The State of the Art in Post-Mortem Redistribution and Stability of New Psychoactive Substances in Fatal Cases: A Review of the Literature
Abstract
:1. Introduction
1.1. Drug Properties That Determine Postmortem Redistribution
1.2. Postmortem Changes: General Considerations
2. Methodology
- Phenylethylamines (PEAs)
- ○
- Alpha and phenyl-substituted phenylethylamines.
- ▪
- “Classical phenylethylamines derivatives”, “DOX series”, “2C-X series”, “NBOMes” and “benzofuranethylamines type”.
- ▪
- Aminoindanes.
- ▪
- Diarylalkylamines—Diphenidines.
- ○
- Cathinones (β-oxo-substituted phenethyl-amines).
- Phenmetrazines.
- Piperazines.
- Phenidates.
- Arylcyclohexylamines (phencyclidines).
- Lysergamides.
- Tryptamines.
- Designer benzodiazepines.
- Synthetic opioids.
- Nitazenes.
- Synthetic cannabinoids.
3. Results and Discussion
3.1. Phenylethylamines
3.1.1. Alpha and Phenyl-Substituted Phenylethylamines
3.1.1.1. “Classical Phenylethylamines Derivatives”, “DOx Series”, “2C-X Series”, “NBOMes” and “Benzofuranethylamines Type”
- Postmortem Levels in Fatal Case Reports
- Tissue Distribution and PMR
3.1.1.2. Aminoindanes
- Postmortem Levels in Fatal Case Reports and PMR
Classification | NPS | pKa | logP | Age and Sex | Cause of Death | PMI | Samples Collected | Extraction Method | Analytical Technique | Results | C/P or L/P Ratios | Other Toxicological Findings | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenyl-substituted PEAs | MDDM or MDDA | 9.90 * | 2.35 * | 31-year-old man | fatal MDMA overdose | Advanced state of putrefaction | b, ur, gc, bile, pericardial fluid, pleural fluid, liver, lung, kidney, muscle | LLE | LC-MS/MS | FB: 2.5 ng/mL HB: 11.6 ng/mL | C/P = 4.6 | MDMA: 13,500 ng/mL | De Letter E.A. et al. (2007) [40] |
25C-NBOMe | 9.05 * | 3.79 * | teenager, male | Drowning | Unknown | b, ur | SPE | GC-MS: screening LC-MS/MS | PB: 2.80 ng/mL CB: 1.43 ng/mL | C/P = 0.51 | THC: 15.5 ng/mL; THCCOH: 56.0 ng/mL | Morini L. et al. (2017) [41] | |
25H-NBOMe | 9.11 * | 3.23 * | PB: 0.29 ng/mL CB: 0.13 ng/mL | C/P = 0.44 | |||||||||
25I-NBOMe | 9.07 * | 4.59 * | 19-year-old man | Skull fractures with contusions of brainstem and lacerations after falling from balcony | Unknown + 7 h (autopsy) | b, vh, ur, bil, gc, liver, brain | SPE | LC-MS/MS | PB: 0.405 ng/mL HB: 0.410 ng/mL L: 5.640 ng/g | C/P = 1.01 L/P = 13.9 | --- | Poklis J.L. et al. (2013) [42] | |
25C-NBOMe | 9.05 * | 3.79 * | 22-year-old man | Fatal overdose of 25C-NBOMe | 12 h at hospital postingestion + 48 h (autopsy) | b, vh,ur, gc, liver | alkaline LLE | LC-QTOF: screening; LC-MS/MS (Q) | FB: 0.60 ng/mL L: 0.82 ng/g | L/P = 1.4 | Amphetamine: 470 ng/mL, THC: 1.5 ng/mL, THCCOOH: 8.9 ng/mL, amiodarone: 120 ng/mL, acetominophene: 5000 ng/mL, fentanyl: 0.47 ng/mL, ketamine: 120 ng/mL, midazolam: <6 ng/mL, diazepam: 99 ng/mL, nordiazepam:12 ng/mL, quetiapine: 13 ng/ mL | Andreasen M.F. et al. (2015) [43] | |
2C-T-7 | 9.9 * | 2.37 * | 20-year-old man | Toxicity associated with 2C-T-7 | 90 min after insufflating + unknow h (autopsy) 1 year for analysis | b, vh,ur, liver | LLE | GC-MS, GC-NPD | FB: 100 ng/mL HB: 57 ng/mL L: 854 ng/g | C/P = 0.5 L/P = 8.5 | --- | Curtis B. et al. (2003) [44] | |
5-APB | 10.1 * | 1.21 * | ---, male | 5-APB and 6-APB intoxication | 4 days after the discovery of the corpse | b, vh, ur, gc, bile,liver, kidney, lung, muscle | PP | LC-MS/MS | FB: 850 ng/mL HB: 2400 ng/mL L: 6900 ng/g | C/P = 2.8 L/P = 8.1 | --- | Hofmann V. et al. (2022) [45] | |
6-APB | 10.1 * | 1.29 * | FB: 300 ng/mL HB: 660 ng/mL L: 1600 ng/g | C/P = 2.2 L/P = 5.3 | |||||||||
5-APB | 10.1 * | 1.21 * | 20-year-old man | Acute 5-APB intoxication | Unknown + 9 h (autopsy) | b, vh, ur, gc, liver | SPE | GC-MS | PB: 2500 ng/mL CB: 2900 ng/mL L: 16,000 ng/g | C/P = 1.2 L/P = 6.4 | 5-APDB (presumptively identified) | McIntyre I.M. et al. (2015) [46] | |
2-MAPB | 9.4 * | 1.69 * | 23-year-old man | Multidrug intoxication | Unknown | b, ur, bile, gc, liver | Unknown | LC-MS/MS | FB: 7300 ng/mL HB: 16,700 ng/mL L: 22,200 ng/ g | C/P = 2.3 L/P = 3.0 | 2C-B: (only in urine), flephedrone: 8 ng/mL, diazepam: 20 ng/mL, nordiazepam: 10 ng/mL, temazepam: 5 ng/mL, THC: 44 ng/mL, THCCOOH: 67 ng/mL | Theofel N. et al. (2021) [47] | |
2-MAPB | 9.4 * | 1.69 * | 27-year-old male | Drug intoxication | t1 = 11 h after death | b, ur, bile, adipose, kidney, liver, lung, heart muscle, spleen, cerebellum | LLE | LC-MS/MS | FB: ca. 13 ng/mL HB: ca. 19 ng/mL | C/P = 1.5 | MDAI | Staeheli S.N. et al. (2017) [56] | |
t2 = 29 h after death | FB: ca. 15 ng/mL HB: ca. 17 ng/mL | C/P = 1.1 | |||||||||||
Aminoindanes | MDAI | 9.58 * | 1.1 * | 27-year-old male | Drug intoxication | t1 = 11 h after death | b,ur, bile, adipose, kidney, liver, lung, heart muscle, spleen, cerebellum frontal lobe | LLE | LC-MS/MS | FB: ca. 18 ng/mL HB: ca. 22 ng/mL | C/P = 1.2 | 2-MAPB | Staeheli S.N. et al. (2017) [56] |
t2 = 29 h after death | FB: ca. 22 ng/mL HB: ca. 19 ng/mL | C/P = 0.9 | |||||||||||
Diaryl alkylamines | DPH | 9.33 * | 4.7 * | 30-year-old man | Poisoning by multiple drugs | 3.5 days (1.5 days after death death + 2 days autopsy) | b, ur, bile, lung,adipose, kidney, liver, ,pancreas, brain, spleen, heart muscle | QuEChERS | LC-MS/MS | FB: 715 ng/mL HB: 923 ng/mL L: 2960 ng/g | C/P = 1.3 L/P = 4.1 | AB-CHMINACA (detected in adipose, kidney, liver, lung, pancreas, brain)and 5F-AMB (detected only in adipose tissue) | Hasegawa K. et al. (2014) [57] |
DPH | 9.33 | 4.7 * | aprox 30, female | Poisoning by 3 types of cathinone drugs and diphenidine under the influence of 3 benzodiazepines and alcohol. | 4 days after the estimated time of death (autopsy) | b, ur, gc | QuEChERS | GC-MS: screening LC-MS/MS (Q) | FB: 1380 ng/mL HB: 1680 ng/mL | C/P = 1.2 | 4-MeO-PV8: 2690 ng/mL, PV9: 743 ng/mL, 4-MeO-PV9: 261 ng/mL, triazolam: 14 ng/mL, flunitrazepam: 2 ng/mL, nitrazepam: 8 ng/mL, α-hydroxytriazolam:22 ng/mL, 7-aminoflunitrazepam: 137 ng/mL, and 7-aminonitrazepam: 826 ng/mL, alcohol: 1.52 mg/mL | Kudo K. et al. (2015) [58] | |
