Impact of Fiber Characteristics on the Interfacial Interaction of Mammalian Cells and Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Nanofibrous and Microfibrous PCL Yarn
2.1.1. Fabrication of PLLA Yarns
2.1.2. Post-Processing of Fibrous Yarns
2.1.3. Electrospinning of PCL 2-D Non-Woven Sheet
2.1.4. Fabrication of PCL Monofilament
2.2. Characterization of Yarns
2.2.1. Morphological Characterization by SEM
2.2.2. Wicking of Yarns
2.3. Bacterial Adhesion Study
2.4. Cell Interaction Study
2.5. Cellular Uptake Study
2.6. Statistical Analysis
3. Results and Discussion
3.1. Wettability of Fibrous Yarns
3.2. Quantification of Adherent Bacteria on Fibrous Yarns
3.3. Quantification of Mammalian Cell Attachment and Viability
3.4. Enhanced Capillary Rise of MSCs in PCL Fibrous Yarn
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zhang, Y.; Lim, C.T.; Ramakrishna, S.; Huang, Z.-M. Recent Development of Polymer Nanofibers for Biomedical and Biotechnological Applications. J. Mater. Sci. Mater. Med. 2005, 16, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Ma, P.X. Nanostructured Biomaterials for Regeneration. Adv. Funct. Mater. 2008, 18, 3566–3582. [Google Scholar] [CrossRef] [PubMed]
- Stocco, T.D.; Bassous, N.J.; Zhao, S.; Granato, A.E.C.; Webster, T.J.; Lobo, A.O. Nanofibrous Scaffolds for Biomedical Applications. Nanoscale 2018, 10, 12228–12255. [Google Scholar] [CrossRef] [PubMed]
- Sarviya, N.; Mahanta, U.; Dart, A.; Giri, J.; Deshpande, A.S.; Khandelwal, M.; Bhave, M.; Kingshott, P. Biocompatible and Antimicrobial Multilayer Fibrous Polymeric Wound Dressing with Optimally Embedded Silver Nanoparticles. Appl. Surf. Sci. 2023, 612, 155799. [Google Scholar] [CrossRef]
- Meng, S.; Wu, H.; Xiao, D.; Lan, S.; Dong, A. Recent Advances in Bacterial Cellulose-Based Antibacterial Composites for Infected Wound Therapy. In Carbohydrate Polymers; Elsevier Ltd.: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Karbowniczek, J.E.; Berniak, K.; Knapczyk-Korczak, J.; Williams, G.; Bryant, J.A.; Nikoi, N.D.; Banzhaf, M.; de Cogan, F.; Stachewicz, U. Strategies of Nanoparticles Integration in Polymer Fibers to Achieve Antibacterial Effect and Enhance Cell Proliferation with Collagen Production in Tissue Engineering Scaffolds. J. Colloid Interface Sci. 2023, 650, 1371–1381. [Google Scholar] [CrossRef]
- McHugh, K.J.; Tao, S.L.; Saint-Geniez, M. A Novel Porous Scaffold Fabrication Technique for Epithelial and Endothelial Tissue Engineering. J. Mater. Sci. Mater. Med. 2013, 24, 1659–1670. [Google Scholar] [CrossRef]
- Reneker, D.H.; Chun, I. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology 1996, 7, 216–223. [Google Scholar] [CrossRef]
- Kim, J.I.; Kim, J.Y.; Park, C.H. Fabrication of Transparent Hemispherical 3D Nanofibrous Scaffolds with Radially Aligned Patterns via a Novel Electrospinning Method. Sci. Rep. 2018, 8, 3424. [Google Scholar] [CrossRef]
- Kim, J.I.; Hwang, T.I.; Aguilar, L.E.; Park, C.H.; Kim, C.S. A Controlled Design of Aligned and Random Nanofibers for 3D Bi-Functionalized Nerve Conduits Fabricated via a Novel Electrospinning Set-Up. Sci. Rep. 2016, 6, 23761. [Google Scholar] [CrossRef]
