Moringa oleifera Seed Cake: A Review on the Current Status of Green Nanoparticle Synthesis
Abstract
:1. Introduction
2. Extraction and Purification Methods
3. Seed Cake Industrial Applications
4. M. oleifera in Green Synthesis
Nanoparticle Synthesis Using M. oleifera Extracts
- (i)
- Solvent composition. The choice between pure water and a water–ethanol mixture can significantly impact the extracted biomolecules;
- (ii)
- pH. The acidity or alkalinity of the extraction solution affects the solubility of various components, particularly proteins;
- (iii)
- Temperature. Temperature can influence extraction efficiency and potentially impact the properties of the extracted biocomponents;
- (iv)
- Extraction time. Extraction duration significantly impacts both the quantity and the specific types of compounds extracted.
Seed Cake
5. Conclusions and Future Prospects
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brilhante, R.S.N.; Sales, J.A.; Pereira, V.S.; Castelo-Branco, D.S.C.M.; Cordeiro, R.A.; Sampaio, C.M.S.; Paiva, M.A.N.; Santos, J.B.F.S.; Sidrim, J.J.C.; Rocha, M.F.G. Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for socially neglected population. Asian Pac. J. Trop. Med. 2017, 10, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Saa, R.W.; Fombang, E.N.; Ndjantou, E.B.; Njintang, N.Y. Treatments and uses of Moringa oleifera seeds in Human nutrition: A review. Food Sci. Nutr. 2019, 7, 1911–1919. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal Application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Horn, L.; Shakela, N.; Mutorwa, M.K.; Naomab, E.; Kwaambwa, H.M. Moringa oleifera as a sustainable climate-smart solution to nutrition, disease prevention, and water treatment challenges: A review. J. Agric. Food Res. 2022, 10, 100397. [Google Scholar] [CrossRef]
- Milla, P.G.; Peñalver, R.; Nieto, G. Health benefits of uses and applications of Moringa oleifera in bakery products. Plants 2021, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Jain, R.; Kachhwaha, S.; Kothari, S.L. Nutritional and medicinal applications of Moringa oleifera Lam. Review of current status and future possibilities. J. Herb. Med. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Bridgemohan, P.; Bridgemohan, R.; Mohame, M. Chemical composition of a high protein animal supplement from Moringa oleifera. Afr. J. Food Sci. Technol. 2014, 5, 125–128. [Google Scholar] [CrossRef]
- Saini, R.K.; Sivanesan, I.; Keum, Y.-S. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech 2016, 6, 203. [Google Scholar] [CrossRef] [PubMed]
- Dhakad, A.K.; Ikram, M.; Sharma, S.; Khan, S.; Pandey, V.V.; Singh, A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother. Res. 2019, 33, 2870–2903. [Google Scholar] [CrossRef]
- Mbikay, M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front. Pharmacol. 2012, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Padayachee, B.; Baijnath, H. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. S. Afr. J. Bot. 2020, 129, 304–316. [Google Scholar] [CrossRef]
- Pop, O.L.; Kerezsi, A.D.; Nagy, C. A comprehensive review of Moringa oleifera bioactive compounds—Cytotoxicity evaluation and their encapsulation. Foods 2022, 11, 3787. [Google Scholar] [CrossRef] [PubMed]
