Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review
Abstract
:1. Introduction
Category | Material | Cellulose (%) | Hemicellulose (%) | Lignin (%) | References |
---|---|---|---|---|---|
Agricultural residues | Corn stover | 28–40% | 25–35% | 10–20% | [26] |
Wheat straw | 35–40% | 20–30% | 15–20% | [26] | |
Rice straw | 32–47% | 19–27% | 5–24% | [27] | |
Forestry residues | Hardwood (Birch) | 40–45% | 25–35% | 20–25% | [28] |
Softwood (Pine) | 40–44% | 25–29% | 26–35% | [29] | |
Industrial residues | Bagasse | 32–44% | 27–32% | 19–24% | [30] |
Paper mill sludge | 30–50% | 50–15% | 5–10% | [31] | |
Dedicated energy crops | Willow | 42–49% | 16–20% | 23–25% | [32] |
Sweet sorghum | 30–40% | 25–30% | 10–15% | [33] | |
Aquatic plants | Water hyacinth | 17–21% | 35–45% | 15–17% | [34] |
Algae | ~70% | ~43% | NA | [35] | |
Fruit shells and pomace | Coconut shell | 26–35% | 15–20% | 29–36% | [36] |
Olive pomace | 25–35% | 20–25% | 30–35% | [37] |
2. Combined Pretreatment
2.1. Physical–Chemical Combined Pretreatment
2.1.1. Steam Explosion and Chemical Pretreatment
2.1.2. Mechanical Crushing and Chemical Pretreatment
2.1.3. Moist Heat–Alkali Pretreatment
2.2. Physical–Biological Combined Pretreatment
2.2.1. Mechanical Pulverization–Biological Pretreatment
2.2.2. Steam Explosion–Biological Pretreatment
2.2.3. Hydrothermal–Biological Pretreatment
2.3. Chemical–Biological Combined Pretreatment
2.3.1. Acid Pretreatment–Biological Pretreatment
2.3.2. Alkaline–Biological Pretreatment
2.4. Chemical–Chemical Combined Pretreatment
2.4.1. Acid–Alkali Pretreatment
2.4.2. Acid–Oxidant Pretreatment
2.4.3. Alkaline–Oxidant Pretreatment
2.4.4. Deep Eutectic Solvent–Acid Pretreatment
2.4.5. Deep Eutectic Solvent–Alkali Pretreatment
3. Advantages of Combined Pretreatment
4. Application
4.1. Biofuels
Feedstock | Pretreatment | Cellulose Efficiency | Microorganism | Ethanol Concentration | Ethanol Yields | Reference |
---|---|---|---|---|---|---|
Cotton stalk | Ultrasound-assisted alkali pretreatment | —— | Saccharomyces cerevisiae | —— | 45.53% | [97] |
Corn Stover | Lime-CaO pretreatment | >90% | Saccharomyces cerevisiae CRD61 | 65.1 g/L | —— | [98] |
Corn Stover | CaO densification | 91.1% | Saccharomyces cerevisiae CRD51 | 70.6 g/L | —— | [99] |
Rice straw | KOH/urea | 92.02% | Saccharomyces cerevisiae Y2034 | 37.02 g/L | 75.89% | [100] |
Reed | Tartaric acid | 95.2% | Saccharomyces cerevisiae | 10.8 g/L | 55.5% | [101] |
Reed | LHW-NH3·H2O/O2 | 97.60% | yeast | 71.5 g/L | 78.40% | [102] |
Oak sawdust | HCl | 85.98% | Pichia stipitis KCTC 7222 | 21 g/L | —— | [103] |
Rice husk | Alkali-hydrogen peroxide acetic acid (alkali-HPAC) | 86.3% | Saccharomyces cerevisiae (KCTC 7906) | —— | 85.4% | [104] |
Sugarcane bagasse (SCB) | PEG 4000 assistance alkaline-catalyzed glycerol | 92.1% | Saccharomyces cerevisiae rdna8 | 56.4 g/L | —— | [105] |
Poplar | NaOH-catalyzed ethanol | 72.84% | S. cerevisiae strain | 85.74 g/L | [96] | |
Poplar | Acetic acid | 53.11% | Saccharomyces cerevisiae | 30.96 g/L | 92.79% | [106] |
Feedstock | Pretreatment | Bio-Methane Production | Reference |
---|---|---|---|
wheat straw | Mechanical grinding–hydrothermal | 376 mL/g VS | [109] |
Corn straw | NaOH pretreatment with CaO additive and ultrasound | 500 mL/g-TS | [108] |
Corn straw | Grinding–urea | 250.03 mL/g VS | [7] |
Cyperus papyrus ‘Nanus’ | Ball milling–hydrothermal | 180.57 mL/g VS | [110] |
Corn straw | Grinding–alkaline densification | 224.30 mL/g VS | [111] |
Wheat straw | Grinding–urea | 305.5 mL/g VS | [112] |
Rice straw | Mechanical grinding–nanobubble water | 336.7 NmL/g VS | [113] |
4.2. Bio-Based Chemicals
4.3. Feed and Fertilizers
4.4. Integration of Biorefinery Processes
- (1)
- Multi-Technology Integration: Combining physical, chemical, and biological technologies to select appropriate treatment and conversion paths based on the characteristics of the biomass resources.
