Enhanced Biomechanical Properties of the Pectineal Ligament Support Its Reliability for Apical Pelvic Organ Prolapse Repair
Abstract
:1. Introduction
2. Material and Methods
2.1. Dissection of Cadaveric Donors
2.2. Biomechanical Testing
2.3. Statistical Analysis
3. Results
3.1. Characterization of the Pectineal Ligament
3.2. Biomechanical Properties of the Pectial and Sacral Anterior Longitudinal Ligaments
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kale, A.; Biler, A.; Terzi, H.; Usta, T.; Kale, E. Laparoscopic pectopexy: Initial experience of single center with a new technique for apical prolapse surgery. Int. Braz. J. Urol. 2017, 43, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Pelvic Organ Prolapse: ACOG Practice Bulletin, Number 214. Obstet. Gynecol. 2019, 134, e126–e142. [CrossRef] [PubMed]
- Noe, K.G.; Spuntrup, C.; Anapolski, M. Laparoscopic pectopexy: A randomised comparative clinical trial of standard laparoscopic sacral colpo-cervicopexy to the new laparoscopic pectopexy. Short-term postoperative results. Arch. Gynecol. Obstet. 2013, 287, 275–280. [Google Scholar] [CrossRef]
- Bakir, M.S.; Bagli, I.; Cavus, Y.; Tahaoglu, A.E. Laparoscopic Pectopexy and Paravaginal Repair after Failed Recurrent Pelvic Organ Prolapse Surgery. Gynecol. Minim. Invasive Ther. 2020, 9, 42–44. [Google Scholar] [CrossRef]
- Noe, K.G.; Schiermeier, S.; Alkatout, I.; Anapolski, M. Laparoscopic pectopexy: A prospective, randomized, comparative clinical trial of standard laparoscopic sacral colpocervicopexy with the new laparoscopic pectopexy-postoperative results and intermediate-term follow-up in a pilot study. J. Endourol. 2015, 29, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, I.; Brubaker, L.; Zyczynski, H.M.; Cundiff, G.; Richter, H.; Gantz, M.; Fine, P.; Menefee, S.; Ridgeway, B.; Visco, A.; et al. Long-term outcomes following abdominal sacrocolpopexy for pelvic organ prolapse. JAMA 2013, 309, 2016–2024. [Google Scholar] [CrossRef]
- Dallenbach, P. To mesh or not to mesh: A review of pelvic organ reconstructive surgery. Int. J. Womens Health 2015, 7, 331–343. [Google Scholar] [CrossRef]
- Banerjee, C.; Noe, K.G. Laparoscopic pectopexy: A new technique of prolapse surgery for obese patients. Arch. Gynecol. Obstet. 2011, 284, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.M. A new technique of uterine suspension to the pectineal ligaments in the management of uterovaginal prolapse. Obstet. Gynecol. 1993, 81 Pt 1, 790–793. [Google Scholar] [PubMed]
- Wang, Q.; Guan, Z.; Guo, X.; Chen, B.; Li, L.; Liu, J.; Guan, X. Stepwise Laparoendoscopic Single-site Pectopexy for Pelvic Organ Prolapse. J. Minim. Invasive Gynecol. 2021, 28, 1142–1143. [Google Scholar] [CrossRef]
- Steinke, H.; Wiersbicki, D.; Völker, A.; Pieroh, P.; Kulow, C.; Wolf, B.; Osterhoff, G. The fascial connections of the pectineal ligament. Clin. Anat. 2019, 32, 961–969. [Google Scholar] [CrossRef]
- Faure, J.; Hauet, T.; Scepi, M.; Chansigaud, J.; Kamina, P.; Richer, J. The pectineal ligament antntomical study and surgical applications. Surg. Radiol. Anat. 2001, 23, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Tappy, E.; Pan, E.; Corton, M. Robotic Burch colposuspension: Anatomical and technical considerations. Int. Urogynecol J. 2023, 34, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