- Su, Y.; Toftdal, M.S.; Le Friec, A.; Dong, M.; Han, X.; Chen, M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. Small Sci. 2021, 1, 2100003. [Google Scholar] [CrossRef]
- Keirouz, A.; Chung, M.; Kwon, J.; Fortunato, G.; Radacsi, N. 2D and 3D Electrospinning Technologies for the Fabrication of Nanofibrous Scaffolds for Skin Tissue Engineering: A Review. In Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology; Wiley-Blackwell: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Bongiovanni Abel, S.; Montini Ballarin, F.; Abraham, G.A. Combination of Electrospinning with Other Techniques for the Fabrication of 3D Polymeric and Composite Nanofibrous Scaffolds with Improved Cellular Interactions. Nanotechnology 2020, 31, 172002. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-F.; Zhang, D.; Feng, C.-L. Control of Three-Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels. Angew. Chem. Int. Ed. Engl. 2014, 53, 7789–7793. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.H.; Park, C.B. Human Endothelial Cell Growth on Mussel-Inspired Nanofiber Scaffold for Vascular Tissue Engineering. Biomaterials 2010, 31, 9431–9437. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Livingston Arinzeh, T. Electrospun Nanofibrous Materials for Neural Tissue Engineering. Polymers 2011, 3, 413. [Google Scholar] [CrossRef]
- Saino, E.; Focarete, M.L.; Gualandi, C.; Emanuele, E.; Cornaglia, A.I.; Imbriani, M.; Visai, L. Effect of Electrospun Fiber Diameter and Alignment on Macrophage Activation and Secretion of Proinflammatory Cytokines and Chemokines. Biomacromolecules 2011, 12, 1900–1911. [Google Scholar] [CrossRef]
- Bashur, C.A.; Shaffer, R.D.; Dahlgren, L.A.; Guelcher, S.A.; Goldstein, A.S. Effect of Fiber Diameter and Alignment of Electrospun Polyurethane Meshes on Mesenchymal Progenitor Cells. Tissue Eng. Part A 2009, 15, 2435–2445. [Google Scholar] [CrossRef]
- Nakayama, K. In Vitro Biofabrication of Tissues and Organs. In Biofabrication: Micro- and Nano-fabrication, Printing, Patterning and Assemblies; William Andrew Publishing: Norwich, NY, USA, 2013; pp. 1–21. [Google Scholar] [CrossRef]
- Kargar, M.; Wang, J.; Nain, A.S.; Behkam, B. Controlling Bacterial Adhesion to Surfaces Using Topographical Cues: A Study of the Interaction of Pseudomonas Aeruginosa with Nanofiber-Textured Surfaces. Soft Matter 2012, 8, 10254–10259. [Google Scholar] [CrossRef]
- Abrigo, M.; Kingshott, P.; McArthur, S.L. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl. Mater. Interfaces 2015, 7, 7644–7652. [Google Scholar] [CrossRef]
- Nisbet, D.R.; Forsythe, J.S.; Shen, W.; Finkelstein, D.I.; Horne, M.K. Review Paper: A Review of the Cellular Response on Electrospun Nanofibers for Tissue Engineering. J. Biomater. Appl. 2009, 24, 7–29. [Google Scholar] [CrossRef]
- Tian, F.; Hosseinkhani, H.; Hosseinkhani, M.; Khademhosseini, A.; Yokoyama, Y.; Estrada, G.G.; Kobayashi, H. Quantitative Analysis of Cell Adhesion on Aligned Micro- and Nanofibers. J. Biomed. Mater. Res. A 2008, 84, 291–299. [Google Scholar] [CrossRef]
- Mortimer, C.; Burke, L.; Wright, C. Microbial Interactions with Nanostructures and Their Importance for the Development of Electrospun Nanofibrous Materials Used in Regenerative Medicine and Filtration. J. Microb. Biochem. Technol. 2016, 8, 195–201. [Google Scholar] [CrossRef]