- (2)
- Efficient Energy Utilization: Optimizing production processes to enhance energy utilization efficiency and product selectivity, reducing production costs and environmental impact.
- (3)
- Sustainable Development: Promoting the development of the bio-economy, reducing dependence on finite resources, lowering greenhouse gas emissions, and advancing the establishment of a circular economy model.
5. Combined Pretreatment Future Development Strategy and Outlook
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tan, J.; Li, Y.; Tan, X.; Wu, H.; Li, H.; Yang, S. Advances in Pretreatment of Straw Biomass for Sugar Production. Front. Chem. 2021, 9, 696030. [Google Scholar] [CrossRef] [PubMed]
- Batista Meneses, D.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R.; Rojas-Álvarez, M.; Corrales-Castillo, J.; Murillo-Araya, L.C. Pretreatment methods of lignocellulosic wastes into value-added products: Recent advances and possibilities. Biomass Convers. Biorefinery 2022, 12, 547–564. [Google Scholar] [CrossRef]
- Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Hasegawa, R.; Kurosawa, K.; Maeda, A.H.; Koizumi, T.; Nishimura, H.; Okada, H.; Qu, C.; Saito, K.; Watanabe, T.; et al. Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin. Chemsuschem 2016, 10, 425–433. [Google Scholar] [CrossRef]
- Kumar, R.; Kim, T.H.; Basak, B.; Patil, S.M.; Kim, H.H.; Ahn, Y.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Jeon, B.-H. Emerging approaches in lignocellulosic biomass pretreatment and anaerobic bioprocesses for sustainable biofuels production. J. Clean. Prod. 2022, 333, 130180. [Google Scholar] [CrossRef]
- Yu, H.; Xiao, W.; Han, L.; Huang, G. Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresour. Technol. 2019, 282, 69–74. [Google Scholar] [CrossRef]
- Xie, Z.; Zou, H.; Zheng, Y.; Fu, S.-F. Improving anaerobic digestion of corn straw by using solid-state urea pretreatment. Chemosphere 2022, 293, 133559. [Google Scholar] [CrossRef]
- Chen, J.; Cai, Y.; Wang, Z.; Wang, S.; Li, J.; Song, C.; Zhuang, W.; Liu, D.; Wang, S.; Song, A.; et al. Construction of a Synthetic Microbial Community for Enzymatic Pretreatment of Wheat Straw for Biogas Production via Anaerobic Digestion. Environ. Sci. Technol. 2024, 58, 9446–9455. [Google Scholar] [CrossRef]
- Basak, B.; Kumar, R.; Bharadwaj, A.V.S.L.S.; Kim, T.H.; Kim, J.R.; Jang, M.; Oh, S.-E.; Roh, H.-S.; Jeon, B.-H. Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresour. Technol. 2023, 369, 128413. [Google Scholar] [CrossRef]
- van der Pol, E.C.; Vaessen, E.; Weusthuis, R.A.; Eggink, G. Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method. Bioresour. Technol. 2016, 209, 297–304. [Google Scholar] [CrossRef]
- Yu, J.; Chen, S.; Yu, Y.; Zhang, C.; Jin, M. Influence of feedstock selection on cellulosic ethanol production based on densified biomass with calcium hydroxide and regular steam pretreatment. Renew. Energy 2024, 227, 120561. [Google Scholar] [CrossRef]
- Das, N.; Jena, P.K.; Padhi, D.; Kumar Mohanty, M.; Sahoo, G. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Convers. Biorefinery 2023, 13, 1503–1527. [Google Scholar] [CrossRef]
- Yadav, M.; Balan, V.; Varjani, S.; Tyagi, V.K.; Chaudhary, G.; Pareek, N.; Vivekanand, V. Multidisciplinary Pretreatment Approaches to Improve the Bio-methane Production from Lignocellulosic Biomass. BioEnergy Res. 2023, 16, 228–247. [Google Scholar] [CrossRef]
- Meenakshisundaram, S.; Fayeulle, A.; Leonard, E.; Ceballos, C.; Pauss, A. Fiber degradation and carbohydrate production by combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass—A review. Bioresour. Technol. 2021, 331, 125053. [Google Scholar] [CrossRef]
- Zeng, K.; He, X.; Yang, H.; Wang, X.; Chen, H. The effect of combined pretreatments on the pyrolysis of corn stalk. Bioresour. Technol. 2019, 281, 309–317. [Google Scholar] [CrossRef]
- Yang, J.; Gao, C.; Yang, X.; Su, Y.; Shi, S.; Han, L. Effect of combined wet alkaline mechanical pretreatment on enzymatic hydrolysis of corn stover and its mechanism. Biotechnol. Biofuels Bioprod. 2022, 15, 31. [Google Scholar] [CrossRef]
- Shirkavand, E.; Baroutian, S.; Gapes, D.J.; Young, B.R. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment—A review. Renew. Sustain. Energy Rev. 2016, 54, 217–234. [Google Scholar] [CrossRef]
- Dziekońska-Kubczak, U.; Berłowska, J.; Dziugan, P.; Patelski, P.; Balcerek, M.; Pielech-Przybylska, K.; Robak, K. Two-Stage Pretreatment to Improve Saccharification of Oat Straw and Jerusalem Artichoke Biomass. Energies 2019, 12, 1715. [Google Scholar] [CrossRef]