- Jan, H.; Ghai, V.; Thakar, R. Laparoscopic Colposuspension for Recurrent Stress Incontinence after Tension-free Vaginal Tape. J. Minim. Invasive Gynecol. 2019, 26, 402–403. [Google Scholar] [CrossRef] [PubMed]
- Osterhoff, G.; Reise, R.; Riemer, E.; Höch, A.; Fakler, J.K.M.; Heyde, C.E.; Schleifenbaum, S. The pectineal ligament is a secondary stabilizer in anterior pelvic ring fractures—A biomechanical study. Injury 2022, 53, 334–338. [Google Scholar] [CrossRef]
- Klengel, A.; Steinke, H.; Pieroh, P.; Höch, A.; Denecke, T.; Josten, C.; Osterhoff, G. Integrity of the pectineal ligament in MRI correlates with radiographic superior pubic ramus fracture displacement. Acta Radiol. 2021, 62, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Heusinkveld, J.; Gabra, B.; Winget, V.; Hatch, K. 60 Pectopexy: An Alternative to sacrocolpopexy. Am. J. Obstet. Gynecol. 2021, 224, 830. [Google Scholar] [CrossRef]
- Heusinkveld, J.; Winget, V. 41 Pectopexy: Early experience in a north american medical center. Am. J. Obstet. Gynecol. 2021, 224, 769–770. [Google Scholar] [CrossRef]
- Cosson, M.; Boukerrou, M.; Lacaze, S.; Lambaudie, E.; Fasel, J.; Mesdagh, H.; Lobry, P.; Ego, A. A study of pelvic ligament strength. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 109, 80–87. [Google Scholar] [CrossRef]
- Pulatoglu, C.; Dogan, O.; Medisoglu, M.S.; Yassa, M.; Ellibes Kaya, A.; Selcuk, I.; Bayik, R.N. Surgical anatomy of the pectineal ligament during pectopexy surgery: The relevance to the major vascular structures. Turk. J. Obstet. Gynecol. 2020, 17, 21–27. [Google Scholar] [CrossRef]
- Millhuff, A.; Haddad, H.; Draper, M.S.; Motzko, M.; Glueck, E.; Holland, B.; Wright, B. The midline interlaminar ligament of the spine: An anatomical study. Clin. Anat. 2023, 36, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Lian, Z.; Yang, B.; Fan, Y. Biomechanics of Ligaments. In Frontiers in Orthopaedic Biomechanics; Springer: Singapore, 2020; pp. 75–87. [Google Scholar] [CrossRef]
- Bettinger, P.; Smutz, W.; Linscheid, R.; Cooney, W. Material properties of the trapezial and trapeziometacarpal ligaments. J. Hand Surg. 2000, 25, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Amis, A. The Biomechanics of Ligaments. In Biomechanics and Biomaterials in Orthopedics; Poitout, D.G., Ed.; Springer: London, UK, 2004; pp. 550–563. [Google Scholar] [CrossRef]
- Gupte, C.; Smith, A.; Jamieson, N.; Bull, A.; Thomas, R.; Amis, A. Meniscofemoral ligaments—Structural and material properties. J. Biomech. 2002, 35, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Bolovis, D.I.; Brucker, C.V.M. Unilateral pectineal suspension—A new surgical approach for apical correction of pelvic organ prolapse. Facts Views Vis. Obgyn 2022, 14, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Sauerwald, A.; Niggl, M.; Puppe, J.; Prescher, A.; Scaal, M.; Noé, G.K.; Schiermeier, S.; Warm, M.; Eichler, C. Laparoscopic Pectopexy: A Biomechanical Analysis. PLoS ONE 2016, 11, e0144143. [Google Scholar] [CrossRef] [PubMed]
- Serdinšek, T.; Rakuša, M.; Kocbek Šaherl, L.; Pejković, B.; Dolenšek, J.; But, I. Measurement of extraction forces of non-absorbable suture and different anchoring systems used for pelvic organ prolapse surgery using soft-embalmed cadavers: A feasibility study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 287, 211–215. [Google Scholar] [CrossRef]