- Acuram, L.K.; Chichioco Hernandez, C.L. Anti-hypertensive effect of Moringa oleifera Lam. Cogent Biol. 2019, 5, 1596526. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, J.; Meng, C.; Liang, W.; Wang, T.; Zhou, B.; Wang, Y.; Luo, X.; Gao, L.; Zhang, L. Moringa oleifera Lam and its therapeutic effects in immune disorders. Front. Pharmacol. 2020, 11, 566783. [Google Scholar] [CrossRef] [PubMed]
- Cattan, Y.; Patil, D.; Vaknin, Y.; Rytwo, G.; Lakemond, C.; Benjamin, O. Characterization of Moringa oleifera leaf and seed protein extract functionality in emulsion model system. Innov. Food Sci. Emerg. Technol. 2022, 75, 102903. [Google Scholar] [CrossRef]
- Alia, F.; Putri, M.; Anggraeni, N.; Syamsunarno, M.R.A.A. The potency of Moringa oleifera Lam. as protective agent in cardiac damage and vascular dysfunction. Front. Pharmacol. 2022, 12, 724439. [Google Scholar] [CrossRef] [PubMed]
- Pramod, P.S.; Math, N.H.; Patil, P.V.; Hugar, S. Evaluation of antidiarrhoeal activity of extract of Moringa oleifera pods. Int. J. Pharm. Phytopharm. Res. 2019, 9, 134–140. [Google Scholar]
- Ahmed, K.S.; Banik, R.; Hossain, M.H.; Jahan, I.A. Vitamin C (L-ascorbic acid) content in different parts of Moringa oleifera grown in Bangladesh. Chem. Sci. Int. J. 2016, 11, 1–6. [Google Scholar] [CrossRef]
- Valdivié-Navarro, M.; Martínez-Aguilar, Y.; Mesa-Fleitas, O.; Botello-León, A.; Betancur Hurtado, C.; Velázquez-Martí, B. Review of Moringa oleifera as forage meal (leaves plus stems) intended for the feeding of non-ruminant animals. Anim. Feed Sci. Technol. 2020, 260, 114338. [Google Scholar] [CrossRef]
- Ezeamuzie, I.C.; Ambakederemo, A.W.; Shode, F.O.; Ekwebelem, S.C. Antiinflammatory effects of Moringa oleifera root extract. Int. J. Pharmacogn. 1996, 34, 207–212. [Google Scholar] [CrossRef]
- Ferreira, P.M.P.; Farias, D.F.; Oliveira, J.T.D.A.; Carvalho, A.F.U. Moringa oleifera: Bioactive compounds and nutritional potential. Rev. Nutr. 2008, 21, 431–437. [Google Scholar] [CrossRef]
- Tope, O.; Emmanuel, O.; Adebayo, O.; Tosin, O. Phytochemical constituents, proximate composition and mineral analysis of aqueous and ethanolic stem bark, seed extracts and plant parts of Moringa oleifera. J. Appl. Life Sci. Int. 2017, 10, 1–7. [Google Scholar] [CrossRef]
- Al-Malki, A.L.; El Rabey, H.A. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. BioMed Res. Int. 2015, 2015, 381040. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Imran, M. Promising features of Moringa oleifera oil: Recent updates and perspectives. Lipids Health Dis. 2016, 15, 212. [Google Scholar] [CrossRef] [PubMed]
- Abiodun, O.A.; Adegbite, J.A.; Omolola, A.O. Chemical and physicochemical properties of Moringa flours and oil. Glob. J. Sci. Front. Res. 2012, 12, 13–17. [Google Scholar]
- Singh, G.R.S.; Ogunsina, B.S.; Radha, C. Protein extractability from defatted Moringa oleifera lam seeds flour. Ife J. Sci. 2011, 11, 121. [Google Scholar]
- Moyo, B.; Oyedemi, S.; Masika, P.J.; Muchenje, V. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci. 2012, 91, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M. Moringa spp: Composition and bioactive properties. S. Afr. J. Bot. 2020, 129, 25–31. [Google Scholar] [CrossRef]
- Dzuvor, C.K.O.; Pan, S.; Amanze, C.; Amuzu, P.; Asakiya, C.; Kubi, F. Bioactive components from Moringa oleifera seeds: Production, functionalities and applications—A critical review. Crit. Rev. Biotechnol. 2022, 42, 271–293. [Google Scholar] [CrossRef] [PubMed]