- Molaverdi, M.; Karimi, K.; Mirmohamadsadeghi, S.; Galbe, M. High efficient ethanol production from corn stover by modified mild alkaline pretreatment. Renew. Energ. 2021, 170, 714–723. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Lin, X.; Liu, X.; Han, D.; Zhang, Q. Total component transformation of corn stalk to ethyl levulinate assisted by ionic liquid pretreatment. Cellulose 2024, 31, 3533–3543. [Google Scholar] [CrossRef]
- Pagano, M.; Hernando, H.; Cueto, J.; Cruz, P.L.; Dufour, J.; Moreno, I.; Serrano, D.P. Insights on the acetic acid pretreatment of wheat straw: Changes induced in the biomass properties and benefits for the bio-oil production by pyrolysis. Chem. Eng. J. 2023, 454, 140206. [Google Scholar] [CrossRef]
- Jiang, S.; Lou, C.; Zhou, Y.; Gu, X.; Kong, X. Biobased Epoxy Composites Reinforced with Acetylated Corn Straw. Acs Omega 2023, 8, 12644–12652. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wang, L.; Ma, G.; Zhao, X.; Zhao, X. Preparation and properties of bio-geopolymer composites with waste cotton stalk materials. J. Clean. Prod. 2020, 245, 118842. [Google Scholar] [CrossRef]
- Chen, J.; Cai, Y.; Wang, Z.; Xu, Z.; Zhuang, W.; Liu, D.; Lv, Y.; Wang, S.; Xu, J.; Ying, H. Solid-state fermentation of corn straw using synthetic microbiome to produce fermented feed: The feed quality and conversion mechanism. Sci. Total Environ. 2024, 920, 171034. [Google Scholar] [CrossRef]
- Mengqi, Z.; Shi, A.; Ajmal, M.; Ye, L.; Awais, M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Convers. Biorefinery 2023, 13, 5445–5468. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Liu, C.; Xu, A. Pretreatment of corn straw using the alkaline solution of ionic liquids. Bioresour. Technol. 2018, 260, 417–420. [Google Scholar] [CrossRef]
- Rizwan, M.; Lin, Q.; Chen, X.; Li, Y.; Li, G.; Zhao, X.; Tian, Y. Synthesis, characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws. Sci. Total Environ. 2020, 714, 136532. [Google Scholar] [CrossRef]
- Zhurinsh, A.; Dobele, G.; Jurkjane, V.; Meile, K.; Volperts, A.; Plavniece, A. Impact of hot water pretreatment temperature on the pyrolysis of birch wood. J. Anal. Appl. Pyrolysis 2017, 124, 515–522. [Google Scholar] [CrossRef]
- Kandhola, G.; Djioleu, A.; Carrier, D.J.; Kim, J.-W. Pretreatments for Enhanced Enzymatic Hydrolysis of Pinewood: A Review. BioEnergy Res. 2017, 10, 1138–1154. [Google Scholar] [CrossRef]
- Paulose, P.; Kaparaju, P. Anaerobic mono-digestion of sugarcane trash and bagasse with and without pretreatment. Ind. Crops Prod. 2021, 170, 113712. [Google Scholar] [CrossRef]
- Veluchamy, C.; Kalamdhad, A.S. Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review. Bioresour. Technol. 2017, 245, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Yang, L.; Wang, C.; Ji, X.; Yang, G.; Chen, J.; Lyu, G.; Xu, F.; Yoo, C.G. NaOH-Aided Sulfolane Pretreatment for Effective Fractionation and Utilization of Willow (Salix matsudana cv. Zhuliu). Ind. Eng. Chem. Res. 2020, 59, 17546–17553. [Google Scholar] [CrossRef]
- Jafari, Y.; Amiri, H.; Karimi, K. Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse. Appl. Energy 2016, 168, 216–225. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, Y.; Han, H.; Weng, C. Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour. Technol. 2018, 251, 358–363. [Google Scholar] [CrossRef]
- Bhushan, S.; Jayakrishnan, U.; Shree, B.; Bhatt, P.; Eshkabilov, S.; Simsek, H. Biological pretreatment for algal biomass feedstock for biofuel production. J. Environ. Chem. Eng. 2023, 11, 109870. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Caparanga, A.R.; Ordono, E.E.; Villaflores, O.B. Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation. Renew. Energy 2017, 109, 41–48. [Google Scholar] [CrossRef]
- Elalami, D.; Carrere, H.; Abdelouahdi, K.; Garcia-Bernet, D.; Peydecastaing, J.; Vaca-Medina, G.; Oukarroum, A.; Zeroual, Y.; Barakat, A. Mild microwaves, ultrasonic and alkaline pretreatments for improving methane production: Impact on biochemical and structural properties of olive pomace. Bioresour. Technol. 2020, 299, 122591. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Rouches, E.; Herpoël-Gimbert, I.; Steyer, J.P.; Carrere, H. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 2016, 59, 179–198. [Google Scholar] [CrossRef]
- Ma, S.; Li, Y.; Li, J.; Yu, X.; Cui, Z.; Yuan, X.; Zhu, W.; Wang, H. Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production. Renew. Sustain. Energy Rev. 2022, 165, 112606. [Google Scholar] [CrossRef]
