Can Pharmacovigilance Data Represent a Potential Tool for Early Detection of the Antibiotic Resistance Phenomenon?
Abstract
:1. Introduction
2. Results
Drug Resistance and Drug Ineffectiveness
3. Discussion
4. Materials and Methods
4.1. Study Design and Data Source
4.2. Selection of Individual Case Safety Reports with Line Listing
4.3. Descriptive Analysis
4.4. Ethical Consideration
5. Conclusions
6. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, S.B.; Young, K.; Silver, L.L. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem. Pharmacol. 2017, 133, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, S.; Retur, N.; Bertrand, B.; Lieutier-Colas, F.; Carenco, P.; Mondain, V. On Behalf of Promise Professional Community Network on Antimicrobial Resistance. The Production of Antibiotics Must Be Reoriented: Repositioning Old Narrow-Spectrum Antibiotics, Developing New Microbiome-Sparing Antibiotics. Antibiotics 2022, 11, 924. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taleb, M.H.; Elmanama, A.A.; Taleb, A.H.; Tawfick, M.M. Pre- and post-COVID-19 antimicrobial resistance profile of bacterial pathogens, a comparative study in a tertiary hospital. J. Infect. Dev. Ctries. 2023, 17, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, K.; Newell, P.; Chow, J.W.; Broadhurst, H.; Wilson, D.; Yates, K.; Wardman, A. Safety Profile of Ceftazidime-Avibactam: Pooled Data from the Adult Phase II and Phase III Clinical Trial Programme. Drug Saf. 2020, 43, 751–766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taneja, N.; Kaur, H. Insights into Newer Antimicrobial Agents Against Gram-negative Bacteria. Microbiol. Insights 2016, 9, 9–19. [Google Scholar]
- Papp-Wallace, K.M.; Mack, A.R.; Taracila, M.A.; Bonomo, R.A. Resistance to Novel β-Lactam-β-Lactamase Inhibitor Combinations: The “Price of Progress”. Infect. Dis. Clin. N. Am. 2020, 34, 773–819. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbier, F.; Hraiech, S.; Kernéis, S.; Veluppillai, N.; Pajot, O.; Poissy, J.; Roux, D.; Zahar, J.R.; French Intensive Care Society. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann. Intensive Care 2023, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Zavicefta-Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/zavicefta-epar-product-information_en.pdf (accessed on 11 September 2023).
- Wright, H.; Bonomo, R.A.; Paterson, D.L. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect. 2017, 23, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Mosley, J.F., 2nd; Smith, L.L.; Parke, C.K.; Brown, J.A.; Wilson, A.L.; Gibbs, L.V. Ceftazidime-Avibactam (Avycaz): For the Treatment of Complicated Intra-Abdominal and Urinary Tract Infections. Pharm. Ther. 2016, 41, 479–483. [Google Scholar] [PubMed] [PubMed Central]
- Shlaes, D.M. New β-lactam-β-lactamase inhibitor combinations in clinical development. Ann. N. Y. Acad. Sci. 2013, 1277, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Merdjan, H.; Rangaraju, M.; Tarral, A. Safety and pharmacokinetics of single and multiple ascending doses of avibactam alone and in combination with ceftazidime in healthy male volunteers: Results of two randomized, placebo-controlled studies. Clin. Drug Investig. 2015, 35, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagacé-Wiens, P.R.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; et al. Ceftazidime-avibactam: A novel cephalosporin/β-lactamase inhibitor combination. Drugs 2013, 73, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.N. Beta Lactam; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–63. [Google Scholar] [CrossRef]
- European Medicines Agency. Zavicefta-EPAR-Risk Management Plan Summary. Available online: https://www.ema.europa.eu/en/documents/rmp-summary/zavicefta-epar-risk-management-plan-summary_en.pdf (accessed on 11 September 2023).
- Habarugira, J.M.V.; Härmark, L.; Figueras, A. Pharmacovigilance Data as a Trigger to Identify Antimicrobial Resistance and Inappropriate Use of Antibiotics: A Study Using Reports from The Netherlands Pharmacovigilance Centre. Antibiotics 2021, 10, 1512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Medicines Agency. Vabomere-EPAR-Risk Management Plan Summary. Available online: https://www.ema.europa.eu/en/documents/rmp-summary/vabomere-epar-risk-management-plan-summary_en.pdf (accessed on 13 March 2024).
- UMC Antimicrobial Resistance—An Overlooked Adverse Event. Available online: https://www.who-umc.org/media/2775/web_uppsalareports_issue74.pdf (accessed on 13 March 2024).
