A Detailed Anatomical Description of the Gastrocnemius Muscle—Is It Anatomically Positioned to Function as an Antagonist to the Anterior Cruciate Ligament?
Abstract
:1. Introduction and Background
2. Materials and Methods
2.1. Popliteal Region
2.2. Gastrocnemius Morphology
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Limb Symmetry
4.2. Popliteal Region
4.3. Gastrocnemius Morphology
4.4. Femoral Attachment of Medial Head of Gastrocnemius
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Noyes, F.R. The function of the human anterior cruciate ligament and analysis of singleand double-bundle graft reconstructions. Sports Health 2009, 1, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, C.E.; Beattie, P.F.; Sacko, R.S.; Hand, A. Risk Factors Associated With Non-Contact Anterior Cruciate Ligament Injury: A Systematic Review. Int. J. Sports Phys. Ther. 2018, 13, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Meunier, A.; Odensten, M.; Good, L. Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: A randomized study with a 15-year follow-up. Scand. J. Med. Sci. Sports 2007, 17, 230–237. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.J. Can muscle co-contraction protect knee ligaments after injury or repair? J. Bone Jt. Surg.-Ser. B 1993, 75-B, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Fleming, B.C.; Renstrom, P.A.; Ohlen, G.; Johnson, R.J.; Peura, G.D.; Beynnon, B.D.; Badger, G.J. The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. J. Orthop. Res. 2001, 19, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarzadeh, H.; Yeow, C.H.; Hong Goh, J.C.; Oetomo, D.; Malekipour, F.; Lee, P.V.S. Contributions of the Soleus and Gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. J. Biomech. 2013, 46, 1913–1920. [Google Scholar] [CrossRef]
- Elias, J.J.; Faust, A.F.; Chu, Y.H.; Chao, E.Y.; Cosgarea, A.J. The soleus muscle acts as an agonist for the anterior cruciate ligament: An in vitro experimental study. Am. J. Sports Med. 2003, 31, 241–246. [Google Scholar] [CrossRef]
- Adouni, M.; Shirazi-Adl, A.; Marouane, H. Role of gastrocnemius activation in knee joint biomechanics: Gastrocnemius acts as an ACL antagonist. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 376–385. [Google Scholar] [CrossRef]
- Bryant, A.L.; Creaby, M.W.; Newton, R.U.; Steele, J.R. Dynamic Restraint Capacity of the Hamstring Muscles Has Important Functional Implications After Anterior Cruciate Ligament Injury and Anterior Cruciate Ligament Reconstruction. Arch. Phys. Med. Rehabil. 2008, 89, 2324–2331. [Google Scholar] [CrossRef]
- Rodgers, C.D.; Raja, A. Anatomy, Bony Pelvis and Lower Limb, Hamstring Muscle; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar] [CrossRef]
- Bordoni, B.; Varacallo, M. Anatomy, Bony Pelvis and Lower Limb, Gastrocnemius Muscle; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Upasna, A.; Nar, A.; Kumar, A.; Mishra, A. Morphological Analysis of Proximal Gastrocnemius Muscle—A Study in Thirty Adult Human Cadavers. Int. J. Anat. Radiol. Surg. 2016, 5, 41–43. [Google Scholar] [CrossRef]
- Andjelkov, K.; Atanasijevic, T.C.; Popovic, V.M.; Sforza, M.; Atkinson, C.J.; Soldatovic, I. Anatomical aspects of the gastrocnemius muscles: A study in 47 fresh cadavers. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Kalixto, M.A.; Vergara, R. Submuscular calf implants. Aesthetic Plast. Surg. 2003, 27, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Maniar, N.; Cole, M.H.; Bryant, A.L.; Opar, D.A. Muscle Force Contributions to Anterior Cruciate Ligament Loading. Sports Med. 2022, 52, 1737–1750. [Google Scholar] [CrossRef] [PubMed]