- Joseph, J.; Nair, S.V.; Menon, D. Integrating Substrateless Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures. Nano Lett. 2015, 15, 5420–5426. [Google Scholar] [CrossRef] [PubMed]
- Padmakumar, S.; Joseph, J.; Neppalli, M.H.; Mathew, S.E.; Nair, S.V.; Shankarappa, S.A.; Menon, D. Electrospun Polymeric Core–Sheath Yarns as Drug Eluting Surgical Sutures. ACS Appl. Mater. Interfaces 2016, 8, 6925–6934. [Google Scholar] [CrossRef]
- Padmakumar, S.; Paul-Prasanth, B.; Pavithran, K.; Vijaykumar, D.K.; Rajanbabu, A.; Sivanarayanan, T.B.; Kadakia, E.; Amiji, M.M.; Nair, S.V.; Menon, D. Long-Term Drug Delivery Using Implantable Electrospun Woven Polymeric Nanotextiles. Nanomedicine 2019, 15, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, L.; Guo, B.; Ma, P.X. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy. ACS Nano 2017, 11, 5646–5659. [Google Scholar] [CrossRef]
- Tan, G.Z.; Zhou, Y. Tunable 3D Nanofiber Architecture of Polycaprolactone by Divergence Electrospinning for Potential Tissue Engineering Applications. Nanomicro Lett. 2018, 10, 73. [Google Scholar] [CrossRef]
- Joseph, J.; Krishnan, A.G.; Cherian, A.M.; Rajagopalan, B.; Jose, R.; Varma, P.; Maniyal, V.; Balakrishnan, S.; Nair, S.V.; Menon, D. Transforming Nanofibers into Woven Nanotextiles for Vascular Application. ACS Appl. Mater. Interfaces 2018, 10, 19449–19458. [Google Scholar] [CrossRef]
- Babu, R.; Joseph, J.; Sathy, B.N.; Nair, S.V.; Varma, P.K.; Menon, D. Design, Development, and Evaluation of an Interwoven Electrospun Nanotextile Vascular Patch. Macromol. Mater. Eng. 2021, 306, 2100359. [Google Scholar] [CrossRef]
- Yang, J.; Xu, L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. Materials 2023, 16, 6021. [Google Scholar] [CrossRef]
- Tanaka, T.; Tanaka, R.; Ogawa, Y.; Takagi, Y.; Asakura, T. Development of Small-Diameter Polyester Vascular Grafts Coated with Silk Fibroin Sponge. Organogenesis 2020, 16, 1–13. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. In Advanced Drug Delivery Reviews; Elsevier B.V.: Amsterdam, The Netherlands, 2016; pp. 367–392. [Google Scholar] [CrossRef]
- Kozaniti, F.K.; Manara, A.E.; Kostopoulos, V.; Mallis, P.; Michalopoulos, E.; Polyzos, D.; Deligianni, D.D.; Portan, D.V. Computational and Experimental Investigation of the Combined Effect of Various 3D Scaffolds and Bioreactor Stimulation on Human Cells’ Feedback. Appl. Biosci. 2023, 2, 249–277. [Google Scholar] [CrossRef]
- Vaishya, R.; Agarwal, A.K.; Tiwari, M.; Vaish, A.; Vijay, V.; Nigam, Y. Medical Textiles in Orthopedics: An Overview. J. Clin. Orthop. Trauma 2018, 9, S26–S33. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant Infections: Adhesion, Biofilm Formation and Immune Evasion. Nat. Rev. Microbiol 2018, 16, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to Optimize the Drop Plate Method for Enumerating Bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, A.; Rengasamy, R.S.; Kothari, V.K.; Ghosh, A. Wetting and Wicking in Fibrous Materials. Text. Prog. 2006, 38, 1–105. [Google Scholar] [CrossRef]
- Hollies, N.R.S.; Kaessinger, M.M.; Bogaty, H. Water Transport Mechanisms in Textile Materials1 Part I: The Role of Yarn Roughness in Capillary-Type Penetration. Text. Res. J. 1956, 26, 829–835. [Google Scholar] [CrossRef]