- Agrawal, V.; Shrivastava, T.P.; Adusumilli, P.K.; Vivekanandan, K.; Thota, P.; Bhushan, S. Pivotal role of Pharmacovigilance Programme of India in containment of antimicrobial resistance in India. Perspect. Clin. Res. 2019, 10, 140–144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bairy, L.K.; Nayak, V.; Kunder, S.K. Advances in pharmacovigilance initiatives surrounding antimicrobial resistance-Indian perspective. Expert. Opin. Drug Saf. 2016, 15, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibiotic resistance worldwide: Causes, challenges, and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef]
- Meyboom, R.H.; Lindquist, M.; Flygare, A.-K.; Biriell, C.; Edwards, I.R. The Value of Reporting Therapeutic Ineffectiveness as an Adverse Drug Reaction. Drug Saf. 2000, 23, 95–99. [Google Scholar] [CrossRef]
- Reform of the EU Pharmaceutical Legislation. Public Health. Published 29 September 2023. European Commission. Available online: https://health.ec.europa.eu/medicinal-products/pharmaceutical-strategy-europe/reform-eu-pharmaceutical-legislation_en (accessed on 9 October 2023).
- International Conference on Harmonization E2D. Post-Approval Safety Data Management|European Medicines Agency. Available online: https://www.ema.europa.eu/en/ich-e2d-post-approval-safety-data-management-scientific-guideline (accessed on 11 September 2023).
- de Vries, S.T.; Denig, P.; Ekhart, C.; Burgers, J.S.; Kleefstra, N.; Mol, P.G.M.; van Puijenbroek, E.P. Sex differences in adverse drug reactions reported to the National Pharmacovigilance Centre in the Netherlands: An explorative observational study. Br. J. Clin. Pharmacol. 2019, 85, 1507–1515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Montastruc, J.L.; Lapeyre-Mestre, M.; Bagheri, H.; Fooladi, A. Gender differences in adverse drug reactions: Analysis of spontaneous reports to a Regional Pharmacovigilance Centre in France. Fundam. Clin. Pharmacol. 2002, 16, 343–346. [Google Scholar] [CrossRef] [PubMed]
- di Mauro, G.; Zinzi, A.; Vitiello, F.; Restaino, M.; Sportiello, L.; Rafaniello, C.; Sullo, M.G.; Capuano, A. Adverse drug reactions and gender differences: What changes in drug safety? Ital. J. Gender-Specific Med. 2019, 5, 114–122. [Google Scholar] [CrossRef]
- Gatti, M.; Raschi, E.; De Ponti, F. Relationship between adverse drug reactions to antibacterial agents and the Klebsiella pneumoniae carbapenemase-producing (KPC) Klebsiella pneumoniae outbreak: Insight from a pharmacovigilance study. BMC Pharmacol. Toxicol. 2019, 20, 65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schröder, W.; Sommer, H.; Gladstone, B.P.; Foschi, F.; Hellman, J.; Evengard, B.; Tacconelli, E. Gender differences in antibiotic prescribing in the community: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1800–1806. [Google Scholar] [CrossRef]
- Joung, K.I.; Jung, G.W.; Park, H.H.; Lee, H.; Park, S.H.; Shin, J.Y. Gender differences in adverse event reports associated with antidiabetic drugs. Sci. Rep. 2020, 10, 17545. [Google Scholar] [CrossRef]
- Vena, A.; Giacobbe, D.R.; Castaldo, N.; Cattelan, A.; Mussini, C.; Luzzati, R.; Rosa, F.G.; Del Puente, F.; Mastroianni, C.M.; Cascio, A.; et al. Clinical Experience with Ceftazidime-Avibactam for the Treatment of Infections due to Multidrug-Resistant Gram-Negative Bacteria Other than Carbapenem-Resistant Enterobacterales. Antibiotics 2020, 9, 71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mascolo, A.; Scavone, C.; Ferrajolo, C.; Rafaniello, C.; Danesi, R.; Del Re, M.; Russo, A.; Coscioni, E.; Rossi, F.; Alfano, R.; et al. Immune Checkpoint Inhibitors and Cardiotoxicity: An Analysis of Spontaneous Reports in Eudravigilance. Drug Saf. 2021, 44, 957–971. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kassa Alemu, B.; Biru, T.T. Health Care Professionals’ Knowledge, Attitude, and Practice towards Adverse Drug Reaction Reporting and Associated Factors at Selected Public Hospitals in Northeast Ethiopia: A Cross-Sectional Study. Biomed. Res. Int. 2019, 2019, 8690546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Güner, M.D.; Ekmekci, P.E. Healthcare professionals’ pharmacovigilance knowledge and adverse drug reaction reporting behavior and factors determining the reporting rates. J. Drug Assess. 2019, 8, 13–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Medicines Agency. Guideline on Good Pharmacovigilance Practices (GVP). Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/guideline-good-pharmacovigilance-practices-gvp-module-vi-collection-management-submission-reports_en.pdf (accessed on 11 September 2023).