Cathinones | 3-MMC | 7.97 * | 1.76 * | 32-year-old man | 3-MMC intoxication | Unknown | b, vh, ur, bile | SPE | GC-MS, HPLC-DAD; GC-MS/MS | PB: 249 ng/mL CB: 609 ng/mL | C/P = 2.4 | --- | Bottinelli C. et al. (2017) [59] |
Mephedrone | 7.97 * | 1.76 * | 50-year-old man | Mephedrone fatal intoxication in a subject with existing cardiovascular disease | 48 h after death (autopsy) | b, ur, bile, liver, lung, kidney, hair | PP+SPE | LC-MS/MS | FB: 1088 ng/mL HB: 1632 ng/mL L: 1080 ng/g | C/P = 1.5 L/P = 1.0 | Cocaine: 52 ng/mL and benzoylecgonine: 994 ng/mL | Palazzoli F. et al. (2021) [60] | |
Normephedrone | 8.07 * | 1.24 * | FB: 47.1 ng/mL HB: 50.2 ng/mL L: 9.5 ng/g | C/P = 1.1 L/P = 0.2 | |||||||||
Mephedrone-M (dihydro-) | 9.36 * | 1.87 * | FB: 15.5 ng/mL HB: 49.2 ng/mL L: 169.2 ng/g | C/P = 3.2 L/P = 10.9 | |||||||||
Methedrone | 8.00 * | 1.15 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | IB: 70 ng/mL AB: 79 ng/mL | C/P = 1.1 | --- | Glicksberg L. et al. (2018) [3] | |
4-MEC | 8.0 * | 2.1 * | 35-year-old man | 4-MEC intoxication | Unknown | b, vh, bile, gc | LLE | GC-MS/MS | PB: 14,600 ng/mL CB: 43,400 ng/mL | C/P = 2.9 | Hydroxyzine: 160 ng/ mL | Braham M.Y. et al. (2021) [61] | |
MPHP | 7.7 * | 3.78 * | 39-year-old man | Non-specific and moderate asphyxic syndrome with bilateral pulmonary and pericerebral edema | Death 24 and 72 h before the body-lift examination + 2 days (autopsy) | b, ur, nasal swabs, gastric liquid and bile | LLE | GC-MS: screening LC-MS/MS | FB: 47 ng/mL HB: 97 ng/mL | C/P = 2 | Alcohol in CB: 0.5 g/L THC: 1.4 ng/mL, THCCOOH: 6.6 ng/mL, 4′-carboxi-PHP (metabolite) | Benedicte, L. et al. (2020) [62] | |
N-ethyl-4′-methyl-norpentedrone | 8.03 * | 3.01 * | FB: 1.6 ng/mL HB: 3.5 ng/mL | C/P = 2.2 | |||||||||
Pyrovalerone | 7.69 * | 3.36 * | 33-year-old man | Autoerotic asphyxia | Unknown | b, vh, bile brain, liver | LLE | LC-MS/MS | FB: 42 ng/mL HB: 59 ng/mL L: 124 ng/g | C/P = 1.4 L/P = 2.9 | Pentylone, amphetamine <50 ng/mL, MDPV (urine) | Marinetti L.J. et al. (2013) [63] | |
3,4-DMMC | 7.98 * | 2.25 * | 26-year-old man | Acute poisoning caused by NPS | Unknown | b, ur, gc, liver | PP | GC-MS: screening LC-MS/MS | FB: 500 ng/mL HB: 1500 ng/mL L: 20,000 ng/g | C/P = 3.0 L/P = 40.0 | Heliomethylamine, MDMA, fluorofentanyl, THC | Strehmel N. et al. (2017) [64] | |
4-methoxy-PV8 (4-MeO-PV8) | 7.72 * | 3.58 * | aprox 30, male | Acute poisoning by “bath salts”containing acetylfentany and 4-methoxy-PV8 | Unknown | b, ur, gc | QuEChERS | GC-MS: screening LC-MS/MS (Q) | FB: 389 ng/mL HB: 960 ng/mL | C/P = 2.5 | Acetylfentanyl: 153 ng/mL, 7-aminonitrazepam: 200 ng/mL, Phenobarbital: 7700 ng/mL, methylphenidate: 30 ng/mL, chlorpromazine (<LOQ) and risperidone (<LOQ) | Yonemitsu K. et al. (2016) [65] | |
4-MeO-PV8 | 7.72 * | 3.58 * | aprox 30, female | Poisoning by 3 types of cathinone drugs and diphenidine under the influence of 3 benzodiazepines and alcohol. | 4 days after the estimated time of death (autopsy) | b, ur, gc | QuEChERS | GC-MS: screening LC-MS/MS (Q) | FB: 2690 ng/mL LHB: 5680 ng/mL RHB: 5360 ng/mL | C/P = 2.1 | DPH: 1380 ng/ mL, triazolam: 14 ng/mL, flunitrazepam: 2 ng/mL, nitrazepam: 8 ng/mL, α-hydroxytriazolam:22 ng/mL, 7-aminoflunitrazepam: 137 ng/mL, and 7-aminonitrazepam: 826 ng/mL, alcohol: 1.52 mg/mL | Kudo K. et al. (2015) [58] | |
4-MeO-PV9 | 7.73 * | 4.0 * | FB: 261 ng/mL LHB: 799 ng/mL RHB:641 ng/mL | C/P = 3.0 | |||||||||
PV9 | 7.69 * | 4.1 * | FB: 743 ng/mL LHB: 3130 ng/mL RHB: 2790 ng/mL | C/P = 4.2 | |||||||||
Methylone | 7.92 * | 1.06 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | FB: 2 ng/mL AB: 3 ng/mL | C/P = 1.5 | --- | Glicksberg L. et al. (2018) [3] | |
Methylone | 7.92 * | 1.06 * | NA | NA | NA | b, ur, liver | SPE | LC–Q-TOF-MS | SB: 20 ng/mL AB: 48 ng/mL L: 61 ng/g | C/P = 2.4 L/P = 3.1 | --- | ||
Methylone | 7.92 * | 1.06 * | NA | NA | NA | b | SPE | LC–Q-TOF-MS | FB: 4 ng/mL AB: 14 ng/mL | C/P = 3.4 | --- | ||
Methylone | 7.92 * | 1.06 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | FB: 3 ng/mL AB: 20 ng/mL | C/P = 6.1 | --- | ||
Methylone | 7.92 * | 1.06 * | NA | NA | NA | b, liver | SPE | LC–Q-TOF-MS | IB: 28 ng/mL AB: 119 ng/mL L: 1110 ng/g | C/P = 4.2 L/P = 40 | --- | ||
Methylone | 7.92 * | 1.06 * | 23-year-old man | Methylone intoxication | Unknown | b, vh, uri, gc, liver | LLE | GC-MS | FB: 560 ng/mL HB: 580 ng/mL L: 880 ng/g | C/P = 1.0 L/P = 1.6 | Alcohol: 0.03 g/dL, midazolam: 20 ng/mL, fentanyl: 2.1 ng/mL, lorazepam: 29 ng/mL (hospital) | Pearson J.M. et al. (2013) [66] | |
23-year-old man | Cardiac arrest | 24 h after admission + unknown h (autopsy) | b, vh, uri, gc, | Iliac blood: 840 ng/mL HB: 1000 ng/mL | C/P = 1.2 | Dextromethorphan (<0.02 ng/mL), cotinine, caffeine and lidocaine | |||||||
Methylone | 7.92 * | 1.06 * | 21-year-old man | Mixed drug intoxication | 19 h approximately | b, vh, ur, bile, liver, heart, kidney | LLE | GC-MS | FB: 500 ng/mL L: 1470 ng/g | L/P = 2.9 | Oxymorphone: 106 ng/ mL, ethanol: 130 mg/dL, cocaine (traces in urine) | Shimomura E.T. et al. (2016) [67] | |
Methylone | 7.92 * | 1.06 * | 19-year-old man | Cardiac arrest associated with methylone | Unknown | b, ur, bile, liver, spleen, kidney | LLE | GC-MS | PB: 670 ng/mL CB: 740 ng/mL L: 1800 ng/g | C/P = 1.1 L/P = 2.7 | --- | Cawrse B.M. et al. (2012) [68] | |
Methylone | 7.92 * | 1.06 * | 58-year-old man | Acute methylone intoxication | Unknown | b, hv, ur, gc, bile, lier | SPE | GC-MS | PB: 11,900 ng/mL CB: 15,300 ng/mL L: positive | C/P = 1.4 | --- | Lightfoot C. et al. (2014) [69] (abstract only) | |
Butylone | 7.93 * | 1.54 * | Unknown | Unknown | Unknown | b, ur, liver | SPE | LC–Q-TOF-MS | IB: 8 ng/mL AB: 6 ng/mL L: 116 ng/g | C/P = 0.7 L/P = 14 | --- | Glicksberg L. et al. (2018) [3] | |
Butylone | 7.93 * | 1.54 * | 21-year-old man | Multi organ failure resulting from malignant serotonin syndrome | 4 h hospital before deah + 24 h autops | b, liver | SPE | LC-MS/MS | FB: 20,000 ng/mL L: 33,000 ng/g | L/P = 1.6 | --- | Rojek S. et al. (2012) [70] | |