- Granella, S.J.; Bechlin, T.R.; Christ, D.; Coelho, S.R.M.; Paz, C.H.O. An approach to recent applications of Moringa oleifera in the agricultural and biofuel industries. S. Afr. J. Bot. 2021, 137, 110–116. [Google Scholar] [CrossRef]
- Gharsallah, K.; Rezig, L.; Rajoka, M.S.R.; Mehwish, H.M.; Ali, M.A.; Chew, S.C.; Chew, S.C. Moringa oleifera: Processing, phytochemical composition, and industrial applications. S. Afr. J. Bot. 2023, 160, 180–193. [Google Scholar] [CrossRef]
- Ueda Yamaguchi, N.; Cusioli, L.F.; Quesada, H.B.; Ferreira, M.E.C.; Fagundes-Klen, M.R.; Vieira, A.M.S.; Gomes, R.G.; Vieira, M.F.; Bergamasco, R. A review of Moringa oleifera seeds in water treatment: Trends and future challenges. Process Saf. Environ. Protect. 2021, 147, 405–420. [Google Scholar] [CrossRef]
- Olagbemide, P.T.; Philip, C.N. Proximate analysis and chemical composition of raw and defatted Moringa oleifera Kernel. Adv. Sci. Technol. 2014, 24, 92–99. [Google Scholar]
- Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS ONE 2015, 10, e0135814. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-Y.; Xu, Y.-M.; Lau, A.T.Y. Anti-cancer and medicinal potentials of Moringa isothiocyanate. Molecules 2021, 26, 7512. [Google Scholar] [CrossRef]
- Gassenschmidt, U.; Jany, K.D.; Tauscher, B.; Niebergall, H. Isolation and characterization of a flocculating protein from Moringa oleifera Lam. Biochim. Biophys. Acta 1995, 1243, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.L.; Oliveira, H.D.; Oliveira, J.T.A.; Gifoni, J.M.; Rocha, R.O.; Sousa, D.O.B.; Vasconcelos, I.M. Purification of a chitin-binding protein from Moringa oleifera seeds with potential to relieve pain and inflammation. Protein Pept. Lett. 2011, 18, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.D.P.; Souza, P.F.N.; Costa, H.P.S.; Pereira, M.L.; Neto, J.X.S.; Paula, P.C.; Brilhante, R.S.N.; Oliveira, J.T.A.; Vasconcelos, I.M.; Sousa, D.O.B. Mo-CBP4, a purified chitin-binding protein from Moringa oleifera seeds, is a potent antidermatophytic protein: In vitro mechanisms of action, in vivo effect against infection, and clinical application as a hydrogel for skin infection. Int. J. Biol. Macromol. 2020, 149, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Gifoni, J.M.; Oliveira, J.T.A.; Oliveira, H.D.; Batista, A.B.; Pereira, M.L.; Gomes, A.S.; Oliveira, H.P.; Grangeiro, T.B.; Vasconcelos, I.M. A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control. Biopolymers 2012, 98, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.X.S.; Pereira, M.L.; Oliveira, J.T.A.; Rocha-Bezerra, L.C.B.; Lopes, T.D.P.; Costa, H.P.S.; Sousa, D.O.B.; Rocha, B.A.M.; Grangeiro, T.B.; Freire, J.E.C.; et al. A chitin-binding protein purified from Moringa oleifera seeds presents anticandidal activity by increasing cell membrane permeability and reactive oxygen species production. Front. Microbiol. 2017, 8, 980. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Mariutti, R.B.; Masood, R.; Caruso, I.P.; Costa, G.H.G.; Freita, C.M.; Santos, C.R.; Zanphorlin, L.M.; Mutton, M.J.R.; Murakami, M.T.; et al. Crystal structure of mature 2S albumin from Moringa oleifera seeds. Biochem. Biophys. Res. Commun. 2015, 468, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Selvasekaran, P.; Kapoor, S.; Barbhai, M.D.; Lorenzo, J.M.; Saurabh, V.; Potkule, J.; Changan, S.; ElKelish, A.; Selim, S.; et al. Moringa oleifera Lam. seed proteins: Extraction, preparation of protein hydrolysates, bioactivities, functional food properties, and industrial application. Food Hydrocoll. 2022, 131, 107791. [Google Scholar] [CrossRef]