- Santoro, A.; Genov, G.; Spooner, A.; Raine, J.; Arlett, P. Promoting and Protecting Public Health: How the European Union Pharmacovigilance System Works. Drug Saf. 2017, 40, 855–869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strich, J.R.; Ricotta, E.; Warner, S.; Lai, Y.L.; Demirkale, C.Y.; Hohmann, S.F.; Rhee, C.; Klompas, M.; Palmore, T.; Powers, J.H.; et al. Pharmacoepidemiology of Ceftazidime-Avibactam Use: A Retrospective Cohort Analysis of 210 US Hospitals. Clin. Infect. Dis. 2021, 72, 611–621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Inácio, P.; Cavaco, A.; Airaksinen, M. The value of patient reporting to the pharmacovigilance system: A systematic review. Br. J. Clin. Pharmacol. 2017, 83, 227–246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sternbach, N.; Leibovici Weissman, Y.; Avni, T.; Yahav, D. Efficacy and safety of ceftazidime/avibactam: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2018, 73, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Montravers, P.; Bassetti, M.; Klyasova, G.; Daikos, G.; Irani, P.; Stone, G.; Chambers, R.; Peeters, P.; Shah, M.; et al. The Use and Effectiveness of Ceftazidime-Avibactam in Real-World Clinical Practice: EZTEAM Study. Infect. Dis. Ther. 2023, 12, 891–917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J. Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Wang, J.; Wang, R.; Cai, Y. Resistance to ceftazidime-avibactam and underlying mechanisms. J. Glob. Antimicrob. Resist. 2020, 22, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2016, 63, 1615–1618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santevecchi, B.A.; Smith, T.T.; MacVane, S.H. Clinical experience with ceftazidime/avibactam for treatment of antibiotic-resistant organisms other than Klebsiella pneumoniae. Int. J. Antimicrob. Agents. 2018, 51, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Habarugira, J.M.V.; Figueras, A. Pharmacovigilance network as an additional tool for the surveillance of antimicrobial resistance. Pharmacoepidemiol. Drug Saf. 2021, 30, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Guo, Y.; Ji, Y.; Wang, B.; Zhou, K. Epidemiology and Mechanisms of Ceftazidime–Avibactam Resistance in Gram-Negative Bacteria. Engineering 2022, 11, 138–145. [Google Scholar] [CrossRef]
- Vintila, B.I.; Arseniu, A.M.; Butuca, A.; Sava, M.; Bîrluțiu, V.; Rus, L.L.; Axente, D.D.; Morgovan, C.; Gligor, F.G. Adverse Drug Reactions Relevant to Drug Resistance and Ineffectiveness Associated with Meropenem, Linezolid, and Colistin: An Analysis Based on Spontaneous Reports from the European Pharmacovigilance Database. Antibiotics 2023, 12, 918. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization. 2021 AWaRe Classification. Available online: https://www.who.int/publications/i/item/2021-aware-classification (accessed on 11 September 2023).
- European Medicines Agency. Advice on Implementing Measures Under Article 37(4) of Regulation (EU) 2019/6 on Veterinary Medicinal Products–Criteria for the Designation of Antimicrobials to Be Reserved for Treatment of Certain Infections in Humans. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/advice-implementing-measures-under-article-374-regulation-eu-2019/6-veterinary-medicinal-products-criteria-designation-antimicrobials-be-reserved-treatment-certain_en.pdf (accessed on 11 September 2023).
- O’Neill, J. Antimicrobial Resistance: Tackling a crisis for the Health and Wealth of Nations. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 11 September 2023).
- Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020. ECDC Technical Report. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Health-burden-infections-antibiotic-resistant-bacteria.pdf (accessed on 11 September 2023).
- European Medicines Agency Scientific Guideline, I.C.H. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e2dr1-guideline-post-approval-safety-data-step-2b-revision-1_en.pdf (accessed on 13 March 2024).