- Romaní, A.; Ruiz, H.A.; Teixeira, J.A.; Domingues, L. Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach. Renew. Energy 2016, 95, 1–9. [Google Scholar] [CrossRef]
- Gao, W.; Lei, Z.; Tabil, L.G.; Zhao, R. Biological Pretreatment by Solid-State Fermentation of Oat Straw to Enhance Physical Quality of Pellets. J. Chem. 2020, 2020, 3060475. [Google Scholar] [CrossRef]
- Brahim, M.; El Kantar, S.; Boussetta, N.; Grimi, N.; Brosse, N.; Vorobiev, E. Delignification of rapeseed straw using innovative chemo-physical pretreatments. Biomass Bioenergy 2016, 95, 92–98. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Lu-Chau, T.A.; Gullón, B.; Ruiz, E.; Romero, I.; Castro, E.; Lema, J.M. Application of a combined fungal and diluted acid pretreatment on olive tree biomass. Ind. Crops Prod. 2018, 121, 10–17. [Google Scholar] [CrossRef]
- Areepak, C.; Jiradechakorn, T.; Chuetor, S.; Phalakornkule, C.; Sriariyanun, M.; Raita, M.; Champreda, V.; Laosiripojana, N. Improvement of lignocellulosic pretreatment efficiency by combined chemo-Mechanical pretreatment for energy consumption reduction and biofuel production. Renew. Energy 2022, 182, 1094–1102. [Google Scholar] [CrossRef]
- Ribeiro, V.T.; Campolina, A.C.; da Costa, W.A.; de Araújo Padilha, C.E.; da Costa Filho, J.D.B.; de Sá Leitão, A.L.O.; da Câmara Rocha, J.; dos Santos, E.S. Ethanol production from green coconut fiber using a sequential steam explosion and alkaline pretreatment. Biomass Convers. Biorefinery 2024, 14, 8579–8589. [Google Scholar] [CrossRef]
- Semwal, S.; Raj, T.; Kumar, R.; Christopher, J.; Gupta, R.P.; Puri, S.K.; Kumar, R.; Ramakumar, S.S.V. Process optimization and mass balance studies of pilot scale steam explosion pretreatment of rice straw for higher sugar release. Biomass Bioenergy 2019, 130, 105390. [Google Scholar] [CrossRef]
- Kapoor, M.; Raj, T.; Vijayaraj, M.; Chopra, A.; Gupta, R.P.; Tuli, D.K.; Kumar, R. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohydr. Polym. 2015, 124, 265–273. [Google Scholar] [CrossRef]
- Sui, W.; Liu, X.; Sun, H.; Li, C.; Parvez, A.M.; Wang, G. Improved high-solid loading enzymatic hydrolysis of steam exploded corn stalk using rapid room temperature γ-valerolactone delignification. Ind. Crops Prod. 2021, 165, 113389. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, R.; Song, Y.; Miu, X.; Zhang, Q.; Qu, J.; Sun, Y. Enhanced enzymatic saccharification and ethanol production of corn stover via pretreatment with urea and steam explosion. Bioresour. Technol. 2023, 376, 128856. [Google Scholar] [CrossRef]
- Katsimpouras, C.; Zacharopoulou, M.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Topakas, E. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover. Bioresour. Technol. 2017, 244, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Chen, Y.; Liu, J.; Shen, T.; Cao, Z.; Shan, J.; Zhu, C.; Ying, H. Sustainable biobutanol production using alkali-catalyzed organosolv pretreated cornstalks. Ind. Crops Prod. 2017, 95, 383–392. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Tyagi, V.K.; Gunjyal, N.; Kazmi, A.A.; Ojha, C.S.P.; Moustakas, K. Hydrothermal and thermal-alkali pretreatments of wheat straw: Co-digestion, substrate solubilization, biogas yield and kinetic study. Environ. Res. 2023, 216, 114436. [Google Scholar] [CrossRef]
- Romaní, A.; Tomaz, P.D.; Garrote, G.; Teixeira, J.A.; Domingues, L. Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresour. Technol. 2016, 220, 323–332. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Zhao, B.-C.; Li, M.-F.; Liu, Q.-Y.; Sun, R.-C. Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis. Bioresour. Technol. 2017, 225, 127–133. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Z.; Liao, X.; Liu, J.; Mao, F.; Huang, Q. Scalable production, fast purification, and spray drying of native Pycnoporus laccase and circular dichroism characterization. J. Clean. Prod. 2016, 127, 600–609. [Google Scholar] [CrossRef]
- Li, P.; He, C.; Li, G.; Ding, P.; Lan, M.; Gao, Z.; Jiao, Y. Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production. Bioengineered 2020, 11, 251–260. [Google Scholar] [CrossRef]
- Shi, Q.; Li, Y.; Li, Y.; Cheng, Y.; Zhu, W. Effects of steam explosion on lignocellulosic degradation of, and methane production from, corn stover by a co-cultured anaerobic fungus and methanogen. Bioresour. Technol. 2019, 290, 121796. [Google Scholar] [CrossRef]
- Li, C.; Liu, G.; Nges, I.A.; Liu, J. Enhanced biomethane production from Miscanthus lutarioriparius using steam explosion pretreatment. Fuel 2016, 179, 267–273. [Google Scholar] [CrossRef]