- Moisa, M.B.; Feyissa, M.E.; Dejene, I.N.; Tiye, F.S.; Deribew, K.T.; Roba, Z.R.; Gurmessa, M.M.; Gemeda, D.O. Evaluation of land suitability for Moringa oleifera tree cultivation by using geospatial technology: The case of Dhidhessa Catchment, Abay Basin, Ethiopia. Oil Crop Sci. 2023, 8, 45–55. [Google Scholar] [CrossRef]
- Bania, J.K.; Deka, J.R.; Hazarika, A.; Das, A.K.; Nath, A.J.; Sileshi, G.W. Modelling habitat suitability for Moringa oleifera and Moringa stenopetala under current and future climate change scenarios. Sci. Rep. 2023, 13, 20221. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Uwineza, P.A.; Waśkiewicz, A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Bichi, M.H. A review of the applications of Moringa oleifera seeds extract in water treatment. Civ. Environ. Res. 2013, 3, 1–10. [Google Scholar]
- Kapse, G.; Samadder, S.R. Moringa oleifera seed defatted press cake Based biocoagulant for the treatment of coal beneficiation plant effluent. J. Environ. Manag. 2021, 296, 113202. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Yang, Y.; Wang, Z. Nutritional, phytochemical, antioxidant, α-glucosidase and α-amylase inhibitory properties of Moringa oleifera seeds. S. Afr. J. Bot. 2020, 133, 151–160. [Google Scholar] [CrossRef]
- Liu, W.-L.; Wu, B.-F.; Shang, J.-H.; Wang, X.-F.; Zhao, Y.-L.; Huang, A.-X. Moringa oleifera seed ethanol extract and its active component kaempferol potentiate pentobarbital-induced sleeping behaviours in mice via a GABAergic mechanism. Pharm. Biol. 2022, 60, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Anwar, F.; Hussain, A.I.; Shahid, M. Aqueous enzymatic process for oil and protein extraction from Moringa oleifera seed. Eur. J. Lipid Sci. Technol. 2011, 113, 1012–1018. [Google Scholar] [CrossRef]
- Fatima, K.; Imran, M.; Ahmad, M.H.; Khan, M.K.; Khalid, W.; AL-Farga, A.; Alansari, W.S.; Shamlan, G.; Eskandrani, A.A. Ultrasound-assisted extraction of protein from Moringa oleifera seeds and its impact on techno-functional properties. Molecules 2023, 28, 2554. [Google Scholar] [CrossRef] [PubMed]
- Mehganathan, P.; Rosli, N.A. A review on extraction of bioactive compounds from Moringa oleifera leaves: Their principle, advantages, and disadvantages. Austin Chem. Eng. 2022, 9, id1090. [Google Scholar] [CrossRef]
- Emmanuel, S.A.; Zaku, S.G.; Adedirin, S.O.; Tafida, M.; Thomas, S.A. Moringa oleifera seed-cake, alternative biodegradable and biocompatibility organic fertilizer for modern farming. Agric. Biol. J. N. Am. 2011, 2, 1289–1292. [Google Scholar] [CrossRef]
- Prabhu, K.; Murugan, K.; Nareshkumar, A.; Ramasubramanian, N.; Bragadeeswaran, S. Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pac. J. Trop. Biomed. 2011, 1, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.J.S.; Souza, P.F.N.; Gifoni, J.M.; Dias, L.P.; Freitas, C.D.T.; Oliveira, J.T.A.; Sousa, D.O.B.; Vasconcelos, I.M. Scanning electron microscopy reveals deleterious effects of Moringa oleifera seed exuded proteins on root-knot nematode Meloidogyne incognita eggs. Int. J. Biol. Macromol. 2020, 154, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.P.S.; Silva, L.L.S.; Lima, T.A.; Pontual, E.V.; Santos, N.D.L.; Coelho, L.C.B.B.; Navarro, D.M.A.F.; Zingali, R.B.; Napoleão, T.H.; Paiva, P.M.G. Biotechnological value of Moringa oleifera seed cake as source of insecticidal lectin against Aedes aegypti. Process Biochem. 2016, 51, 1683–1690. [Google Scholar] [CrossRef]