All ICSRs a 654 (%) | |
---|---|
Sex | |
Male | 378 (57.8) |
Female | 213 (32.6) |
Not Specified | 63 (9.6) |
Age group | |
Pediatrics (<18 Years) | 30 (4.6) |
Adult (18–64 Years) | 230 (35.2) |
Elderly (65–85 Years) | 211 (32.2) |
Very Elderly (>85 Years) | 48 (7.3) |
Not Specified | 135 (20.7) |
Primary source qualification | |
Healthcare Professional | 563 (86.1) |
Non-Healthcare Professional | 91 (13.9) |
Primary source country for regulatory purposes | |
European Economic Area | 331 (50.6) |
Non-European Economic Area | 323 (49.4) |
Report Type | |
Spontaneous | 654 (100.0) |
Non-Spontaneous | 0 (-) |
Adverse Events | |
Total Number | 1467 |
Mean AE b per ICSR (±SD) c | 2.2 (±1.99) |
Suspected drug(s) other than ceftazidime/avibactam | |
0 | 464 (70.9) |
1 | 83 (12.7) |
2 | 49 (7.5) |
3 | 19 (2.9) |
4 | 14 (2.1) |
≥5 | 25 (3.9) |
Number of AE a 1467 (%) | |
---|---|
Seriousness | |
Not Serious | 291 (19.8) |
Serious | 1176 (80.2) |
Seriousness Criteria | |
Other Medically Important Condition | 539 (45.8) |
Caused/Prolonged Hospitalisation | 344 (29.2) |
Results in Death | 207 (17.6) |
Life Threatening | 74 (6.3) |
Disabling | 12 (1.1) |
Congenital Anomaly | 0 (-) |
Outcome b | |
Recovered/Resolved | 308 (21.0) |
Recovering/Resolving | 205 (14.0) |
Fatal | 166 (11.3) |
Not Recovered/Not Resolved | 87 (5.9) |
Recovered/Resolved With Sequelae | 4 (0.3) |
Unknown | 697 (47.5) |
Adverse Event Duration, Days, Mean (±SD) c | 9.02(16.4) |
System Organ Classes and Preferred Terms | N. of Adverse Events (%) * | |
---|---|---|
General disorders and administration site conditions | N = 232 | |
Drug ineffective | 44 | (19.0) |
Drug resistance | 27 | (11.6) |
Pyrexia | 22 | (9.5) |
Death | 20 | (8.6) |
Condition aggravated | 19 | (8.2) |
Multiple organ dysfunction syndrome | 13 | (5.6) |
Treatment failure | 8 | (3.4) |
Infections and infestations | N = 188 | |
Pathogen resistance | 45 | (23.9) |
Septic shock | 14 | (7.4) |
Pneumonia | 9 | (4.8) |
Sepsis | 9 | (4.8) |
Klebsiella infection | 9 | (4.8) |
Pseudomonas infection | 6 | (3.2) |
Investigations | N = 185 | |
Platelet count decreased | 31 | (16.8) |
Blood creatinine increased | 15 | (8.1) |
Blood bilirubin increased | 8 | (4.3) |
Alanine aminotransferase increased | 6 | (3.2) |
White blood cell count decreased | 6 | (3.2) |
Nervous system disorders | N = 143 | |
Encephalopathy | 21 | (14.7) |
Seizure | 18 | (12.6) |
Coma | 10 | (7.0) |
Depressed level of consciousness | 10 | (7.0) |
Myoclonus | 8 | (5.6) |
Epilepsy | 6 | (4.2) |
Tremor | 6 | (4.2) |
Altered state of consciousness | 6 | (4.2) |
Injury, poisoning and procedural complications | N = 138 | |
Off label use | 71 | (51.4) |
Product use issue | 22 | (15.9) |
Product use in unapproved indication | 12 | (8.7) |
Skin and subcutaneous tissue disorders | N = 130 | |
Rash | 30 | (23.1) |
Erythema | 17 | (13.1) |
Pruritus | 14 | (10.8) |
Rash maculo-papular | 11 | (8.5) |
Rash erythematous | 8 | (6.2) |
Urticaria | 8 | (6.2) |
Rash pruritic | 4 | (3.1) |
Drug eruption | 4 | (3.1) |
Blood and lymphatic system disorders | N = 77 | |
Thrombocytopenia | 21 | (27.3) |
Eosinophilia | 11 | (14.3) |
Neutropenia | 8 | (10.4) |
Anaemia | 6 | (7.8) |
Haemolytic anaemia | 5 | (6.5) |
Agranulocytosis | 4 | (5.2) |
Myelosuppression | 4 | (5.2) |