- Yang, B.; Boussaid, A.; Mansfield, S.D.; Gregg, D.J.; Saddler, J.N. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol. Bioeng. 2002, 77, 678–684. [Google Scholar] [CrossRef]
- Liu, C.G.; Qin, J.C.; Liu, L.Y.; Jin, B.W.; Bai, F.W. Combination of Ionic Liquid and Instant Catapult Steam Explosion Pretreatments for Enhanced Enzymatic Digestibility of Rice Straw. Acs Sustain. Chem. Eng. 2016, 4, 577–582. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, S.; Zhang, M.; Meng, F.; Shi, X.; Yan, L. Investigation of the Strengthening Process for Liquid Hot Water Pretreatments. Energy Fuels 2016, 30, 1103–1108. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Karimi, K.; Mirmohamadsadeghi, S. Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy 2019, 172, 545–554. [Google Scholar] [CrossRef]
- Song, X.; Wachemo, A.C.; Zhang, L.; Bai, T.; Li, X.; Zuo, X.; Yuan, H. Effect of hydrothermal pretreatment severity on the pretreatment characteristics and anaerobic digestion performance of corn stover. Bioresour. Technol. 2019, 289, 121646. [Google Scholar] [CrossRef]
- Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A. Strategies of pretreatment of feedstocks for optimized bioethanol production: Distinct and integrated approaches. Biotechnol. Biofuels Bioprod. 2023, 16, 44. [Google Scholar] [CrossRef]
- Olokede, O.; Hsu, S.c.; Schiele, S.; Ju, H.; Holtzapple, M. Assessment of shock pretreatment and alkali pretreatment on corn stover using enzymatic hydrolysis. Biotechnol. Prog. 2021, 38, 3217. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Yuan, H.; Yan, B.; Yang, G.; Lu, Y.; Li, J.; Zuo, X. Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment. Energy 2023, 268, 126633. [Google Scholar] [CrossRef]
- Abdelrahman, N.S.; Galiwango, E.; Al-Marzouqi, A.H.; Mahmoud, E. Sodium lignosulfonate: A renewable corrosion inhibitor extracted from lignocellulosic waste. Biomass Convers. Biorefinery 2024, 14, 7531–7541. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, H.; Song, L.; Zhang, X. Combined pretreatment with white-rot fungus and alkali at near room-temperature for improving saccharificaiton of corn stalks. BioResources 2011, 6, 3440–3451. [Google Scholar] [CrossRef]
- Kłosowski, G.; Mikulski, D. Impact of Lignocellulose Pretreatment By-Products on S. cerevisiae Strain Ethanol Red Metabolism during Aerobic and An-aerobic Growth. Molecules 2021, 26, 806. [Google Scholar] [CrossRef] [PubMed]
- Robak, K.; Balcerek, M.; Dziekońska-Kubczak, U.; Dziugan, P. Effect of dilute acid pretreatment on the saccharification and fermentation of rye straw. Biotechnol. Prog. 2019, 35, 2789. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Li, W.; Liu, Q.; Xia, Y.; Zhang, T.; Huang, F.; Lin, Q.; Chen, L. Combined dilute hydrochloric acid and alkaline wet oxidation pretreatment to improve sugar recovery of corn stover. Bioresour. Technol. 2019, 271, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Mohanasundaram, Y.; Nambissan, V.D.; Gummadi, S.N. Optimization of sequential alkali/acid pretreatment of corn cob for xylitol production by Debaryomyces nepalensis. Biomass Convers. Biorefinery 2024, 14, 12483–12500. [Google Scholar] [CrossRef]
- Li, P.; Cai, D.; Zhang, C.; Li, S.; Qin, P.; Chen, C.; Wang, Y.; Wang, Z. Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. Bioresour. Technol. 2016, 221, 636–644. [Google Scholar] [CrossRef]
- Kaur, A.; Kuhad, R.C. Valorization of Rice Straw for Ethanol Production and Lignin Recovery Using Combined Acid-Alkali Pre-treatment. BioEnergy Res. 2019, 12, 570–582. [Google Scholar] [CrossRef]
- Chen, X.; Zhai, R.; Shi, K.; Yuan, Y.; Dale, B.E.; Gao, Z.; Jin, M. Mixing alkali pretreated and acid pretreated biomass for cellulosic ethanol production featuring reduced chemical use and decreased inhibitory effect. Ind. Crops Prod. 2018, 124, 719–725. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, D.; Hu, J.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Hu, Y. Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv. 2018, 8, 12714–12723. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Shen, F.; Hu, J.; Sun, F.; Lin, L.; Yang, G.; Zhang, Y.; Deng, S. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: Evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresour. Technol. 2014, 166, 420–428. [Google Scholar] [CrossRef]
- Wan, X.; Yao, F.; Tian, D.; Shen, F.; Hu, J.; Zeng, Y.; Yang, G.; Zhang, Y.; Deng, S. Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents. Biomolecules 2019, 9, 844. [Google Scholar] [CrossRef]