MDPV | 7.63 * | 2.65 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | FB: 80 ng/mL AB: 80 ng/mL | C/P = 1 | --- | Glicksberg L. et al. (2018) [3] | |
MDPV | 7.63 * | 2.65 * | 47-year-old man | Multiple drug intoxication; accident | Unknown | b, vh, ur, bile, liver, CSF, brain | LLE | GC-MS: screening LC-MS/MS | PB: 162 ng/mL HB: 280 ng/mL L: 3720 ng/g | C/P = 1.7 L/P = 22.9 | Oxymorphone: 43 ng/mL, diazepam: 313 ng/L, nordiazepam: 494 ng/mL, temazepam: 33 ng/mL, diphenhydramine: 80 ng/g | Marinetti L.J. et al. (2013) [64] | |
43-year-old female | Multiple drug intoxication; accident | Unknown | blood, brain, liver, bile, vh, CSF | LLE | GC-MS: screening LC-MS/MS | PB: 18 ng/mL HB: 28 ng/mL L: 52 ng/g | C/P = 1.6 L/P = 2.9 | Fentanyl: 8 ng/mL, norfentanyl: <1 ng/mL, trazodone: 540 ng/mL, gabapentin: 6800 ng/mL, norvenlafaxine: 220 ng/mL, tramadol: <50 ng/mL, diazepam: 301 ng/mL, nordiazepam: 281 ng/mL | |||||
32-year-old man | Natural | Unknown | blood, brain, liver, bile, vh, CSF | LLE | GC-MS: screening LC-MS/MS | PB: 36 ng/mL HB: 56 ng/mL L: 668 ng/g | C/P = 1.6 L/P = 18.6 | Citalopram: 200 ng/mL, trazodone: 50 ng/mL, JWH-122: positive, JWH-210: positive | |||||
32-year-old man | Hanging, suicide | Unknown | b, vh, ur, bile, liver, CSF, brain | LLE | GC-MS: screening LC-MS/MS | PB: 102 ng/mL HB: 133 ng/mL L: 256 ng/g | C/P = 1.3 L/P = 2.5 | Chlorpheniramine: <50 ng/mL, dextromethorphan: 60 ng/mL | |||||
51-year-old man | Multiple drug intoxication | Unknown | b, vh, liver | LLE | GC-MS: screening LC-MS/MS | FB: 129 ng/mL L: 388 ng/g | L/P = 3.0 | Bupropion/Metab: 24/216 ng/mL, morphine: 40 ng/mL, oxycodone, 20 ng/mL, diazepam: 303 ng/mL, nordiazepam: 229 ng/mL | |||||
24-year-old man | Hanging, suicide | Unknown | b, vh, bile, liver, brain | LLE | GC-MS: screening LC-MS/MS | FB: 640 ng/mL L: 6080 ng/g | L/P = 9.5 | --- | |||||
Ethylone | 7.94 * | 1.4 * | NA | NA | NA | b, ur, liver | SPE | LC–Q-TOF-MS | IB: 780 ng/mL AB: 872 ng/mL L: 170 | C/P = 1.1 L/P = 0.2 | --- | Glicksberg L. et al. (2018) [3] | |
Ethylone | 7.94 * | 1.4 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | IB: 10 ng/mL HB: 5 ng/mL | C/P = 0.5 | --- | ||
Ethylone | 7.94 * | 1.4 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | FB: 19 ng/mL CB: 19 ng/mL | C/P = 1.0 | --- | ||
Ethylone | 7.94 * | 1.4 * | NA | NA | NA | b | SPE | LC–Q-TOF-MS | FB: 298 ng/mL AB: 2740 ng/mL | C/P = 9.2 | --- | ||
Ethylone | 7.94 * | 1.4 * | NA | NA | NA | b, ur, liver | SPE | LC–Q-TOF-MS | FB: 69 ng/mL AB: 193 ng/mL L: 116 ng/g | C/P = 2.8 L/P = 1.7 | --- | ||
Ethylone | 7.94 * | 1.4 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | IB: 59 ng/mL AB: 146 ng/mL | C/P = 2.5 | --- | ||
Ethylone | 7.94 * | 1.4 * | 30-year-old man | Mixed ethylone, heroin, and alprazolam intoxication | 24-after discovery of the corpse (autopsy) | b, vh, ur, gc, liver | PP+SPE | GC-MS | PB: 390 ng/mL CB: 380 ng/mL L: 1400 ng/g | C/P = 0.9 L/P = 3.6 | Morphine: 50 ng/mL, alprazolam: <50 ng/mL, THC: <1 ng/mL, THCCOOH: 3.6 ng/mL, naproxen | McIntyre I.M. et al. (2015) [71] | |
Pentylone | 7.94 * | 1.96 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | IB: 160 ng/mL AB: 323 ng/mL | C/P = 2.0 | --- | Glicksberg L. et al. (2018) [3] | |
N-Ethyl pentylone | 7.96 * | 2.30 * | NA | Natural | Unknown | b, vh, ur, bile, liver, kidney | LLE | GC-NPD GC-MS | SB: 130 ng/mL HB: 130 ng/mL L: >500 ng/g | C/P = 1.0 L/P = 3.8 | --- | Poston A. et al. (2017) [72] (abstract only) | |
7.96 * | 2.30 * | NA | Mixed-drug intoxication | Unknown | b, vh, liver, kidney | LLE | GC-NPD GC-MS | FB: 300 ng/mL HB: 390 ng/mL L: 430 ng/g | C/P = 1.3 L/P = 1.4 | Fentanyl and Meth adone | |||
7.96 * | 2.30 * | NA | Mixed-drug intoxication | Unknown | b, liver | LLE | GC-NPD GC-MS | SB: 40 ng/mL HB: 50 ng/mL L: 180 ng/g | C/P = 1.2 L/P = 4.5 | Morphine, Furanyl fentanyl, 4-FIBF, DPF | |||
7.96 * | 2.30 * | NA | N-ethylpentylone intoxication | Unknown | b, vh, ur | LLE | GC-NPD GC-MS | FB: 13 ng/mL HB: 16 ng/mL | C/P = 1.2 | Morphine, Furanyl fentanyl, 4-FIBF, DPF | |||
Pentedrone | 7.98 * | 2.18 * | 28-year-old man | Multiple drug toxicity associated with α-PVP and pentedrone use | Unknown | b, gc, liver, kidney, brain | LLE | LC-MS/MS | FB: 8.794 ng/mL L: 100.044 ng/g | L/P = 11.2 | OH-α-PVP | Sykutera M. et al. (2015) [73] | |
α-PVP | 7.67 * | 2.87 * | FB: 901 ng/mL L: 2610 ng/g | L/P = 2.9 | |||||||||
4-MPD | 8.00 * | 2.67 * | 57-year-old man | Combination of drugs of abuse (4-MPD and cocaine), plus benzodiazepine | 24-after discovery of the corpse (autopsy) | b, vh, ur, bile, and nasal swabs | PP+ SPE | GC-MS | FB: 1285 ng/mL CB: 1128 ng/ mL | C/P = 0.9 | Cocaine: 66 ng/mL, benzoylecgonine: 2084 ng/mL, sildenafil: <1 ng/mL, bromazepam: 140 ng/mL, nevirapine (positive) | Cartiser N. et al. (2021) [74] | |
N-Propyl-pentedrone | 8.02 * | 3.01 * | 29-year-old woman | Acute respiratory distress | Unknown | b, vh, liver, kidney, brain | LLE | LC-MS/MS | PB: 3200 ng/mL L: 5900 ng/g | L/P = 1.8 | --- | Majchrzak M. et al. (2018) [75] | |
α-PBP | 7.66 * | 2.46 * | 21-year-old man | Subarachnoid hemorrhage | 2 days after death (autopsy) | b, ur, gc, CSF, liver, lung, kidney, spleen, pancreas | QuEChERS | LC-MS/MS | FB: 55.2 ng/mL HB: 68.3 ng/mL L: 82.6 ng/g | C/P = 1.2 L/P = 1.5 | Caffeine: 349 ng/mL, acetominophen: 752 ng/mL | Wurita A. et al. (2014) [76] | |
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | FB: 30 ng/mL AB: 15 ng/mL | C/P = 0.5 | --- | Glicksberg L. et al. (2018) [3] | |
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b | SPE | LC–Q-TOF-MS | IB: 8 ng/mL AB: 8 ng/mL | C/P = 1 | --- | ||
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | IB: 234 ng/mL AB: 218 ng/mL | C/P = 0.9 | -- | ||
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | IB: 2 ng/mL AB: 3 ng/mL | C/P = 1.5 | --- | ||
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | IB: 21 ng/mL AB: 41 ng/mL | C/P = 1.9 | --- | ||