- Pereira, F.; Silva, A.; Galvão, C.; Lima, V.; Montenegro, L.; Lima-Filho, N.; Silva, V. Moringa oleifera as sustainable source for energetic biomass. Int. J. Chem. 2015, 7, 177–185. [Google Scholar] [CrossRef]
- Guevara, A.P.; Vargas, C.; Sakurai, H.; Fujiwara, Y.; Hashimoto, K.; Maoka, T.; Kozuka, M.; Ito, Y.; Tokuda, H.; Nishino, H. An antitumor promoter from Moringa oleifera Lam. Mut. Res. 1999, 440, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Maiyo, F.C.; Moodley, R.; Singh, M. Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O glucoside and 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anticancer Agents Med. Chem. 2016, 16, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Khor, K.Z.; Lim, V.; Moses, E.J.; Abdul Samad, N.A. The in vitro and in vivo anticancer properties of Moringa oleifera. Evid. Based Complement. Alternat. Med. 2018, 2018, 1071243. [Google Scholar] [CrossRef] [PubMed]
- Mehwish, H.M.; Liu, G.; Rajoka, M.S.R.; Cai, H.; Zhong, J.; Song, X.; Xia, L.; Wang, M.; Aadil, R.M.; Inam-Ur-Raheem, M.; et al. Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. Int. J. Biol. Macromol. 2021, 184, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, Y.; He, R.; Li, B.; Huang, A. Label-free quantitative proteomic analysis of the biological functions of Moringa oleifera seed proteins provides insights regarding the milk-clotting proteases. Int. J. Biol. Macromol. 2020, 144, 325–333. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Q.; He, L.; Shi, Y.; Fan, J.; Chen, Y.; Huang, A. Milk-clotting properties on bovine caseins of a novel cysteine peptidase from germinated Moringa oleifera seeds. J. Dairy Sci. 2022, 105, 3770–3781. [Google Scholar] [CrossRef] [PubMed]
- Cardines, P.H.F.; Baptista, A.T.A.; Gomes, R.G.; Bergamasco, R.; Vieira, A.M.S. Moringa oleifera seed extracts as promising natural thickening agents for food industry: Study of the thickening action in yogurt production. LWT 2018, 97, 39–44. [Google Scholar] [CrossRef]
- Ndabigengesere, A.; Narasiah, K.S.; Talbot, B.G. Active Agents and Mechanism of Coagulation of Turbid Waters Using Moringa Oleifera. Water Res. 1995, 29, 703–710. [Google Scholar] [CrossRef]
- Souza, P.F.N. The Forgotten 2S Albumin Proteins: Importance, Structure, and Biotechnological Application in Agriculture and Human Health. Int. J. Biol. Macromol. 2020, 164, 4638–4649. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A.S.; O’Neill, J.G. A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water—An alternative sustainable solution for developing countries. Phys. Chem. Earth Parts A/B/C 2010, 35, 798–805. [Google Scholar] [CrossRef]
- Sera, P.R.; Diagboya, P.N.; Akpotu, S.O.; Mtunzi, F.M.; Chokwe, T.B. Potential of valourized Moringa oleifera seed waste modified with activated carbon for toxic metals decontamination in conventional water treatment. Bioresour. Technol. Rep. 2021, 16, 100881. [Google Scholar] [CrossRef]
- Mateus, G.A.P.; Paludo, M.P.; Santos, T.R.T.; Silva, M.F.; Nishi, L.; Fagundes-Klen, M.R.; Gomes, R.G.; Bergamasco, R. Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract. J. Environ. Chem. Eng. 2018, 6, 4084–4092. [Google Scholar] [CrossRef]
- Sahoo, M.; Vishwakarma, S.; Panigrahi, C.; Kumar, J. Nanotechnology: Current applications and future acope in food. Food Front. 2021, 2, 3–22. [Google Scholar] [CrossRef]