- More, A.; Elder, T.; Jiang, Z. A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung 2021, 75, 806–823. [Google Scholar] [CrossRef]
- Cao, W.; Sun, C.; Liu, R.; Yin, R.; Wu, X. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour. Technol. 2012, 111, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Mao, J.; Jiang, B.; Wu, W.; Jin, Y. Carbonate-oxygen pretreatment of waste wheat straw for enhancing enzymatic saccharification. Process Biochem. 2021, 104, 117–123. [Google Scholar] [CrossRef]
- Kumari, S.; Das, D. Biohythane production from sugarcane bagasse and water hyacinth: A way towards promising green energy production. J. Clean. Prod. 2019, 207, 689–701. [Google Scholar] [CrossRef]
- Domínguez-Gómez, C.X.; Nochebuena-Morando, L.E.; Aguilar-Uscanga, M.G.; López-Zamora, L. Statistical optimization of dilute acid and H2O2 alkaline pretreatment using surface response methodology and tween 80 for the enhancement of the enzymatic hydrolysis of corncob. Biomass Convers. Biorefinery 2023, 13, 6185–6196. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef]
- Onwucha, C.N.; Talabi, J.O.; Ajayi, S.O.; Ehi-Eromosele, C.O.; Ajanaku, K.O. Valorization of biomass using deep eutectic solvent: A short review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1197, 012002. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Xia, Q.; Guo, B.; Wang, Q.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Efficient Cleavage of Lignin–Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave-Assisted Treatment with Deep Eutectic Solvent. Chemsuschem 2017, 10, 1692–1700. [Google Scholar] [CrossRef]
- Song, W.; Jiang, J.; Jiang, H.; Liu, C.; Dong, Y.; Chen, X.; Xiao, L.-P. Acid/alkali-catalyzed deep eutectic solvent pretreatment of corn straw for enhanced biohydrogen production. Fuel 2023, 348, 128521. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Xu, H.; Liu, H.; He, Y.-C. Improving saccharification efficiency of corn stover through ferric chloride-deep eutectic solvent pretreatment. Bioresour. Technol. 2024, 399, 130579. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, J.; Zhu, J.; Song, W.; Liu, C.; Xiao, L.-P. Deep eutectic solvent with Lewis acid for highly efficient biohydrogen production from corn straw. Bioresour. Technol. 2022, 362, 127788. [Google Scholar] [CrossRef] [PubMed]
- Satlewal, A.; Agrawal, R.; Bhagia, S.; Sangoro, J.; Ragauskas, A.J. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnol. Adv. 2018, 36, 2032–2050. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, J.; Yin, Y.; Mu, M.; Liu, Y.; Zhou, D.; Wang, W.; Zuo, X.; Yang, J. A novel green biorefinery strategy for corn stover by pretreatment with weak alkali-assisted deep eutectic solvents. Green Chem. 2024, 26, 2300–2312. [Google Scholar] [CrossRef]
- Xu, Q.Q.; Zhao, M.J.; Yu, Z.Z.; Yin, J.Z.; Li, G.M.; Zhen, M.Y.; Zhang, Q.Z. Enhancing enzymatic hydrolysis of corn cob, corn stover and sorghum stalk by dilute aqueous ammonia combined with ultrasonic pretreatment. Ind. Crops Prod. 2017, 109, 220–226. [Google Scholar] [CrossRef]
- Chen, X.; Zhai, R.; Li, Y.; Yuan, X.; Liu, Z.-H.; Jin, M. Understanding the structural characteristics of water-soluble phenolic compounds from four pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation. Biotechnol. Biofuels 2020, 13, 44. [Google Scholar] [CrossRef]
- Fan, M.; Liu, Z.; Xie, J.; Chen, Y. An optimum biomass fractionation strategy into maximum carbohydrates conversion and lignin valorization from poplar. Bioresour. Technol. 2023, 385, 129344. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, D.; Wang, Y.; Wei, S.; Yang, W.; Kuang, M.; Ma, L.; Fang, D.; Xu, S.; Du, S.-k. Bioethanol production from cotton stalk: A comparative study of various pretreatments. Fuel 2016, 184, 527–532. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Zhai, R.; Yuan, X.; Yu, Y.; Shen, G.; Wang, Z.; Yu, J.; Jin, M. Lime pretreatment of pelleted corn stover boosts ethanol titers and yields without water washing or detoxifying pretreated biomass. Renew. Energy 2022, 192, 396–404. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, X.; Chen, S.; Yu, J.; Zhai, R.; Xu, Z.; Jin, M. Densifying Lignocellulosic biomass with alkaline Chemicals (DLC) pretreatment unlocks highly fermentable sugars for bioethanol production from corn stover. Green Chem. 2021, 23, 4828–4839. [Google Scholar] [CrossRef]