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b, liver | SPE | LC–Q-TOF-MS | FB: 208 ng/mL AB: 224 ng/mL Liver: <60 ng/g | C/P = 1.1 L/P = <0.3 | --- | ||
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b, liver | SPE | LC–Q-TOF-MS | IB: 1020 ng/mL AB: 1090 ng/mL Liver: <60 ng/g | C/P = 1.1 L/P = <0.1 | --- | ||
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b, ur, liver | SPE | LC–Q-TOF-MS | FB: 44 ng/mL AB: 58 ng/mL Liver: <60 | C/P = 1.3 L/P = <1.4 | --- | ||
α-PVP | 7.67 * | 2.87 * | NA | NA | NA | b, ur | SPE | LC–Q-TOF-MS | FB: 84 ng/mL HB: 79 ng/mL | C/P = 0.9 | --- | ||
α-PVP | 7.67 * | 2.87 * | 28-year-old man | Intoxication with α-PVP with subsequent cardiac arrest | <5 h after death (autopsy) | b, ur, gc, liver, kidney | LLE | LC-MS/MS | PB (carotid): 174 ng/mL L: 190 ng/g | L/P = 1.1 | --- | Potocka-Banaś B. et al. (2017) [77] | |
α-PVP | 7.67 * | 2.87 * | 41-year-old man | α-PVP poisoning | 40 h after death (autopsy) | b, ur, gc, liver, kidney | SPE | LC-MS/MS | FB: 654 ng/mL LHB: 442 ng/mL RHB: 458 ng/mL L: 681 ng/g | C/P = 0.7 L/P = 1.0 | --- | Hasegawa K. et al. (2014) [78] | |
OH-α-PVP (dihydrometab) | 9.07 * | 2.98 * | FB: 364 ng/mL LHB: 311 ng/mL RHB: 298 ng/mL L: 1080 ng/g | C/P = 0.8 L/P = 2.9 | |||||||||
α-PiHP | 7.68 * | 3.20 * | 37-year-old man | Fatal intoxication with α-PiHP | ∼48 h after death (autopsy) | b, vh, gc, bile, CSF, liver, brain, spleen, lung, adipose, heart,kidney, thyroid, pancreas | LLE | LC-MS/MS | FB: 2377 ng/mL HB: 1133 ng/mL L: 504 ng/g | C/P = 0.5 L/P = 0.2 | --- | Wachholz P. et al. (2023) [79] | |
OH-α-PiHP (dihydrometab) | 9.08 * | 3.31 * | FB: 223 ng/mL HB: 28 ng/mL L: 310 ng/g | C/P = 0.1 L/P = 1.4 | |||||||||
Flephedrone (4-FMC) | 7.90 * | 1.44 * | 23-year-old man | Multidrug intoxication | Unknow | b, ur, bile, gc, liver | Unknown | LC-MS/MS | FB: 8 ng/mL HB: 3 ng/mL L: 3 ng/g | C/P = 0.4 L/P = 0.4 | 2-MAPB: 7300 ng/mL, 2C-B (urine), diazepam: 20 ng/mL, nordiazepam: 10 ng/mL, temazepam: 5 ng/mL, THC: 44 ng/mL, THCCOOH: 67 ng/mL | Theofel N. et al. (2021) [47] | |
3-Methyl-4-fluoro-PVP | 7.62 * | 3.52 * | 30-year-old man | Fluoro-methyl-PVP toxicity | Unknown | b, vh | SPE | GC-MS | FB: 26 ng/mL HB: 30 ng/mL | C/P = 1.1 | --- | Hobbs J.M. et al. (2022) [80] | |
4-FMC | 7.90 * | 1.44 * | male, in his 20 s | Acute poisoning with a combination of 4-FMC, 4-MeO-α-PVP, 4-F-α- PVP, and PV8 | 48–60 h after death (autopsy) | b | SPE | LC-LIT-MS; GC-MS | FB/HB: 397/365 ng/mL | C/P = 0.9 | --- | Mochizuki A. et al. (2021) [81] | |
4-MeO-α-PVP | 7.72 * | 2.75 * | FB/HB: 383/449 ng/mL | C/P = 1.2 | |||||||||
4-F-α-PVP | 7.62 * | 3.03 * | FB/HB: 127/145 ng/mL | C/P = 1.1 | |||||||||
PV8 | 7.68 * | 3.71 * | FB/HB: 167/218 ng/mL | C/P = 1.3 |
3.1.1.3. Diarylalkylamines—Diphenidines
- Postmortem Levels in Fatal Case Reports and PMR
3.1.2. Cathinones (β-oxo-Substituted Phenethyl-Amines)
- Postmortem Levels in Fatal Case Reports
- Tissue Distribution and PMR
3.2. Phenmetrazines
- Postmortem Levels in Fatal Case Reports and PMR
3.3. Piperazines
Classification | NPS | pKa | logP | Age and Sex | Cause of Death | PMI | Samples Collected | Extraction Method | Analytical Technique | Results | C/P or L/P Ratios | Other Toxicological Findings | Classification |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenmetrazines | 3-FPM | 7.8 | 1.66 * | 34-year-old man | Multiple drug-toxicity | Unknown | b, vh, ur | LLE | GC/MS LC–MS/MS | FB: 2400 ng/mL CB: 2600 ng/mL | C/P = 1.1 | Amitriptyline: 440 ng/mL, nortriptyline: 290 ng/mL, methamphetamine: <40 ng/mL, amphetamine:70 ng/mL, diazepam: 200 ng/mL, nordiazepam: 180 ng/mL, temazepam: 11 ng/mL, flubromazolam: positive, delorazepam: positive, U-47700: 360 ng/mL | Ellefsen K.N. et al. (2017) [124] |
3-FPM | 7.8 | 1.66 * | 27-year-old man | Positional asphyxia promoted by poly-drug intoxication arising from designer benzodiazepines and the presence of synthetic stimulants | ≥ 4 and ≤10 days before autopsy | b, pericardial fluid, ur, bile, gc, CSF, liver, kidney, lung, muscle, brain | ITSP-SPE® | HPLC-DAD LC–MS/MS | FB: 10 ng/mL HB: 9 ng/mL L: 160 ng/g | C/P = 0.9 L/P = 16 | Pyrazolam: 28 ng/mL, diclazepam: 1 ng/L, delorazepam: 100 ng/mL, lormetazepam: 6 ng/mL, lorazepam: 22 ng/mL, 2-FMA (urine), 2-FA (aprox 28 ng/mL), methiopropamine (aprox 2.2 ng/mL), amphetamine (aprox 21), diphenhydramine (urine). | Lehmann S. et al. (2019) [125] | |
Phenidates | MPH | 8.9 | 1.5 * | 62-year-old woman | acute MPD intoxication | Unknown (known to be alive 3 days prior to death) | b, vh, liver | SPE | GC-NPD, GC-MS | PB: 1100 ng/mL CB: 980 ng/mL L: 3690 ng/g | C/P = 0.9 L/P = 3.3 | --- | Cantrell F.L. et al. (2014) [127] |
Arylcyclohexyl amines | 2-oxo-PCE | 7.4 * | 2.24 * | 52-year-old man | Multidrug intoxication | Unknown | b, ur, gc, bile, liquor | SPE | LC-MS/MS | FB: 375 ng/mL HB: 2159 ng/mL L: 6137 ng/g | C/P = 5.8 L/P = 16.4 | Venlafaxine: 200 ng/mL, O-desmethylvenlafaxine: 50 ng/mL, N-desmethylvenlafaxine:40 ng/mL | Theofel N. et al. (2019) [128] |
4-MeO-PCP | 9.4 * | 4.01 * | 54-year-old man | Acute mixed drug intoxication | Unknown + 25 h after he was found (autopsy) | b, liver | LLE | LC-MS/MS | FB: 8200 ng/mL CB: 14,000 ng/mL L: 120,000 ng/g | C/P = 1.7 L/P = 15 | 4-Hydroxy-N-methyl-N-ethyltryptamine, venlafaxine (510 ng/mL), olanzapine (420 ng/mL), lorazepam (50 ng/mL) and hydroxyzine (detected) in the PB | McIntyre I.M. et al. (2015) [129] | |
Tryptamines | 5-API or 5-IT | 10.3 * | 1.22 * | 25-year-old man | Toxic effects of 5-IT. | Unknown | b, vh, ur, gc | LLE | HPLC-DAD | FB: 800 ng/mL HB: 1200 ng/mL | C/P = 1.5 | MDMA: <80 ng/mL | Seetohul L.N. et al. (2013) [130] |
25-year-old woman | Toxic ‘cocktail effects’ of the drugs | b, vh, ur | FB: 900 ng/mL HB: 2600 ng/mL | C/P = 2.9 | Methylone, not quantitated, 6-APB in FB: <80 ng/mL | ||||||||
22-year-old man | Toxic effects of the drugs, with the role of epilepsy being indeterminate | b, vh, ur | FB: 400 ng/mL HB: 800 ng/mL | C/P = 2.0 | 6-APB: 200 ng/mL in FB | ||||||||