Leukopenia | 3 | (3.9) |
Renal and urinary disorders | N = 77 | |
Acute kidney injury | 22 | (28.6) |
Renal failure | 17 | (22.1) |
Renal impairment | 17 | (22.1) |
Hepatobiliary disorders | N = 57 | |
Hepatic function abnormal | 11 | (19.3) |
Drug-induced liver injury | 9 | (15.8) |
Cholestasis | 9 | (15.8) |
Hepatic cytolysis | 7 | (12.3) |
Jaundice | 3 | (5.3) |
Hepatocellular injury | 3 | (5.3) |
Mixed liver injury | 3 | (5.3) |
Liver injury | 3 | (5.3) |
Hepatitis | 2 | (3.5) |
Hepatic failure | 2 | (3.5) |
Gastrointestinal disorders | N = 54 | |
Diarrhoea | 14 | (25.9) |
Melaena | 5 | (9.3) |
Gastrointestinal haemorrhage | 4 | (7.4) |
Dysbiosis | 4 | (7.4) |
Nausea | 3 | (5.6) |
Vomiting | 3 | (5.6) |
Ascites | 2 | (3.7) |
Rectal haemorrhage | 2 | (3.7) |
Pancreatitis acute | 2 | (3.7) |
Faeces discoloured | 2 | (3.7) |
Haematemesis | 2 | (3.7) |
All ICSRs a N= 129 (%) | ICSRs DR b N = 69 (%) | ICSRs DI c N = 54 (%) | ICSRs DR/DI N = 6 (%) | |
---|---|---|---|---|
Gender | ||||
Male | 66 (51.1) | 28 (40.6) | 33 (61.1) | 5 (83.3) |
Female | 37 (28.7) | 19 (27.5) | 17 (31.5) | 1 (16.7) |
Not Specified | 26 (20.2) | 22 (31.9) | 4 (7.4) | 0 (-) |
Age group | ||||
Pediatrics (<18 Years) | 5 (3.9) | 1 (1.4) | 4 (7.4) | 0 (-) |
Adult (18–64 Years) | 49 (38.0) | 23 (33.4) | 23 (42.6) | 3 (50.0) |
Elderly (65–85 Years) | 28 (21.7) | 16 (23.2) | 10 (18.5) | 2 (33.3) |
Very Elderly (>85 Years) | 4 (3.1) | 1 (1.4) | 3 (5.5) | 0 (-) |
Not Specified | 43 (33.3) | 28 (40.6) | 14 (26.0) | 1 (16.7) |
Outcome d | ||||
Recovered/Resolved | 11 (8.5) | 5 (7.2) | 5 (9.3) | 1 (16.7) |
Recovering/Resolving | 6 (4.6) | 4 (5.8) | 2 (3.7) | 0 (-) |
Fatal | 29 (22.5) | 7 (10.1) | 21 (38.9) | 1 (16.7) |
Not Recovered/Not Resolved | 0 (-) | 0 (-) | 0 (-) | 0 (-) |
Recovered/Resolved With Sequelae | 0 (-) | 0 (-) | 0 (-) | 0 (-) |
Unknown | 83 (64.4) | 53 (76.9) | 26 (48.1) | 4 (66.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cagnotta, C.; Zinzi, A.; Gargano, F.; Liguori, V.; Campitiello, M.R.; Perrella, A.; Capuano, A.; Rafaniello, C.; Trama, U. Can Pharmacovigilance Data Represent a Potential Tool for Early Detection of the Antibiotic Resistance Phenomenon? Pharmacoepidemiology 2024, 3, 350-364. https://doi.org/10.3390/pharma3040024
Cagnotta C, Zinzi A, Gargano F, Liguori V, Campitiello MR, Perrella A, Capuano A, Rafaniello C, Trama U. Can Pharmacovigilance Data Represent a Potential Tool for Early Detection of the Antibiotic Resistance Phenomenon? Pharmacoepidemiology. 2024; 3(4):350-364. https://doi.org/10.3390/pharma3040024
Chicago/Turabian StyleCagnotta, Cecilia, Alessia Zinzi, Francesca Gargano, Valerio Liguori, Maria Rosaria Campitiello, Alessandro Perrella, Annalisa Capuano, Concetta Rafaniello, and Ugo Trama. 2024. "Can Pharmacovigilance Data Represent a Potential Tool for Early Detection of the Antibiotic Resistance Phenomenon?" Pharmacoepidemiology 3, no. 4: 350-364. https://doi.org/10.3390/pharma3040024
APA StyleCagnotta, C., Zinzi, A., Gargano, F., Liguori, V., Campitiello, M. R., Perrella, A., Capuano, A., Rafaniello, C., & Trama, U. (2024). Can Pharmacovigilance Data Represent a Potential Tool for Early Detection of the Antibiotic Resistance Phenomenon? Pharmacoepidemiology, 3(4), 350-364. https://doi.org/10.3390/pharma3040024