- Dürselen, L.; Claes, L.; Kiefer, H. The Influence of Muscle Forces and External Loads on Cruciate Ligament Strain. Am. J. Sports Med. 1995, 23, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Sherbondy, P.S.; Queale, W.S.; McFarland, E.G.; Mizuno, Y.; Cosgarea, A.J. Soleus and gastrocnemius muscle loading decreases anterior tibial translation in anterior cruciate ligament intact and deficient knees. J. Knee Surg. 2003, 16, 152–158. [Google Scholar]
- Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 2005, 37, 1948–1956. [Google Scholar] [CrossRef]
- Iversen, B.F.; Stürup, J.; Jacobsen, K.; Andersen, J. Implications of muscular defense in testing for the anterior drawer sign in the knee: A stress radiographic investigation. Am. J. Sports Med. 1989, 17, 409–413. [Google Scholar] [CrossRef]
- Biščević, M.; Hebibović, M.; Smrke, D. Variations of femoral condyle shape. Coll. Antropol. 2005, 29, 409–414. [Google Scholar]
- Wilson, W.T.; Deakin, A.H.; Payne, A.P.; Picard, F.; Wearing, S.C. Comparative analysis of the structural properties of the collateral ligaments of the human knee. J. Orthop. Sports Phys. Ther. 2012, 42, 345–351. [Google Scholar] [CrossRef]
- Fukubayashi, T.; Kurosawa, H. The contact area and pressure distribution pattern of the knee: A study of normal and osteoarthrotic knee joints. Acta Orthop. 1980, 51, 871–879. [Google Scholar] [CrossRef]
- Seedhom, B.B. Transmission of the Load in the Knee Joint with Special Reference to the Role of the Menisci. Eng. Med. 1979, 8, 207–219. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Kedgley, A.E.; Donoghue, C.R.; Rueckert, D.; Bull, A.M.J. The relationship between lateral meniscus shape and joint contact parameters in the knee: A study using data from the Osteoarthritis Initiative. Arthritis Res. Ther. 2014, 16, R27. [Google Scholar] [CrossRef] [PubMed]
- Gwani, A.S.; Asari, M.A.; Ismail, Z.I.M. How the three arches of the foot intercorrelate. Folia Morphol. 2017, 76, 682–688. [Google Scholar] [CrossRef] [PubMed]
Parameter | Left (n = 11) | Right (n = 11) | Total (n = 22) |
---|---|---|---|
Area of posterior knee region (cm2) | 153.1 ± 23.7 (116.0–177.6) | 161.4 ± 29.5 (106.0–209.8) | 157.3 ± 5.6 (106.0–209.8) |
Area of semimembranosus/semitendinosus (cm2) | * 30.6 ± 6.0 (24.7–46.1) | 33.4 ± 8.0 (26.6–54.8) | 32.0 ± 7.0 (24.7–54.8) |
Area of biceps femoris (cm2) | 30.6 ± 5.2 (21.4–38.3) | 31.7 ± 5.6 (22.4–40.2) | 31.1 ± 5.3 (21.4–40.2) |
Area of medial gastrocnemius (cm2) | 20.5 ± 5.4 (13.6–33.5) | 20.0 ± 5.9 (11.4–29.6) | 20.3 ± 5.5 (11.4–33.5 |
Area of lateral gastrocnemius (cm2) | 15.4 ± 4.9 (9.6–25.5) | 15.8 ± 4.3 (9.0–23.9) | 15.6 ± 4.5 (9.0–25.5) |
Total % of region that is muscle | 63.6 ± 5.2 (57.8–72.4) | 62.9 ± 6.5 (56.0–78.0) | 63.3 ± 5.8 (56.0–78.0) |
Total % of region that is space (fossa) | 36.4 ± 5.2 (27.6–42.2) | 37.1 ± 6.5 (22.0–44.0) | 36.8 ± 5.7 (22.0–44.0) |
Muscle | Muscle Lengths (cm) | Left (n = 11) | Right (n = 11) | Total (n = 22) |
---|---|---|---|---|
Gastrocnemius | Total gastrocnemius muscle belly | 23.6 ± 3.5 (17.9–28.4) | 23.4 ± 3.4 (17.7–29.1) | 23.5 ± 3.4 (17.7–29.1) |
Gastrocnemius muscle including Achilles tendon | 42.3 ± 3.9 (35.9–49.3) | 42.6 ± 4.0 (37.0–50.2) | 42.5 ± 3.9 (35.9–50.2) | |
Gastrocnemius above knee joint line | 5.2 ± 1.0 (4.4–7.1) | 5.6 ± 1.4 (4.3–8.3) | 5.4 ± 1.2 (4.3–8.3) | |
Hamstrings | Semitendinosus tendon below knee joint line | 2.0 ± 0.6 (1.0–2.8) | 1.9 ± 0.5 (1.4–2.8) | 2.0 ± 0.5 (1.0–2.8) |