25-year-old woman | ‘Cocktail effect’ of the drugs | b, vh, ur | FB:300 ng/ mL HB: 400 ng/ mL | C/P = 1.3 | Amphetamine: 400 ng/mL (FB), MDMA: 1500 ng/mL (FB), 4-methyl-N-ethylcathione,MDA, benzylpiperazine and 6-APB | ||||||||
N,N-Dipropyl tryptamine | 10.06 * | 3.45 * | 18-year-old male | Mixed-drug intoxication | Unknown | b, vh, ur, gc, bile, liver, kidney | LLE | GC-NPD GC-MS | FB:1200 ng/mL HB: 1300 ng/mL L: 4500 ng/g | C/P = 1.1 L/P = 3.7 | Bupropion: 0.08 mg/L Citalopram: 0.5 mg/L | Timko C. et al. (2019) [131] (abstract only) | |
Mitragynine | 7.3 | 1.73 | 24-year-old man | Mixed-drug intoxication—primarily mitragynine | An autopsy was performed 29.5 h after death | b, vh, ur, gc | PP + SPE | GC/MS | PB: 230 ng/mL CB: 190 ng/mL L: 430 ng/g | C/P = 0.8 L/P = 1.9 | Venlafaxine: 1100 ng/mL,O-desmethylvenlafaxine: 1600 ng/mL, diphenhydramine: 450 ng/mL, mirtazapine: 240 ng/mL, ethanol 0.02% | McIntyre I.M. et al. (2015) [132] | |
32-year-old | Acute mitragynine intoxication combined with cardiomegaly with left ventricular hypertrophy, with severe hepatomegaly and obesity | The autopsy was performed 50 h after death | b, vh, ur, liver, brain, gc | PP | LC-QTOF: screening LC-MS/MS | FB: 3300 ng/mL CB: 7500 ng/mL L: 42,200 ng/g | C/P = 2.3 L/P = 12.8 | 7-Hydroxymitragynine detected in cardiac blood | Mata D.C. et al. (2023) [133] | ||||
Designer Benzodiazepines | Phenazepam | 2.2 – 11.2 | 3.57 * | NA | Acute and chronic drug and alcohol abuse | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 57 ng/mL HB: 100 ng/mL | C/P = 1.7 | Mirtazapine, desmethylmirtazapine, EDDP, methadone, aloxone, atropine, acetone | Crichton M.L. et al. (2015) [134] |
NA | Adverse effects of heroin and amphetamine. | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 148 ng/mL HB: 310 ng/mL | C/P = 2.1 | Paracetamol, nicotine, diazepam, nordiazepam, oxazepam, temazepam, codeine, morphine, morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G), noscapine, papaverine | |||||
NA | Chronic alcoholism | Unknown | b, vh, ur, liver, muscle, brain | LLE | LC-MS/MS | FB: 38 ng/mL HB: 41 ng/mL L: 382 ng/g | C/P = 1.1 L/P = 10.0 | Dihydrocodeine, M3G, M6G, Ethanol | |||||
NA | Hanging | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 90 ng/mL HB: 138 ng/mL | C/P = 1.5 | Citalopram, desmethylcitalopram, ethanol | |||||
NA | Adverse effects of heroin, methadone and buprenorphine | Unknown | b, vh, ur, liver, muscle, brain | LLE | LC-MS/MS | FB: 9 ng/mL HB: 14 ng/mL L: 125 ng/g | C/P = 1.6 L/P = 13.9 | Nicotine, cotinine, levamisole, cocaine, benzoylecgonine, codeine, paracetamol, mirtazapine, caffeine, noscapine, papaverine, methadone, EDDP, fluoxetine, nordiazepam, diazepam, morphine, buprenorphine, M3G, M6G | |||||
NA | No anatomical cause (posible drug related) | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 310 ng/mL HB: 390 ng/mL | C/P = 1.2 | Naloxone, methadone, EDDP, diazepam, nordiazepam, temazepam, ibuprofen metabolite | |||||
NA | No anatomical cause(possible choking on food bolus | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 164 ng/mL HB: 132 ng/mL | C/P = 0.8 | Mirtazapine, desmethylmirtazapine, diazepam, nordiazepam, temazepam, ethanol | |||||
NA | Adverse effects of methadone and aspiration pneumonia | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 176 ng/mL HB: 194 ng/mL | C/P = 1.1 | Diazepam, nordiazepam, temazepam, oxazepam, methadone, EDDP, mirtazapine, desmethylmirtazapine, gabapentin | |||||
NA | Adverse effects of methadone | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 71 ng/mL HB: 95 ng/mL | C/P = 1.3 | Citalopram, desmethylcitalopram, methadone, EDDP, diazepam, nordiazepam | |||||
NA | Acuteadverse effects of methadone | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 232 ng/mL HB: 191 ng/mL | C/P = 0.8 | Paracetamol, methadone, EDDP, diazepam, nordiazepam, temazepam, citalopram, desmethylcitalopram | |||||
NA | Cor Pulmonale and adverse effects of methadone | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 80 ng/mL HB: 37 ng/mL | C/P = 0.5 | Trazadone, methadone, EDDP, diazepam, nordiazepam, oxazepam, temazepam | |||||
NA | Acute and chronic adverse effects of heroin | Unknown | b, vh, ur, liver, muscle, brain | LLE | LC-MS/MS | FB: 370 ng/mL HB: 287 ng/mL L: 807 ng/g | C/P = 0.8 L = 2.2 | Paracetamol, noscapine, papaverine, methadone, EDDP, nordiazepam, diazepam, temazepam, 4-MEC, codeine, morphine, M3G, M6G | |||||
NA | Pulmonary thromboembolism | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 97 ng/mL HB: 74 ng/mL | C/P = 0.8 | Naloxone, DHC, mirtazapine, desmethylmirtazapine, EDDP, methadone, diazepam, nordiazepam, oxazepam temazepam, morphine, M3G, M6G | |||||
NA | Adverse effects of morphine and diazepam | Unknown | b, vh, ur, liver, muscle, brain | LLE | LC-MS/MS | FB: 18 ng/mL CB: 30 ng/mL L: 99 ng/g | C/P = 1.7 L = 5.5 | Mirtazapine, desmethylmirtazapine, diazepam, nordiazepam oxazepam, temazepam, morphine, M3G, M6G, codeine | |||||
NA | Adverse effects of methadone | Unknown | b, vh, ur, liver, muscle, brain | LLE | LC-MS/MS | FB: 126 ng/mL HB: 181 ng/mL L: 2125 ng/g | C/P = 1.4 L = 16.8 | Acetone, EDDP, methadone, diazepam, nordiazepam | |||||
NA | Methadone and morphine intoxication associated with aspiration bronchopneumonia | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 19 ng/mL HB: 15 ng/mL | C/P = 0.8 | Morphine, M3G, M6G, methadone, EDDP, diazepam, nordiazepam | |||||
NA | Adverse effects of heroin, diazepam and amitriptyline | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 28 ng/mL HB: 77 ng/mL | C/P = 2.7 | Paracetamol, amitriptyline, nortriptyline, 6-acetylcodeine, mirtazapine, noscapine, papaverine, diazepam, nordiazepam, oxazepam, temazepam, naloxone, codeine, morphine, M3G, M6G | |||||
NA | Tramadol toxicity | Unknown | b, vh, ur | LLE | LC-MS/MS | FB: 54 ng/mL HB: 67 ng/mL | C/P = 1.2 | Paracetamol, tramadol, O-desmethyltramadol, quetiapine and metabolites, mirtazapine | |||||