- Lundstrom, M.S. Fundamentals of Nanotransistors; Lessons from Nanoscience: A Lecture Notes Series; World Scientific Publishing: Singapore, 2017; Volume 6, ISBN 978-981-4571-72-2. [Google Scholar]
- Kashkooli, F.M.; Soltani, M.; Souri, M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting sstrategies. J. Control. Release 2020, 327, 316–349. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett. 2019, 29, 419–447. [Google Scholar] [CrossRef]
- Dai, H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218–241. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, X.; Shen, H.; He, Q.; Wu, Z.; Liao, W.; Yuan, M. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front. Bioeng. Biotechnol. 2020, 7, 489. [Google Scholar] [CrossRef]
- Kumah, E.A.; Fopa, R.D.; Harati, S.; Boadu, P.; Zohoori, F.V.; Pak, T. Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health 2023, 23, 1059. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; El-Shabasy, R.M.; Khalifa, S.A.M.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F.J.; Abdel-Daim, M.M.; Omri, A.; Hajrahand, N.H.; et al. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Adv. 2019, 9, 24539–24559. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Bhardwaj, K.; Dhanjal, D.S.; Nepovimova, E.; Șen, F.; Regassa, H.; Singh, R.; Verma, R.; Kumar, V.; Kumar, D.; et al. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in omology applications. Int. J. Mol. Sci. 2020, 21, 8458. [Google Scholar] [CrossRef] [PubMed]
- Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. 2014, 6, 35–44. [Google Scholar] [CrossRef]
- Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green chemistry and the health implications of nanoparticles. Green Chem. 2006, 8, 417–432. [Google Scholar] [CrossRef]
- Al_husnan, L.A.; Alkahtani, M.D.F. Impact of Moringa aqueous extract on pathogenic bacteria and fungi in vitro. Ann. Agric. Sci. 2016, 61, 247–250. [Google Scholar] [CrossRef]
- Fatiqin, A.; Amrulloh, H.; Simanjuntak, W. Green synthesis of MgO nanoparticles using Moringa oleifera leaf aqueous extract for antibacterial activity. Bull. Chem. Soc. Ethiop. 2021, 35, 161–170. [Google Scholar] [CrossRef]
- Tarmizi, A.A.A.; Ramli, N.N.N.; Adam, S.H.; Mutalib, M.A.; Mokhtar, M.H.; Tang, S.G.H. Phytofabrication of selenium nanoparticles with Moringa oleifera (MO-SeNPs) and exploring its antioxidant and antidiabetic potential. Molecules 2023, 28, 5322. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, N.; Ingle, N.; Jayaprakash, A.; Patel, H.; Patri, S.V.; Haranath, D. Green approach to synthesize nano zinc oxide via Moringa oleifera leaves for enhanced anti-oxidant, anti-acne and anti-bacterial properties for health & wellness applications. Arab. J. Chem. 2023, 16, 104506. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Umadevi, M.; Esmail, G.A.; Al-Dhabi, N.A.; Arasu, M.V. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem. Photobiol. B Biol. 2020, 205, 111836. [Google Scholar] [CrossRef] [PubMed]
- Ngom, I.; Ndiaye, N.M.; Sylla, N.F.; Dieng, S.; Ngom, B.D.; Maaza, M. Study of the physical properties of NiO nanoparticles synthesized from the flowers, seeds, and leaves extracts of Moringa oleifera. MRS Adv. 2023, 8, 729–735. [Google Scholar] [CrossRef]
- Burlacu, E.; Tanase, C.; Coman, N.-A.; Berta, L. A review of bark-extract-mediated green synthesis of metallic nanoparticles and their applications. Molecules 2019, 24, 4354. [Google Scholar] [CrossRef] [PubMed]