- Xu, L.; Wang, W.; Zhang, M.; Liang, C.; Zhang, Y.; Wang, S.; Peng, Y.; Qi, W. A sustainable bio-circular way for biorefinery of rice straw into bioproducts based on energy-efficient pretreatment. Ind. Crops Prod. 2024, 215, 118677. [Google Scholar] [CrossRef]
- Wang, X.; Fan, R.; Yang, Q.; Tao, Y.; Lu, J.; Du, J.; Hu, J.; Wang, H. Optimal tartaric acid pretreatment of reed for bioethanol production by fed batch semi-synchronous saccharification fermentation. Renew. Energy 2024, 227, 120510. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L.; Lu, J.; Zhu, B.; Pan, Q.; Cheng, Y.; Tao, Y.; Du, J.; Wang, H. Integrating surfactants with low enzyme loading to increase the glucan conversion and ethanol concentration of reed after combined pretreatment. Ind. Crops Prod. 2023, 204, 117360. [Google Scholar] [CrossRef]
- Park, J.; Yim, J.H.; Cho, S.-H.; Jung, S.; Tsang, Y.F.; Chen, W.-H.; Jeon, Y.J.; Kwon, E.E. A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass. Appl. Energy 2024, 362, 123011. [Google Scholar] [CrossRef]
- Song, Y.; Maskey, S.; Lee, Y.G.; Lee, D.-S.; Nguyen, D.-T.; Bae, H.-J. Optimizing bioconversion processes of rice husk into value-added products: D-psicose, bioethanol, and lactic acid. Bioresour. Technol. 2024, 395, 130363. [Google Scholar] [CrossRef]
- Song, G.; Sun, C.; Madadi, M.; Dou, S.; Yan, J.; Huan, H.; Aghbashlo, M.; Tabatabaei, M.; Sun, F.; Ashori, A. Dual assistance of surfactants in glycerol organosolv pretreatment and enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Bioresour. Technol. 2024, 395, 130358. [Google Scholar] [CrossRef]
- Qi, W.; Feng, Q.; Wang, W.; Zhang, Y.; Hu, Y.; Shakeel, U.; Xiao, L.; Wang, L.; Chen, H.; Liang, C. Combination of surfactants and enzyme cocktails for enhancing woody biomass saccharification and bioethanol production from lab-scale to pilot-scale. Bioresour. Technol. 2023, 384, 129343. [Google Scholar] [CrossRef]
- Parawira, W. Enzyme research and applications in biotechnological intensification of biogas production. Crit. Rev. Biotechnol. 2012, 32, 172–186. [Google Scholar] [CrossRef]
- You, Z.; Pan, S.-Y.; Sun, N.; Kim, H.; Chiang, P.-C. Enhanced corn-stover fermentation for biogas production by NaOH pretreatment with CaO additive and ultrasound. J. Clean. Prod. 2019, 238, 117813. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Tyagi, V.K.; Kazmi, A.A.; Ojha, C.S.P. Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling. Energy 2023, 283, 129083. [Google Scholar] [CrossRef]
- da Cruz Ferraz Dutra, J.; Passos, M.F.; Moretti, É.R.; do Nascimento, L.A.S.; da Silva, A.J.; da Silva, T.F.; Aguiar, R.H.; dos Santos Rodrigues, L.; Mockaitis, G. Methane production from lignocellulosic biomass using hydrothermal pretreatment. Biomass Convers. Biorefinery 2024, 14, 3699–3713. [Google Scholar] [CrossRef]
- Ge, M.; Liu, Y.; Zhou, J.; Jin, M. Densification pretreatment triggers efficient methanogenic performance and robust microbial community during anaerobic digestion of corn stover. Bioresour. Technol. 2022, 362, 127762. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Bergeron, A.D.; Davaritouchaee, M. Methane recovery from anaerobic digestion of urea-pretreated wheat straw. Renew. Energy 2018, 115, 139–148. [Google Scholar] [CrossRef]
- Wang, E.; Xing, F.; Chen, P.; Zheng, Y.; Lyu, T.; Li, X.; Xiong, W.; Li, G.; Dong, R.; Guo, J. Effects of nanobubble water on digestate soaking hydrolysis of rice straw. Bioresour. Technol. 2024, 403, 130893. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Yu, X.; Chen, H.; Sun, Y.; Chen, G. Pretreatment of corn stover by solid acid for d-lactic acid fermentation. Bioresour. Technol. 2017, 239, 490–495. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Zhang, J.; Peng, N.; Liang, Y.; Zhao, S. High-Titer Lactic Acid Production by Pediococcus acidilactici PA204 from Corn Stover through Fed-Batch Simultaneous Saccharification and Fermentation. Microorganisms 2020, 8, 1491. [Google Scholar] [CrossRef]
- Dąbkowska, K.; Alvarado-Morales, M.; Kuglarz, M.; Angelidaki, I. Miscanthus straw as substrate for biosuccinic acid production: Focusing on pretreatment and downstream processing. Bioresour. Technol. 2019, 278, 82–91. [Google Scholar] [CrossRef]
- Li, W.C.; Zhang, S.J.; Xu, T.; Sun, M.Q.; Zhu, J.Q.; Zhong, C.; Li, B.Z.; Yuan, Y.J. Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin. Energy 2020, 195, 117076. [Google Scholar] [CrossRef]
- Avci, A.; Saha, B.C.; Kennedy, G.J.; Cotta, M.A. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production. Ind. Crops Prod. 2013, 50, 478–484. [Google Scholar] [CrossRef]