Phenazepam | 2.19–11.21 | 3.57 * | NA | Phenazepam and opiate toxicity | Unknown | b, ur | LLE | LC-MS/MS | FB: 960 ng/mL HB: 1430 ng/mL | C/P = 1.5 | 3-hydroxyphenazepam, nicotine, naloxone, promazine and metabolites, morphine, M3G, M6G, diazepam, nordiazepam, temazepam | ||
3-hydroxy-phenazepam | 11.6 * | 3.91 * | FB: 230 ng/mL HB: 280 ng/mL | C/P = 1.2 | |||||||||
Phenazepam | 2.19–11.21 | 3.57 * | NA | Phenazepam toxicity | Unknown | b, ur | LLE | LC-MS/MS | FB: 960 ng/mL HB: 1240 ng/mL | C/P = 1.3 | 3-hydroxyphenazepam, diazepam, nordiazepam, DHC, M6G, nicotine | ||
3-hydroxy-phenazepam | 11.6 * | 3.91 * | FB: 270 ng/mL HB: 321 ng/mL | C/P = 1.2 | |||||||||
Flualprazolam | 2.27 | 4.39 * | 21-year-old man | CNS and respiratory depression with agonal aspiration of stomach contents | Unknown | Serum antemortem serum cardiac, b, ur, gc, liver, kidney, brain | LLE | LC-MS/MS | SA: 37 ng/mL FB: 21.9 ng/mL SC: 25.4 ng/mL | B/S = 0.86 | Bromazepam: 9.4 ng/mL, amphetamine: 28 ng/mL tilidine: 86 ng/mL, nortilidine: 250 ng/mL, naloxone: 4.9 ng/mL, GHB: <2.5 mg/L, THCCOOH: <5 ng/mL | Giorgetti A. et al. (2022) [135] | |
Etizolam | 4.55–18.16 | 4.06 | 49-year-old man | Acute toxic effects of etizolam and caffeine | Unknown | b, ur, hair | SPE | GC/MS, HPLC-DAD | FB: 770 ng/mL HB: 2820 ng/mL | C/P = 3.7 | Caffeine: 190 mg/L, THCCOOH: 192 ng/mL (urine), ethanol 0.19% | Kolbe V. et al. (2020) [136] | |
27-year-old woman | Acute polydrug toxicity of fentanyl, cocaine, and ethanol with a contributing factor of methamphetamine presence | 1 week | b, vh | PP | LC-MS/MS | PB: 237 ng/mL HB: 813 ng/mL | C/P = 3.4 | Ethanol: 0.12 ng/mL, fentanyl: 21 ng/mL, norfentanyl: postive, alprazolam: 282 ng/mL, nordiazepam: positive, cocaine: 302 ng/mL, benzoylecgonine and cocaethylene: positive, methamphetamine: positive, diphenhydramine: positive | Gevorkyan J. et al. (2021) [137] | ||||
34-year-old man | Mixed-drug intoxication | 1 h | b | PP | LC-MS/MS | PB: 9 ng/mL HB: <5 ng/mL | C/P = <0.5 | Ethanol: 0.23 ng/mL, 6-MAM: 11 ng/mL, morphine: 185 ng/mL, codeine: positive, hydrocodone: positive, diphenhydramine: positive, citalopram: positive, nordiazepa: positive, desalkylfurazepam: positive | |||||
34-year-old man | Mixed-drug intoxication | 1 day | b, ur | PP | LC-MS/MS | PB: 15 ng/mL HB: 15 ng/mL | C/P = 1 | Alprazolam: 179 ng/mL, α-OH-alprazolam: positive, diazepam and nordiazepam: positive, 7-amino-clonazepam: positive, fentanyl: positive, methamphetamine: posive, chlorpheniramine: positive | |||||
Flubromazolam | --- | 4.66 * | 30-year-old man | Acute mixed-drug intoxication of fentanyl, benzodiazepine, and ethanol | 1 day | b, vh, ur | PP | LC-MS/MS | PB: 619 ng/mL HB: 878 ng/mL | C/P = 1.4 | Ethanol: 0.02 ng/mL, fentanyl: 17 ng/mL, norfentanyl: positive, methamphetamine and amphetamine: positive, lorazepam: positive, delorazepam: positive flualprazolam: positive, alprazolam: positive | Gevorkyan J. et al. (2021) [137] | |
Etizolam | 4.55–18.16 | 4.06 | PB: 187 ng/mL HB: 214 ng/mL | C/P = 1.1 | |||||||||
Etizolam | 4.55–18.16 | 4.06 | Unknown | Accidental multiple-drug intoxication | Unknown | b, hv | LLE+SPE | LC-MS/MS | FB: 351 ng/mL HB: 549 ng/mL | C/P = 1.6 | NA | Miller C. et al. (2014) [138] (abstract only) | |
Unknown | Accidental multiple-drug intoxication | Unknown | b | FB: 16 ng/mL HB: 30 ng/mL | C/P = 1.9 | NA | |||||||
Diclazepam | 2.3 | 3.53 * | 27-year-old man | Poly-drug intoxication | ≥4 and ≤10 days before autopsy | b, ur, gc, bile, CSF, liver, kidney, lung brain, muscle | SPE (blood) QuEChERS (liver) | LC-MS/MS | FB: 1 ng/mL HB: 1 ng/mL L: 34 ng/g | C/P = 1 L/P = 34 | Lormetazepam: 6 ng/mL, lorazepam: 22 ng/mL 3-Fluorofenmetrazine: 10 ng/mL, 2-Fluoroanfetamine: aprox 89 ng/mL, amphetamine: aprox 21 ng/mL methiopropamine: aprox 2.2 ng/mL, diphenhydramine (urine) | Lehmann S. et al. (2019) [125] | |
Delorazepam | 2.05–12.3 | 3.30 * | FB: 100 ng/mL HB: 250 ng/mL L: 640 ng/g | C/P = 2.5 L/P = 6.4 | |||||||||
Pyrazolam | 3.3 | 3.59 * | FB: 28 ng/mL HB: 28 ng/mL L: 92 ng/g | C/P = 1 L/P = 3.3 |
- Postmortem Levels in Fatal Case Reports
3.4. Phenidates
- Postmortem Levels in Fatal Case Reports and PMR
3.5. Arylcyclohexylamines (Phencyclidines)
- Postmortem Levels in Fatal Case Reports and PMR
3.6. Lysergamides
- Postmortem Levels in Fatal Case Reports
3.7. Tryptamines
- Postmortem Levels in Fatal Case Reports and PMR
3.8. Designer Benzodiazepines
- Postmortem Levels of Designer Benzodiazepines in Fatal Case Reports and PMR
3.9. Synthethic Opioids
- Postmortem Levels in Fatal Case Reports
- Tissue Distribution and PMR
3.10. Nitazenes
Classification | NPS | pKa | logP | Age and Sex | Cause of Death | PMI | Samples Collected | Extraction Method | Analytical Technique | Results | C/P or L/P Ratios | Other Toxicological Findings | Classification |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Synthethic Opioids | 3-methyl-fentanyl | 9.08 | 4.3 | 31-year-old woman | Acute intoxication by 3-methylfentanyl, accident | Unknown | b, vh | SPE | LC-MS/MS | FB: 1.7 ng/mL HB: 2.6 ng/mL | C/P = 1.5 | Naloxone,cotinine, pseudoephedrine: 620 ng/mL, norpseudoephedrine: 22 ng/mL diazepam: <20 ng/mL, nordiazepam: <20 ng/mL | Sofalvi S. et al. (2017) [235] |
Acetyl-fentanyl | 9.0 | 3.5 | approx. 30, male | Acute poisoning by “bath salts”containing acetylfentany and 4-methoxy-PV8 | Unknown | b, ur, gc | QuEChERS | GC-MS: LC-MS/MS (Q) | FB: 153 ng/mL HB: 239 ng/mL | C/P = 1.5 | 4-Mehoxy-PV8, 7-aminonitrazepam, phenobarbital, methylphenidate, chlorpromazine and risperidone | Yonemitsu K. et al. (2016) [65] | |
Acetyl-fentanyl | 9.0 | 3.5 | 54-year-old man | Unknown | Unknown | b, vh | SPE | LC-MS/MS | FB: 2.2 ng/mL HB: 7.2 ng/g | C/P = 3.3 | Fentanyl: 35 ng/mL Norfentanyl: 0.53 ng/mL THC: 5.9 ng/mL 11-OH-THC: 1.1 ng/mL THC-COOH: 42 ng/mL | Sofalvi S. et al. (2017) [235] | |
