S.; Possolo, A. Oil budget calculator Deepwater Horizon. Retrieved from Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team. 2010. Available online: http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf (accessed on 1 January 2023).
- United States Department of Commerce. 2016. Final Programmatic Damage Assessment and Restoration Plan and Final Programmatic Environmental Impact Statement. National Oceanic and Atmospheric Administration. The Deepwater Horizon Natural Resource Trustees. Available online: https://www.gulfspillrestoration.noaa.gov/sites/default/files/wp-content/uploads/Front-Matter-and-Chapter-1_Introduction-and-Executive-Summary_508.pdf (accessed on 1 January 2023).
- Westerholm, D.G.; Ainsworth, C.H.; Barker, C.H.; Brewer, P.G.; Farrington, J.W.; Justić, D.; Solo-Gabriele, H.M. Preparedness, planning, and advances in operational response. Oceanography 2021, 34, 212–227. [Google Scholar] [CrossRef]
- Niehaus, D.; Hofmann, S.; Kumar, S.B.; Hoffmann, M.; Cisneros-Aguirre, J.; Schlüter, M. Experimental Characterization and Field Experience of a Reusable, Modified Polyurethane Foam for the Mechanical Clean-Up of Oil Spills at Sea Surface. JMSE. Marine Pollution. September 2022. Available online: https://www.mdpi.com/journal/jmse/special_issues/oil_clean (accessed on 1 January 2023).
- EPA. EPA Announces Stronger Standards to Improve Oil Spill Responses. United States Environmental Protection Agency. Available online: https://www.epa.gov/newsreleases/epa-announces-stronger-standards-improve-oil-spill-responses#:~:text=The%20new%20standards%20encourage%20the,when%20these%20products%20are%20used (accessed on 1 January 2023).
- Etkin, D.S.; Nedwed, T.J. Effectiveness of mechanical recovery for large offshore oil spills. Mar. Pollut. Bull. 2021, 163, 111848. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Taban, I.C.; Daling, P.S. Study of the oil interaction towards oil spill recovery skimmer material: Effect of the oil weathering and emulsification properties. Mar. Pollut. Bull. 2018, 135, 119–128. [Google Scholar] [CrossRef] [PubMed]
- ITOPF. Technical Information Paper 05: Use of Skimmers in Oil Pollution Response; Technical Information Paper 08; ITOPF: London, UK, 2014. [Google Scholar]
- US Coast Guard. On Scene Coordinator Report Deep Water Horizon Oil Spill; Technical Report; United States Coast Guard: Washington, DC, USA, 2011. [Google Scholar]
- Özgökmen, T.M.; Chassignet, E.P.; Dawson, C.N.; Dukhovskoy, D.; Jacobs, G.; Ledwell, J.; Garcia-Pineda, O.; MacDonald, I.R.; Morey, S.L.; Olascoaga, M.J.; et al. Over what área did the oil and gas spread during the 2010 Deepwater Horizon oil spill? Oceanography 2016, 29, 96–107. [Google Scholar] [CrossRef]
- Passow, U.; Overton, E. The complexity of spills: The fate of Deepwater Horizon oil. Annu. Rev. Mar. Sci. 2021, 13, 109–136. [Google Scholar] [CrossRef] [PubMed]
- ITOPF. Technical Information Paper 08: Use of Sorbent Materials in Oil Spill Response; Technical Information Paper 08; ITOPF: London, UK, 2014. [Google Scholar]
- ITOPF. Technical Information Paper 03: Use of Booms in Oil Pollution Response; Technical Information Paper 03; ITOPF: London, UK, 2011. [Google Scholar]
- Dhaka, A.; Chattopadhyay, P. A Review on Physical Remediation Techniques for Treatment of Marine Oil Spills. J. Environ. Manag. 2021, 288, 112428. [Google Scholar] [CrossRef] [PubMed]
- Al-Jammal, N.; Juzsakova, T. Review on the Effectiveness of Adsorbent Materials in Oil Spills Clean Up. Sea 2017, 25, 36. [Google Scholar]
- Hadji, E.M.; Fu, B.; Abebe, A.; Bilal, H.M.; Wang, J. Sponge-Based Materials for Oil Spill Cleanups: A Review. Front. Chem. Sci. Eng. 2020, 14, 749–762. [Google Scholar] [CrossRef]