- Brubaker, L.; Maher, C.; Jacquetin, B.; Rajamaheswari, N.; von Theobald, P.; Norton, P. Surgery for pelvic organ prolapse. Female Pelvic Med. Reconstr. Surg. 2010, 16, 9–19. [Google Scholar] [CrossRef]
- Rani, S.; Handa, N.; Goel, P.; Mehra, R. Conservative Surgical Management of Mesh Erosion Following Abdominal Sacrocolpopexy. J. Midlife Health 2020, 11, 34–36. [Google Scholar] [CrossRef]
- Balta, J.Y.; Twomey, M.; Moloney, F.; Duggan, O.; Murphy, K.P.; O’Connor, O.J.; Cronin, M.; Cryan, J.F.; Maher, M.M.; O’Mahony, S.M. A comparison of embalming fluids on the structures and properties of tissue in human cadavers. Anat. Histol. Embryol. 2019, 48, 64–73. [Google Scholar] [CrossRef]
- Sauerwald, A.; Langer, L.; Ratiu, D.; Prescher, A.; Scaal, M.; Noé, G.K.; Wegmann, K.; Bulian, D.R.; Eichler, C. Laparoscopic pectopexy: A follow-up cyclic biomechanical analysis determining time to functional stability. Arch. Gynecol. Obstet. 2019, 299, 1337–1343. [Google Scholar] [CrossRef]
Measurement | Mean Length ± SD (mm) | Min (mm) | Max (mm) | |
---|---|---|---|---|
Right PL | Length | 66.35 ± 12.02 | 43.79 | 85.54 |
Midpoint to EIV | 16.79 ± 8.82 | 4.24 | 32.36 | |
Width at midpoint | 6.83 ± 1.17 | 4.81 | 8.94 | |
Length | 65.58 ± 11.32 | 41.52 | 85.31 | |
Left PL | Midpoint to EIV | 14.42 ± 7.86 | 3.14 | 27.94 |
Width at midpoint | 6.64 ± 0.98 | 4.62 | 8.17 |
Ligament | Peak Force at Failure (N) | Toughness (Jm−2) | Elastic Modulus/Stiffness (MPa) |
---|---|---|---|
Right PL | 80.54 ± 22.89 | 5778.17 ± 2023.38 | 411.89 ± 277.69 |
Left PL | 83.23 ± 34.76 | 6243.56 ± 2746.07 | 543.94 ± 571.33 |
Combined PL | 80.88 ± 24.97 | 5961.61 ± 2022.31 | 486.19 ± 357.72 |
SALL | 53.55 ± 19.44 | 3847.93 ± 1319.69 | 323.97 ± 242.42 |
Measurement | Right PL vs. SALL | Left PL vs. SALL | Combined PL vs. SALL |
---|---|---|---|
Peak Force at Failure (N) | 0.001 | 0.004 | 0.005 |
Toughness (Jm−2) | 0.004 | 0.005 | 0.002 |
Elastic Modulus/Stiffness (MPa) | 0.290 | 0.143 | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motzko, M.; Swancutt, M.M.; Glueck, E.; Holland, B.; Stock, A.; Azari, Z.; Diricanli, E.; Dennis, J.F.; Zolnierz, M. Enhanced Biomechanical Properties of the Pectineal Ligament Support Its Reliability for Apical Pelvic Organ Prolapse Repair. Anatomia 2024, 3, 234-243. https://doi.org/10.3390/anatomia3040020
Motzko M, Swancutt MM, Glueck E, Holland B, Stock A, Azari Z, Diricanli E, Dennis JF, Zolnierz M. Enhanced Biomechanical Properties of the Pectineal Ligament Support Its Reliability for Apical Pelvic Organ Prolapse Repair. Anatomia. 2024; 3(4):234-243. https://doi.org/10.3390/anatomia3040020
Chicago/Turabian StyleMotzko, Micaela, Makayla M. Swancutt, Edwin Glueck, Brandalynn Holland, Anna Stock, Zubeen Azari, Elif Diricanli, Jennifer F. Dennis, and Melissa Zolnierz. 2024. "Enhanced Biomechanical Properties of the Pectineal Ligament Support Its Reliability for Apical Pelvic Organ Prolapse Repair" Anatomia 3, no. 4: 234-243. https://doi.org/10.3390/anatomia3040020
APA StyleMotzko, M., Swancutt, M. M., Glueck, E., Holland, B., Stock, A., Azari, Z., Diricanli, E., Dennis, J. F., & Zolnierz, M. (2024). Enhanced Biomechanical Properties of the Pectineal Ligament Support Its Reliability for Apical Pelvic Organ Prolapse Repair. Anatomia, 3(4), 234-243. https://doi.org/10.3390/anatomia3040020