- Amrulloh, H.; Fatiqin, A.; Simanjuntak, W.; Afriyani, H.; Annissa, A. Antioxidant and antibacterial activities of magnesium oxide nanoparticles prepared using aqueous extract of Moringa oleifera bark as green agents. J. Multidiscip. Appl. Nat. Sci. 2021, 1, 44–53. [Google Scholar] [CrossRef]
- Irfan, M.; Munir, H.; Ismail, H. Moringa oleifera gum based silver and zinc oxide nanoparticles: Green synthesis, characterization and their antibacterial potential against MRSA. Biomater. Res. 2021, 25, 17. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Chen, J.; Sánchez, Z.I.G.; Tungare, K.; Bhori, M.; Durán-Lara, E.F.; Anbu, P. Moringa oleifera gum capped MgO nanoparticles: Synthesis, characterization, cyto- and ecotoxicity assessment. Int. J. Biol. Macromol. 2023, 233, 123514. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Hamadeen, H.M.; Elkhatib, E.A.; Badawy, M.E.I.; Abdelgaleil, S.A.M. Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater: Mechanism and sorption studies. J. Environ. Chem. Eng. 2021, 9, 105376. [Google Scholar] [CrossRef]
- Kalaiyarasi, C.; Poonkothai, M.; Abirami, S.; Alaguprathana, M.; Marraiki, N.; Zaghloul, N.S.S. Zinc oxide nanoparticles fabrication using Moringa oleifera Lam. seed extract—Impact on phytotoxic, photocatalytic, and antimicrobial activities. Appl. Nanosci. 2023, 13, 2187–2197. [Google Scholar] [CrossRef]
- Mehwish, H.M.; Rajoka, M.S.R.; Xiong, Y.; Cai, H.; Aadil, R.M.; Mahmood, Q.; He, Z.; Zhu, Q. Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J. Environ. Chem. Eng. 2021, 9, 105290. [Google Scholar] [CrossRef]
- Katata-Seru, L.; Moremedi, T.; Aremu, O.S.; Bahadur, I. Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. J. Mol. Liq. 2018, 256, 296–304. [Google Scholar] [CrossRef]
- Amuanyena, M.O.N.; Kandawa-Schulz, M.; Kwaambwa, H.M. Magnetic iron oxide nanoparticles modified with Moringa seed proteins for recovery of precious metal ions. J. Biomater. Nanotechnol. 2019, 10, 142–158. [Google Scholar] [CrossRef]
- Rajeswari, M.; Agrawal, P.; Roopa, G.S.; Jain, A.A.; Gupta, P.K. Green synthesis and characterization of multifunctional zinc oxide nanomaterials using extract of Moringa oleifera seed. Mater. Today Proc. 2018, 5, 20996–21002. [Google Scholar] [CrossRef]
- Coelho, N.; Jacinto, J.P.; Silva, R.; Soares, J.C.; Pereira, A.S.; Tavares, P. Green synthesis and antibacterial activity of silver nanoparticles obtained from Moringa oleifera seed cake. Coatings 2023, 13, 1439. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Mohamed, F.; Al-Quraishy, S.; Abdel-Baki, A.-A.S.; Abdel-Tawab, H. Green synthesis of cerium oxide/Moringa oleifera seed extract nano-composite and its molluscicidsal activities against Biomophalaria alexanderina. J. King Saud Univ. Sci. 2021, 33, 101368. [Google Scholar] [CrossRef]
- Ngulube, R.; Pillay, L.; Nombona, N. Synthesis and characterization of electrospun composite nanofibers from Moringa oleifera biomass and metal oxide nanoparticles as potential adsorbents for the removal of lead ions. Chem. Pap. 2023, 78, 599–611. [Google Scholar] [CrossRef]
- Nallaselvam, T.; Rajamohan, S.; Kalaiarasu, B.; Hoang, A.T. High efficient COVID-19 waste co-pyrolysis char/TiO2 nanocomposite for photocatalytic reduction of Cr(VI) under visible light. Environ Sci. Pollut. Res. 2023, 30, 97178–97194. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.; Warner, J. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Anindita, D.; Roopa, R.A.; Manasa, H.S.; Mridula, G. Green chemistry principles and spectroscopic methods applied to nanomaterials. Mater. Res. Proc. 2023, 145, 54–91. [Google Scholar] [CrossRef]