- Li, M.; Jiang, H.; Zhang, L.; Yu, X.; Liu, H.; Yagoub, A.E.A.; Zhou, C. Synthesis of 5-HMF from an ultrasound-ionic liquid pretreated sugarcane bagasse by using a microwave-solid acid/ionic liquid system. Ind. Crops Prod. 2020, 149, 112361. [Google Scholar] [CrossRef]
- Jasmine, A.; Rajendran, M.; Thirunavukkarasu, K.; Abinandan, S.; Vaidyanathan, V.K.; Krishnamurthi, T. Microwave-assisted alkali pre-treatment medium for fractionation of rice straw and catalytic conversion to value-added 5-hydroxymethyl furfural and lignin production. Int. J. Biol. Macromol. 2023, 236, 123999. [Google Scholar] [CrossRef]
- Liao, H.; Ying, W.; Lian, Z.; Xu, Y.; Zhang, J. One-step sodium bisulfate hydrolysis for efficient production of xylooligosaccharides from poplar. Bioresour. Technol. 2022, 355, 127269. [Google Scholar] [CrossRef] [PubMed]
- Lehuedé, L.; Henríquez, C.; Carú, C.; Córdova, A.; Mendonça, R.T.; Salazar, O. Xylan extraction from hardwoods by alkaline pretreatment for xylooligosaccharide production: A detailed fractionation analysis. Carbohydr. Polym. 2023, 302, 120381. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, B.; Liu, B.; Yi, Y.; Shan, Y.; Zhou, Y.; Wang, X.; Lü, X. Full components conversion of lignocellulose via a closed-circuit biorefinery process on a pilot scale. Environ. Res. 2022, 214, 113946. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, S.; Liu, H.; Yang, Z.; Zhang, A. A novel multifunctional fertilizer derived from wasted straw: Synthesis, characteristics and agriculture applications. Ind. Crops Prod. 2022, 176, 114308. [Google Scholar] [CrossRef]
- Thompson, T.M.; Young, B.R.; Baroutian, S. Efficiency of hydrothermal pretreatment on the anaerobic digestion of pelagic Sargassum for biogas and fertiliser recovery. Fuel 2020, 279, 118527. [Google Scholar] [CrossRef]
- Zhu, L.; Tang, W.; Ma, C.; He, Y.C. Efficient co-production of reducing sugars and xylooligosaccharides via clean hydrothermal pretreatment of rape straw. Bioresour. Technol. 2023, 388, 129727. [Google Scholar] [CrossRef]
- Chang, S.; Yun, C.; Yang, B.; Duan, J.; Chen, T.; Liu, L.; Li, B.; Guo, S.; Zhang, S. Comprehensive reutilization of Glycyrrhiza uralensis residue by extrusion-biological pretreatment for coproduction of flavonoids, cellulase, and ethanol. Bioresour. Technol. 2024, 406, 131002. [Google Scholar] [CrossRef]
Type | Components | General Formula | |
---|---|---|---|
1 | Metal salt + organic salt | Cat+ X− zMClx | M = Zn, Sn, Fe, Al, Ga, In |
2 | Metal salt hydrate + organic salt | Cat+ X− zMClx. yH2O | M = Cr, Co, Cu, Ni, Fe |
3 | HBD + organic salt | Cat+ X− zRZ | Z = CONH2, COOH, OH |
4 | Zinc/aluminum chloride + HBD | MClx + RZ = MCl+x−1. RZ + MCl−x+1 | M = Al, Zn and Z = CONH2, OH |
Type | Pretreatment Method | Energy Consumption | Cost | Environmental Impact |
---|---|---|---|---|
Physical–Chemical | Steam blast–acid pretreatment | ★★★ | ★★★ | ★★ |
Mechanical crushing–alkali pretreatment | ★★ | ★★ | ★★ | |
Moist heat–alkali pretreatment | ★★ | ★★ | ★★ | |
Physical–Biological | Mechanical crushing–biological pretreatment | ★★ | ★★ | ★ |
Steam blasting–biological pretreatment | ★★★ | ★★★ | ★★ | |
Moist heat–biological pretreatment | ★★ | ★★ | ★ | |
Chemical–Biological | Acid–biological pretreatment | ★★ | ★★ | ★★ |
Alkali–Biological Pretreatment | ★★ | ★★ | ★★ | |
Chemistry–Chemistry | Acid–alkali pretreatment | ★★★ | ★★★ | ★★★ |
Acid-oxidizer pretreatment | ★★★ | ★★★ | ★★★ | |
Alkali–oxidant pretreatment | ★★★ | ★★★ | ★★★ | |
DES–acid pretreatment | ★★ | ★★★ | ★★ | |
DES–alkali pretreatment | ★★ | ★★★ | ★★ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Ma, X.; Liang, M.; Guo, Z.; Cai, Y.; Zhu, C.; Wang, Z.; Wang, S.; Xu, J.; Ying, H. Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review. Waste 2024, 2, 451-473. https://doi.org/10.3390/waste2040024
Chen J, Ma X, Liang M, Guo Z, Cai Y, Zhu C, Wang Z, Wang S, Xu J, Ying H. Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review. Waste. 2024; 2(4):451-473. https://doi.org/10.3390/waste2040024
Chicago/Turabian StyleChen, Jinmeng, Xiaotian Ma, Mengying Liang, Zhiwei Guo, Yafan Cai, Chenjie Zhu, Zhi Wang, Shilei Wang, Jingliang Xu, and Hanjie Ying. 2024. "Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review" Waste 2, no. 4: 451-473. https://doi.org/10.3390/waste2040024
APA StyleChen, J., Ma, X., Liang, M., Guo, Z., Cai, Y., Zhu, C., Wang, Z., Wang, S., Xu, J., & Ying, H. (2024). Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review. Waste, 2(4), 451-473. https://doi.org/10.3390/waste2040024