- Kukkar, D.; Rani, A.; Kumar, V.; Younis, S.A.; Zhang, M.; Lee, S.S.; Tsang, D.C.; Kim, K.H. Recent Advances in Carbon Nanotube Sponge–Based Sorption Technologies for Mitigation of Marine Oil Spills. J. Coll. Interface Sci. 2020, 570, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.M.; Saleem, J.; Bazargan, A.; Duarte, J.L.d.S.; McKay, G.; Meili, L. Sorption as a Rapidly Response for Oil Spill Accidents: A Material and Mechanistic Approach. J. Hazard. Mater. 2021, 407, 124842. [Google Scholar] [CrossRef] [PubMed]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef] [PubMed]
- Murawski, S.A.; Grosell, M.; Smith, C.; Sutton, T.; Halanych, K.M.; Shaw, R.F.; Wilson, C.A. Impacts of Petroleum, Petroleum Components, and Dispersants on Organisms and Populations. Oceanography 2021, 34, 136–151. [Google Scholar] [CrossRef]
- Quigg, A.; Farrington, J.W.; Gilbert, S.; Murawski, S.A.; John, V.T. A Decade of GoMRI Dispersant Science: Lessons Learned and Recommendations for the Future. Oceanography 2021, 34, 98–111. [Google Scholar] [CrossRef]
- Bejarano, A.C. Further Development and Refinement of Interspecies Correlation Estimation Models for Current-Use Dispersants. Environ. Toxicol. Chem. 2019, 38, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Loh, A.; Shankar, R.; Ha, S.Y.; An, J.G.; Yim, U.H. Stability of mechanically and chemically dispersed oil: Effect of particle types on oil dispersion. Sci. Total Environ. 2020, 716, 135343. [Google Scholar] [CrossRef] [PubMed]
- Vonk, S.M.; Hollander, D.J.; Murk, A.J. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique? Mar. Pollut. Bull. 2015, 100, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.; Hollander, D.; Saupe, S.; Burd, A.B.; Gilbert, S.; Quigg, A. Integrating marine oil snow and MOSSFA into oil spill response and damage assessment. Mar. Pollut. Bull. 2021, 165, 112025. [Google Scholar] [CrossRef] [PubMed]
- Murk, A.J.; Hollander, D.J.; Chen, S.; Hu, C.; Liu, Y.; Vonk, S.M.; Schwing, P.T.; Gilbert, S.; Foekema, E.M. A predictive strategy for mapping locations where future MOSSFA events are expected. In Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War; Springer: Cham, Switzerland, 2020; pp. 355–368. [Google Scholar]
- Quigg, A.; Passow, U.; Daly, K.L.; Burd, A.; Hollander, D.J.; Schwing, P.T.; Lee, K. Marine oil snow sedimentation and flocculent accumulation (MOSSFA) events: Learning from the past to predict the future. In Deep Oil Spills: Facts, Fate, and Effects; Springer: Cham, Switzerland, 2020; pp. 196–220. [Google Scholar]
- Bioremediation Test in Salvora Island (Arosa, Galicia, Spain) during Prestige Oil Spill; CSIC: Madrid, Spain, 2003.
- Bioremediation Test in Villanova Harbour, Barcelona, Spain; CSIC: Madrid, Spain, 2004.
- Bioremediation in Montserrat Mountain Soil, Barcelona, Spain; CSIC: Madrid, Spain, 2004.
- Rittman, B. In Situ Bioremediation, 2nd ed.; Noyes Publication: Park Ridge, NJ, USA, 1994; 255p. [Google Scholar]
- Caprette, D. Substrate Oxidation: Krebs Reaction. Rice Unix Facility, Rice University. Houston, USA. 2000. Available online: http://www.ruf.rice.edu/~bioslabs/studies/mitochondria/mitokrebs.html (accessed on 1 January 2023).
- Van Beilen, J.; Duetz, W.; Smits, T.; Witholt, B. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci. Technol. 2003, 58, 427–440. [Google Scholar] [CrossRef]
- Monterroso, O.; Rodríguez, M.; Ramos, E.; Pérez, O.; Álvarez, O.; Cruces, L.; Ruiz, M.; Miguel, M.R.y.A. Plan de vigilancia ambiental de marzo a septiembre en el puerto de Gran Tarajal. Caracterización de muestras de sedimento, aguas y organismos para la valoración ambiental de un vertido accidental en Fuerteventura; Campaña de septiembre 2018. CIMA S.L. Informe Técnico 2019-12; 2018; 130p.
- González-Díaz, V.; Hernández-Moreno, J.M.; Jiménez-Abizanda, A.I.; Jiménez-Moreno, F. Levels of Heavy Metals in Canary Islands Soils; Report I-QA-469/10; Canary Islands Regional Government Environmental Department & La Laguna University: Santa Cruz de Tenerife, Spain, 2003; 230p. [Google Scholar]
- Real Decreto 817/2015. (RD 817/2015). BOE-A-2015-9806. Spaninsh legislation. Available online: https://www.boe.es/eli/es/rd/2015/09/11/817/con (accessed on 1 January 2023).