- Sukul, P.K.; Kar, C. Green conversion methods to prepare nanoparticle. In Bioinspired and Green Synthesis of Nanostructures: A Sustainable Approach; Sen, M., Mukherjee, M., Eds.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Miu, B.A.; Dinischiotu, A. New green approaches in nanoparticles synthesis: An overview. Molecules 2022, 27, 6472. [Google Scholar] [CrossRef]
- Gupta, D.; Boora, A.; Thakur, A.; Gupta, T.K. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ. Res. 2023, 231, 116316. [Google Scholar] [CrossRef]
- Radulescu, D.-M.; Surdu, V.-A.; Ficai, A.; Ficai, D.; Grumezescu, A.-M.; Andronescu, E. Green synthesis of metal and metal oxide nanoparticles: A review of the principles and biomedical applications. Int. J. Mol. Sci. 2023, 24, 15397. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Leaves | Flowers | Bark | Pods | Stem | Seeds | Cake | Roots |
---|---|---|---|---|---|---|---|---|
Protein | 26.1 | 4.9 | 2.5 | 1.4 | 18.7 | 33.7 | 50.8 | 16.9 |
Lipids/Fats | 4.9 | 0.2 | 0.6 | 0.7 | 12.2 | 40.8 | 3.1 | 10.8 |
Carbohydrate | 38.7 | − | 90 | 89 | 20.4 | 9.6 | 18.2 | 14.9 |
Fiber | 9.1 | 1.0 | 2.2 | 3.3 | 41.6 | 4.5 | 13.0 | 45.4 |
Others | 21.2 | − | 4.7 | 5.6 | 7.1 | 11.4 | 14.9 | 12.0 |
Metal Solution | Synthesis Conditions | Application | Ref. |
---|---|---|---|
Zinc sulfate (ZnSO4·7H2O) | 1–5 mM to 1–5 mL several seed extract additions under sunlight | Dye degradation Organic fertilizer Antimicrobial agent | [98] |
Silver nitrate (AgNO3) | 10 mL extract added to 90 mL of 0.5 mM silver nitrate solution, pH = 11.0, 60 °C | Textile dye degradation Antimicrobial agent Lead water removal | [99] |
Iron chloride (FeCl3·6H2O) | Extract added to 0.1 M FeCl3, (1:2) stirred for 30 min | Nitrate water removal Coagulant and antimicrobial agent | [100] |
Zinc nitrate (Zn(NO3)2) | 5 g of Zn(NO3)2 added to 150 mL aqueous extract at 60 °C | Production of sensors Food processing Cosmetics | [102] |
Silver nitrate (AgNO3) | AgNO3 added to aqueous extract (1:5) at 1 mL/min flow rate, 80 °C | Antimicrobial agent Bio-sensing Water purification | [103] |
Cerium(III) oxide (Ce2O3) | 30 mL extract added to 50 mL of 1 mM Ce2O3 and stirred for 3 h at 80 °C | Molluscicidal agent | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, N.; Pereira, A.S.; Tavares, P. Moringa oleifera Seed Cake: A Review on the Current Status of Green Nanoparticle Synthesis. Appl. Biosci. 2024, 3, 197-212. https://doi.org/10.3390/applbiosci3020013
Coelho N, Pereira AS, Tavares P. Moringa oleifera Seed Cake: A Review on the Current Status of Green Nanoparticle Synthesis. Applied Biosciences. 2024; 3(2):197-212. https://doi.org/10.3390/applbiosci3020013
Chicago/Turabian StyleCoelho, Nuno, Alice S. Pereira, and Pedro Tavares. 2024. "Moringa oleifera Seed Cake: A Review on the Current Status of Green Nanoparticle Synthesis" Applied Biosciences 3, no. 2: 197-212. https://doi.org/10.3390/applbiosci3020013
APA StyleCoelho, N., Pereira, A. S., & Tavares, P. (2024). Moringa oleifera Seed Cake: A Review on the Current Status of Green Nanoparticle Synthesis. Applied Biosciences, 3(2), 197-212. https://doi.org/10.3390/applbiosci3020013