- Lord, P.R. A Comparison of the Performance of Open-End and Ring Spun Yarns in Terry Toweling. Text. Res. J. 1974, 44, 516–522. [Google Scholar] [CrossRef]
- Chattopadhyay, R.; Chauhan, A. Wicking Behavior of Compact and Ring Spun Yarns and Fabrics. Melliand Int. 2005, 11, 25–30. [Google Scholar]
- Sengupta, A.K.; Sreenivasa Murthy, H.V. Wicking in Ring-Spun Vis-a-Vis Rotor-Spun Yarns. Indian J. Text. Res. 1985, 10, 155–157. [Google Scholar]
- Staples, T.; Shaffer, D. Wicking Flow in Irregular Capillaries. Colloids Surf A Physicochem. Eng. Asp. 2002, 204, 239–250. [Google Scholar] [CrossRef]
- Liu, M.; Wu, J.; Gan, Y.; Hanaor, D.A.H.; Chen, C.Q. Evaporation Limited Radial Capillary Penetration in Porous Media. Langmuir 2016, 32, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Kriel, F.; Sedev, R.; Priest, C. Capillary Filling of Nanoscale Channels and Surface Structure. Isr. J. Chem. 2014, 54, 1519–1532. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Kornev, K.G. Characterization of Permeability of Electrospun Yarns. Langmuir 2013, 29, 10596–10602. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, Y. Effect of Low Wick Permeability on Transient and Steady-State Performance of Heat Pipes. Heat Transf. Res. 2018, 50, 1319–1332. [Google Scholar] [CrossRef]
- Sengupta, A.K.; Kothari, V.K.; Rengasamy, R.S. Wicking Behaviour of Air-Jet Textured Yarns. Indian J. Fibre Text Res. 1991, 16, 123–127. [Google Scholar]
- Hsu, L.C.; Fang, J.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces. Appl. Environ. Microbiol. 2013, 79, 2703–2712. [Google Scholar] [CrossRef]
- Shellenberger, K.; Logan, B.E. Effect of Molecular Scale Roughness of Glass Beads on Colloidal and Bacterial Deposition. Environ. Sci. Technol. 2002, 36, 184–189. [Google Scholar] [CrossRef]
- Tuson, H.H.; Weibel, D.B. Bacteria–Surface Interactions. Soft Matter 2013, 9, 4368–4380. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Liu, Y.; Wang, Y.; Cao, F.; Yang, Q.; Tian, F. Explanation of the Cell Orientation in a Nanofiber Membrane by the Geometric Potential Theory. Results Phys. 2019, 15, 102537. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baby, H.M.; Joseph, J.; Suresh, M.K.; Biswas, R.; Menon, D. Impact of Fiber Characteristics on the Interfacial Interaction of Mammalian Cells and Bacteria. Appl. Biosci. 2023, 2, 527-541. https://doi.org/10.3390/applbiosci2040033
Baby HM, Joseph J, Suresh MK, Biswas R, Menon D. Impact of Fiber Characteristics on the Interfacial Interaction of Mammalian Cells and Bacteria. Applied Biosciences. 2023; 2(4):527-541. https://doi.org/10.3390/applbiosci2040033
Chicago/Turabian StyleBaby, Helna M., John Joseph, Maneesha K. Suresh, Raja Biswas, and Deepthy Menon. 2023. "Impact of Fiber Characteristics on the Interfacial Interaction of Mammalian Cells and Bacteria" Applied Biosciences 2, no. 4: 527-541. https://doi.org/10.3390/applbiosci2040033
APA StyleBaby, H. M., Joseph, J., Suresh, M. K., Biswas, R., & Menon, D. (2023). Impact of Fiber Characteristics on the Interfacial Interaction of Mammalian Cells and Bacteria. Applied Biosciences, 2(4), 527-541. https://doi.org/10.3390/applbiosci2040033