Biceps femoris below knee joint line | 2.5 ± 0.6 (1.6–3.2) | 2.5 ± 0.5 (1.8–3.2) | 2.5 ± 0.5 (1.6–3.2) |
Muscle Widths (cm) | Left (n = 11) | Right (n = 11) | Total (n = 22) |
---|---|---|---|
Maximum width | 9.7 ± 2.5 (6.1–15.5) | 9.6 ± 2.7 (6.2–15.7) | 9.7 ± 2.5 (6.1–15.7) |
At knee joint line | 5.0 ± 1.6 (2.8–7.3) | 5.0 ± 1.8 (2.5–7.8) | 5.0 ± 1.6 (2.5–7.8) |
At 25% muscle head length below the knee joint line | 7.6 ± 1.9 (5.1–11) | 7.2 ± 2.1 (4.2–11.6) | 7.4 ± 2.0 (4.2–11.6) |
At 50% muscle head length below the knee joint line | 9.4 ± 2.5 (5.6–15.1) | 9.4 ± 2.7 (5.9–15.6) | 9.4 ± 2.5 (5.6–15.6) |
At 75% muscle head length below the knee joint line | 8.0 ± 2.3 (4.5–12.8) | 7.7 ± 2.3 (4.7–12.8) | 7.9 ± 2.2 (4.5–12.8) |
At musculotendinous junction | 6.9 ± 1.4 (5.1–9.2) | 6.5 ± 1.7 (4.1–9.2) | 6.7 ± 1.6 (4.1–9.2) |
Lengths (cm) | Medial Head (n = 22) | Lateral Head (n = 22) |
---|---|---|
Total muscle belly | ** 23.5 ± 3.4 (17.7–29.1) | 20.5 ± 2.9 (15.0–26.1) |
Muscle belly above knee joint line | ** 5.4 ± 1.2 (4.3–8.3) | 3.5 ± 1.0 (1.4–5.9) |
From the knee joint line to the point of muscle belly maximum width | * 8.5 ± 1.6 (5.2–11.6) | 7.3 ± 2.2 (0.6–9.9) |
Achilles tendon | ** 18.9 ± 1.4 (16.7–21.1) | 20.4 ± 1.4 (18.4–22.6) |
Gastrocnemius muscle head and Achilles tendon (cm) | * 42.5 ± 3.9 (35.9–50.2) | 40.9 ± 3.6 (35.2–47.7) |
% of gastrocnemius muscle belly compared to Achilles Tendon | ** 55.2 ± 3.9 (47.7–61.1) | 50.0 ± 3.6 (40.0–54.7) |
Widths (cm) | Medial Head (n = 22) | Lateral Head (n = 22) |
---|---|---|
Maximum width of muscle belly | ** 5.5 ± 1.6 (3.1–8.5) | 4.2 ± 1.1 (2.9–7.2) |
At knee joint line | ** 2.6 ± 0.9 (1.3–4) | 2.4 ± 0.8 (1.2–3.8) |
At 25% distal to knee joint line | ** 4.0 ± 1.2 (2–6.7) | 3.5 ± 1.0 (1.9–5.8) |
At 50% distal to knee joint line | ** 5.3 ± 1.5 (2.8–8.4) | 4.1 ± 1.2 (2.7–7.2) |
At 75% distal to knee joint line | ** 4.6 ± 1.5 (2.2–7.4) | 3.3 ± 0.9 (2.0–5.5) |
Musculotendinous junction | ** 4.1 ± 1.1 (2.3–6) | 2.6 ± 0.7 (1.8–3.9) |
Parameter | Left (n = 11) | Right (n = 11) | Total (n = 22) |
---|---|---|---|
Area of tendon (cm2) | 7.7 ± 2.4 (5.5–12.7) | 7.8 ± 2.7 (5.0–12.8) | 7.8 ± 2.5 (5.0–12.8) |
Area of muscle (cm2) | 12.4 ± 4.9 (5.1–22.1) | 11.9 ± 3.7 (7.4–18.9) | 12.1 ± 4.2 (5.1–22.1) |
% Tendon | 39.5 ± 6.2 (31.7–51.9) | 39.8 ± 7.4 (32.0–57.7) | 39.7 ± 6.6 (31.7–57.7) |
% Muscle | 60.5 ± 6.2 (48.1–68.3) | 60.2 ± 7.4 (42.3–68.0) | 60.3 ± 6.6 (42.3–68.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, K.; Peeler, J. A Detailed Anatomical Description of the Gastrocnemius Muscle—Is It Anatomically Positioned to Function as an Antagonist to the Anterior Cruciate Ligament? Anatomia 2024, 3, 244-255. https://doi.org/10.3390/anatomia3040021
Thomas K, Peeler J. A Detailed Anatomical Description of the Gastrocnemius Muscle—Is It Anatomically Positioned to Function as an Antagonist to the Anterior Cruciate Ligament? Anatomia. 2024; 3(4):244-255. https://doi.org/10.3390/anatomia3040021
Chicago/Turabian StyleThomas, Kevin, and Jason Peeler. 2024. "A Detailed Anatomical Description of the Gastrocnemius Muscle—Is It Anatomically Positioned to Function as an Antagonist to the Anterior Cruciate Ligament?" Anatomia 3, no. 4: 244-255. https://doi.org/10.3390/anatomia3040021
APA StyleThomas, K., & Peeler, J. (2024). A Detailed Anatomical Description of the Gastrocnemius Muscle—Is It Anatomically Positioned to Function as an Antagonist to the Anterior Cruciate Ligament? Anatomia, 3(4), 244-255. https://doi.org/10.3390/anatomia3040021