Acetyl-fentanyl | 9.0 | 3.5 | 24-year-old man | Acetylfentanyl intoxication, accident | ~12 h + 25 h after he was found (autopsy) | b, vh, ur liver, | LLE | GC–MS | PB: 260 ng/mL HB: 250 ng/mL L: 1 ng/g | C/P = 0.96 L/P = 0.004 | --- | McIntyre I.M. et al. (2015) [243] | |
Acetyl-fentanyl | 9.0 | 3.5 | 44-year-old man | Acute butyr-fentanyl, acetyl fentanyl, and cocaine intoxication | ~3 h + ∼18 h after he was found (autopsy) | b, ur, liver, | LLE | GC–MS | PB: 38 ng/mL HB: 32 ng/mL L: 110 ng/g | C/P = 0.84 L/P = 2.9 | Butyrfentanyl: 58 ng/mL, benzoylecgonine: 0.08 mg/L, levamisole:positive | McIntyre I.M. et al. (2016) [244] | |
Acetyl-fentanyl | 9.0 | 3.5 | 46-year-old man | Intoxication by heroin, fentanyl, acetyl fentanyl, and cocaine | Unknown | b, vh, ur, bile liver, brain | LLE | GC–MS | PB: 9 ng/mL HB: 26 ng/mL L: 180 ng/g | C/P = 2.9 L/P = 20 | Acetylnorfentanyl: 2 ng/mL, morphine (free): 30 ng/mL, morphine (total): 60 ng/mL, 6-acetylmorphine: positive, fentanyl: 21 ng/mL, norfentanyl: 3 ng/mL, cocaine: 70 ng/mL, benzoylecgonine: 970 ng/mL | Poklis J. et al. (2015) [245] Pearson J. et al. (2016) [246] | |
9.0 | 3.5 | 39-year-old man | Intoxication by heroin, fentanyl, and acetyl fentanyl | Unknown | b, vh, ur, bile liver, brain | LLE | GC–MS | PB: 12 ng/mL HB: 6 ng/mL L: 29 ng/g | C/P = 0.5 L/P = 2.4 | Fentanyl, norfentanyl, 6-MAM | |||
9.0 | 3.5 | 41-year-old man | Intoxication by heroin, fentanyl, acetyl fentanyl, and alprazolam | Unknown | b, vh, ur, bile liver, brain | LLE | GC–MS | PB: 6 ng/mL HB: 2 ng/mL L: 36 ng/g | C/P = 0.3 L/P = 6 | acetylnorfentanyl: 1 ng/mL, morphine (free): <20 ng/mL, morphine (total): <20 ng/mL, 6-acetylmorphine:positive, alprazolam: 30 ng/mL, fentanyl: 19 ng/mL, norfentanyl: 8 ng/mL | |||
9.0 | 3.5 | 55-year-old man | Intoxication by acetyl fentanyl and oxycodone | Unknown | b, vh, ur, bile liver, brain | LLE | GC–MS | PB: 310 ng/mL HB: 700 ng/mL L: 690 ng/g | C/P = 2.2 L/P = 2.2 | Acetylnorfentanyl: 63 ng/mL, oxycodone: 80 ng/mL, oxymorphone (total): 20 ng/mL, alprazolam: <20 ng/mL | |||
9.0 | 3.5 | 26-year-old woman | Intoxication by acetyl fentanyl and morphine | Unknown | b, vh, bile liver, brain | LLE | GC–MS | PB: 400 ng/mL HB: 400 ng/mL L: 1800 ng/g | C/P = 1.0 L/P = 4.5 | Acetylnorfentanyl: 3 ng/mL, morphine (free): 30 ng/mL, morphine (total): 70 ng/mL | |||
9.0 | 3.5 | 30-year-old man | Intoxication by acetyl fentanyl and alprazolam | Unknown | b, vh, ur, bile liver, brain | LLE | GC–MS | PB: 560 ng/mL HB: 980 ng/mL L: 1200 ng/g. | C/P = 1.7 L/P = 2.1 | Acetylnorfentanyl: 2 ng/mL, alprazolam: 20 ng/mL | |||
9.0 | 3.5 | 28-year-old man | Intoxication by acetyl fentanyl and alprazolam | Unknown | b, vh, ur, bile liver, brain | LLE | GC–MS | PB: 600 ng/mL HB: 670 ng/mL L: 1900 ng/g | C/P = 1.1 L/P = 3.2 | Acetylnorfentanyl: 36 ng/mL, alprazolam: 230 ng/mL | |||
Acetyl-fentanyl | 9.0 | 3.5 | 20-year-old man | Acute acetyl fentanyl toxicity | Unknown | b, vh, ur, gc, bile, liver, brain | LLE | GC-MS | FB: 192 ng/mL HB: 285 ng/mL L: 1100 ng/g | C/P = 1.5 L/P = 5.7 | Fentayl, fluoxetine, methoxetamine | Fort C. et al. (2016) [247] | |
Acetyl-fentanyl | 9.0 | 3.5 | 50-year-old woman | Acute acetyl fentanyl toxicity | Unknown | b, vh, ur, gc, bile, liver, brain | LLE | GC-MS | FB: 255 ng/mL HB: 210 ng/mL | C/P = 1.5 | Venlafaxine: 2000 ng/mL, chlordiazepoxide and nordiazepam | ||
Acetyl-fentanyl | 9.0 | 3.5 | 45-year-old female | Intoxication by the combined effects of butyrylfentanyl, acetylfentanyl, alprazolam, and ethanol | Unknown | B, vh, ur, gc, bile, liver, brain | LLE | GC/MS LC–MS/MS | PB: 21 ng/mL HB: 95 ng/mL L: 160 ng/g | C/P = 4.5 L/P = 7.6 | Acetylfentanyl: 21 ng/mL Acetylnorfentanyl: <1 ng/mL Alprazolam:40 ng/mL | Poklis J. et al. (2016) [248] | |
Butyrfentanyl | 8.8 | 4.3 | 44-year-old man | Acute butyr-fentanyl, acetyl fentanyl and cocaine intoxication | ~3 h + ~18 h after he was found (autopsy | b, ur, liver | LLE | GC-MS | PB: 58 ng/mL HB: 97 ng/mL L: 320 ng/g | C/P = 1.7 L/P = 5.5 | Acetyl-Fentanyl: 38 ng/mL Benzoylecgonine: 0.08 mg/L Levamisole: positive | McIntyre I.M. et al. (2016) [244] | |
Butyrfentanyl | 8.8 | 4.3 | 53-year-old female | Fatal intoxication by butyrfentanyl | Unknown | b, vh, ur, gc, bile, liver, brain | LLE | GC/MS LC–MS/MS | PB: 99 ng/mL HB: 220 ng/mL L: 41 ng/g | C/P = 2.2 L/P = 0.4 | --- | Poklis J. et al. (2016) [248] | |
45-year-old female | Intoxication by the combined effects of butyrylfentanyl, acetylfentanyl, alprazolam, and ethanol, | PB: 3.7 ng/mL HB: 9.2 ng/mL L: 39 ng/g | C/P = 2.5 L/P = 10.5 | Acetylfentanyl: 21 ng/mL Acetylnorfentanyl: <1 ng/mL Alprazolam: 40 ng/mL Ethanol: 1.1 g/L | |||||||||
Butyrfentanyl | 8.8 | 4.3 | 23-year-old male | Most probably intoxication with butyrfentanyl | 9 h after death | b, ur, gc, liver, brain, hair, muscle, spleen | LLE | LC–MS/MS | FB: 66 ng/mL HB: 39 ng/mL L: 57 ng/g | C/P = 0.6 L/P = 0.8 | Benzoylecgonine: <LoQ (1.25 ng/mL) Midazolam: <LoQ (11 ng/mL) Hydroxymidazolam: 1.0 ng/mL | Staeheli S.N. et al. (2016) [249] | |
4-Fluoro butyryl-fentanyl | 8.7 | 4.0 | 26-year-old man | Acute intoxication | Unknown | b, ur, gc, liver, kidney, brain b, ur, liver, kidney | SPE | LC-MS/MS | B (unspecific): 91 ng/mL L: 902 ng/g | L/P = 9.9 | --- | Rojkiewicz M. et al. (2017) [250] | |
25-year-old woman | Acute intoxication | B (unspecific): 112 ng/mL L: 136 ng/g | L/P = 1.2 | --- | |||||||||
Carfentanyl | 8.0 | 3.7 | 31-year-old female | Acute intoxication by the combined effects of carfentanil, heroin, benzodiazepinas, and cyclobenzaprine | Unknown | b | SPE | LC–MS/MS | FB: 0.36 ng/mL HB: 1.9 ng/mL | C/P = 5.3 | Fentanyl: <1 ng/mL, morphine: 88 ng/mL, codeine: <10 ng/mL, 6-acetylmorphine: <4 ng/mL, clonazepam: 19 ng/mL, oxazepam: 22 ng/mL, temazepam: 110 ng/mL, cyclobenzaprine: 100 ng/mL | Sofalvi S. et al. (2017) [235] | |
Carfentanyl | 8.0 | 3.7 | 37-year-old male | Unknown | Unknown | b | LLE | LC–MS/MS | FB: 0.50 ng/mL HB (right): 0.57 ng/mL CB (aorta): 1.05 ng/mL | C/P = 2.1 | Noscapine:positive, cannabinoids: positive, sertraline:positive, paracetamol:positive | Elliott S.P. et al. (2018) [251] | |