Oil Type | Quantity |
---|---|
Diesel | 170,270 L |
Hydraulic Oil | 14,854 L |
Fuel Oil | 42,720 L |
Material Recovered | Quantity |
---|---|
504 cans 5 kg each of paint | 2875 kg |
5 cans 15 kg each of paint | |
14 cans 20 kg each of paint | |
67 cans 3 l each of dissolvent | 381 L |
20 cans 5 l each of dissolvent | |
4 cans 20 l each of dissolvent | |
5 cans 4 kg each of glue | 20 kg |
2 cans 3 l each of soap | 6 L |
1 carafe of 3 l Sulfuric Acid | 28 L |
1 carafe of 25 l Sulfuric Acid | |
33 cans 15 kg each of Engine Grease | 495 kg |
1 can 10 kg of sepiolite | 10 kg |
18 carafes 5 l each antifreeze | 133 L |
1 carafe of 18 l antifreeze | |
1 carafe of 25 l antifreeze | |
Heavy Lead batteries | 57 units |
Boat Tire fenders | 183 units |
Parameter | 25–28 March | 7–11 April | 17–21 May | 23–27 September |
---|---|---|---|---|
Mercury (µg/L) | 0.0 | 0.8 | 0.0 | 0.0 |
Cadmium (µg/L) | 4.9 | 0.0 | 0.0 | 0.0 |
Lead (µg/L) | 39.3 | 6.5 | 0.0 | 32.0 |
Copper (µg/L) | 20.1 | 8.9 | 45.9 | 372.0 |
Zinc (µg/L) | 0.0 | 0.0 | 0.0 | 0.0 |
Crome (µg/L) | 8.8 | 6.9 | 5.3 | 0.0 |
Niquel (µg/L) | 19.7 | 12.6 | 1.0 | 0.0 |
Arsenic (µg/L) | 93.9 | 103.1 | 150.0 | 68.0 |
Selenium (µg/L) | 0.0 | 0.0 | 0.0 | 0.0 |
Σ 7 PCB’s (µg/L) | 0.0 | 0.0 | 0.0 | 0.0 |
Σ 16 HAP’s (µg/L) | 0.0 | 0.0 | 0.0 | 0.0 |
TPT’s (Equitox/m3) | 0.0 | 0.0 | 0.0 | - |
TBT’s (µg/L) | 0.0 | 0.0 | 0.0 | 0.0 |
TPH’s (mg/L) | 1.7 | 0.0 | 0.0 | 0.0 |
Parameter | 25–28 March | 7–11 April | 17–21 May | 23–27 September |
---|---|---|---|---|
Mercury (µg/L) | 2.6 | 0.4 | 0.0 | 0.0 |
Cadmium (µg/L) | 1.4 | 1.1 | 1.3 | 1.3 |
Lead (µg/L) | 80.1 | 66.2 | 76.8 | 58.5 |
Copper (µg/L) | 306.6 | 522.4 | 362.8 | 461.1 |
Zinc (µg/L) | 308.1 | 391.6 | 281.2 | 515.8 |
Crome (µg/L) | 800.6 | 869.9 | 756.0 | 769.3 |
Niquel (µg/L) | 542.0 | 766.3 | 804.9 | 1.022.1 |
Arsenic (µg/L) | 67.5 | 75.4 | 90.9 | 104.1 |
Selenium (µg/L) | 0.0 | 0.0 | 0.0 | 0.0 |
Σ 7 PCB’s (µg/L) | 0.0 | 0.0 | 0.0 | 0.0 |
Σ 16 HAP’s (µg/L) | 6.3 | 2.8 | 3.4 | 0.1 |
TPT’s (Equitox/m3) | 8.6 | 3.8 | 4.6 | 0.1 |
TBT’s (µg/L) | 0.0 | 0.0 | 0.0 | 0.0 |
TPH’s (mg/L) | 59.962 | 35.780 | 35.016 | 1.593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisneros-Aguirre, J.; Afonso-Correa, M. Integrated Application of Innovative Technologies for Oil Spill Remediation in Gran Tarajal Harbor: A Scientific Approach. Waste 2024, 2, 414-450. https://doi.org/10.3390/waste2040023
Cisneros-Aguirre J, Afonso-Correa M. Integrated Application of Innovative Technologies for Oil Spill Remediation in Gran Tarajal Harbor: A Scientific Approach. Waste. 2024; 2(4):414-450. https://doi.org/10.3390/waste2040023
Chicago/Turabian StyleCisneros-Aguirre, Jesús, and María Afonso-Correa. 2024. "Integrated Application of Innovative Technologies for Oil Spill Remediation in Gran Tarajal Harbor: A Scientific Approach" Waste 2, no. 4: 414-450. https://doi.org/10.3390/waste2040023
APA StyleCisneros-Aguirre, J., & Afonso-Correa, M. (2024). Integrated Application of Innovative Technologies for Oil Spill Remediation in Gran Tarajal Harbor: A Scientific Approach. Waste, 2(4), 414-450. https://doi.org/10.3390/waste2040023