Cyclopropyl fentanyl | 9.0 * | 3.86 * | 29-year-old man | Polyintoxication | Unknown | b, ur | PP | LC–MS/MS | FB: 0.10 ng/mL HB: 0.15 ng/mL | C/P = 1.5 | Alprazolam, quetiapine, gabapentin, duloxetine, methoxyacetyl, fentanyl: 14 ng/mL, p-fluoroisobutyrylfentanyl (FIBF): 27 ng/mL, 4-ANPP: 9.7 ng/mL | Garneau B. et al. (2020) [252] | |
Fluoro-fentanyl | 8.7 * | 4.0 * | 34-year-old man | Poisoning by fluorofentanyl: suicide | Unknown | b, vh, ur, gc, bile, liver | SPE | GC/MS LC–MS/MS | FB: 30 ng/mL HB: 30 ng/mL L: 80 ng/g | C/P = 1.0 L/P = 2.7 | Amitriptyline:positive, opipramol:positive, nordiazepam:positive, amphetamine: positive, THC-COOH:positive | Strehmel N. et al. (2017) [63] | |
33-year-old woman | Poisoning by fluorofentanyl: suicide | Unknown | b, ur | FB: 30 ng/mL HB: 40 ng/mL L: 20 ng/g | C/P = 1.3 L/P = 0.7 | nicotine:positive, caffeine: positive, amitriptyline:positive, opipramol:positive | |||||||
p-Fluoro iso butyryl fentanyl (FiBF) | 9.0 * | 4.0 | 29-year-old man | Polyintoxication | Unknown | b, ur | PP | LC–MS/MS | FB: 27 ng/mL HB: 31 ng/mL | C/P = 1.1 | Alprazolam, quetiapine, gabapentin, duloxetine, methoxyacetyl, fentanyl: 14 ng/mL, cyclopropylfentanyl: 0.10 ng/mL, 4-ANPP: 9.7 ng/mL | Garneau B. et al. (2020) [252] | |
p-Fluoro iso butyryl fentanyl (FiBF) | 9.0 * | 4.0 | 33-year-old man | Unknown | Unknown | b, vh, ur, gc, bile, liver, brain, kidney | LLE | LC–MS/MS | B (unspecific): 109 ng/mL L: 1400 ng/g | L/P = 12.8 | N-Ethylpentylone: 64.7 ng/mL, amphetamine: 4.1 ng/mL | Zawadzki M. et al. (2021) [253] | |
9.0 * | 4.0 | 38-year-old man | Unknown | Unknown | b, vh, ur, gc, bile, liver, brain, kidney | LLE | LC–MS/MS | B (unspecific): 76.1 ng/mL L: 1620 ng/ g | L/P = 21.3 | N-Ethylpentylone: 95.7 ng/mL, amphetamine: 3.0 ng/mL | |||
9.0 * | 4.0 | 38-year-old man | Unknown | Unknown | b, vh, ur, bile, liver, brain, kidney | LLE | LC–MS/MS | B (unspecific): 257 ng/mL L: 2040 ng/g | L/P = 7.9 | N-Ethylpentylone: 20.1 ng/mL, amphetamine: 1.9 ng/mL | |||
9.0 * | 4.0 | 22-year-old woman | Unknown | Unknown | b, vh, ur, liver, brain | LLE | LC–MS/MS | B (unspecific): 119 ng/mL L: 1540 ng/g | L/P = 12.9 | 4-CMC: 4.2 ng/mL, alpha-PiHP: 6.1 ng/mL, tramadol: 1.2 ng/mL | |||
p-Fluoro iso butyryl fentanyl (FiBF) | 9.0 * | 4.0 | 35-year-old man | 4-FiBF mono-intoxication | Unknown | blood, vh, urine, gc, liver, kidney, brain | SPE | GC/MS, HPLC-DAD LC–MS/MS | FB: 30 ng/mL HB: 120 ng/mL L: 440 ng/g | C/P = 4.0 L/P = 14.7 | --- | Roosendaal J. et al. (2023) [254] | |
Furanyl fentanyl | 9.0 * | 3.6 * | 53-year-old woman | Acute intoxication due to the combined effects of heroin, fentanyl, diphenydramine and furanylfentanyl | Unknown | b, vh | SPE | GC/MS LC–MS/MS | FB: 5.5 ng/mL HB: 8.7 ng/mL | C/P = 1.6 | Fentanyl: 1.3 ng/mL, norfentanyl: 0.34 ng/mL, morphine: <10 ng/mL, 4-ANPP: positive, nicotine: positive, cotinine: positive, diphenhydramine: <50 ng/mL | Sofalvi S. et al. (2017) [235] | |
Furanyl fentanyl | 9.0 * | 3.6 * | 30-year-old man | Multiple intoxication | Unknown | b, ur | PP | LC–MS/MS | FB: 0.89 ng/mL HB: 2.4 ng/mL | C/P = 2.7 | Clonazepam: 94 ng/mL, mehylphenidate: 15 ng/mL, THC: 18 ng/mL,THCCOOH: 32 ng/mL, THC-OH: 3.3 ng/mL, naproxen: 2.12 ng/mL, nortriptyline: 14 ng/mL, diazepam: 11 ng/mL, 4-ANPP: 18 ng/mL and U-47700: 26 ng/mL | Garneau B. et al. (2020) [252] | |
Furanyl fentanyl | 9.0 * | 3.6 * | 23-year-old man | Acute furanylfentanyl toxicty | Unknown | b, vh, ur, gc, liver | LLE | GC/MS LC–MS/MS | FB: 1.9 ng/mL HB: 2.8 ng/mL L: negative | C/P = 1.5 | Codeine: <50 ng/mL, amphetamine: <20 ng/mL, methamphetamine: <50 ng/mL, THC: 4 ng/mL, THC-COOH: 17 ng/mL, nicotine: positive, cotinine: positive, caffeine: positive | Martucci H.F.H. et al. (2018) [255] | |
4-ANPP | 9.4 * | 3.5 * | FB: 4.3 ng/mL HB: 5.8 ng/mL L: negative | C/P = 1.3 | |||||||||
Furanyl fentanyl | 9.0 * | 3.6 * | 53-year-old man | Acute intoxication Furanylfentanyl | 48 h after he was found (autopsy) | b, ur, gc, bile, CSF | SPE | LC–MS/MS | FB: 2.7 ng/mL HB: 11.8 ng/mL | C/P = 4.4 | --- | Freni F. et al. (2019) [256] | |
4-ANPP | 9.4 * | 3.5 * | FB: 50.4 ng/mL HB: 93.5 ng/mL | C/P = 1.8 | |||||||||
Synthethic Opioids | Methoxy acetyl fentanyl | 8.9 * | 2.8 * | 29-year-old man | Pneumonia secondary to drug intoxication | Unknown | b, ur | PP | LC–MS/MS | FB: 14 ng/mL HB: 70 ng/mL | C/P = 5 | Alprazolam, quetiapine, gabapentin, duloxetine, FIBF: 27 ng/mL, Cyclopropylfentanyl: 0.10 ng/mL, 4-ANPP: 9.7 ng/mL | Garneau B. et al. (2020) [252] |
Methoxy acetyl fentanyl | 8.9 * | 2.8 * | 20-year-old man | Novel synthethic opioid toxicity | 2–5 days after the death | b, gc, liver, brain, kidney | PP | LC-MS/MS | FB: 266 ng/mL CB: 450 ng/mL L: 85 ng/g | C/P = 1.7 L/P = 0.3 | Furanylfentanyl 4.3 ng/mL, 4-ANPP: 15 ng/mL, alprazolam 69 ng/mL and alpha hydroxyalprazolam: 3.2 ng/mL as well as traces of diazepam and nordazepam | Giorgetti A. et al. (2024) [257] | |
Octfentanil | 8.9 * | 3.6 * | 30-year-old woman | Asphysxia syndrome likely related to toxic origin | Unknown | b, vh, gc bile | Toxivial A® | LC–QTOF-MS | PB: 3.7 ng/mL HB:3.9 ng/mL | C/P =1 | Ethanol: 200 mg/mL Acetaminophen: 3 mg/mL Caffeine: 0.7 mg/mL Morphine: <5 ng/mL | Allibe N. et al. (2018) [258] | |
Octfentanil | 8.9 * | 3.6 * | 17-year-old man | Acute intoxication with ocfentanil | Unknown | b, ur, gc, kidney, liver, brain, bile | LLE | GC-MS HPLC-DAD LC-MS/MS | FB: 15.3 ng/mL HB: 23.3 ng/mL L: 31.2 ng/g | C/P = 1.5 L/P = 2.0 | Acetaminophen: 45 mg/mL Caffeine: 0.23 mg/mL | Coopman V. et al. (2016) [259] | |
Octfentanil | 8.9 * | 3.6 * | 24-year-old man | Acute ocfentanil intoxication | Autopsy 3 days after discovering the corpse | b, ur | LLE | LC-MS/MS | PB: 9.1 ng/mL HB: 27.9 ng/mL | C/P =3.0 | Citalopram: 130 ng/mL Quetiapine: <10 ng/mL THC: 2.8 ng/mL, THC-COOH: <5 ng/mL | Dussy F.E. et al. (2016) [260] | |
p-Fluoro furanyl fentanyl (p-FFF) | 8.99 * | 3.81 * | 52-year-old man | Synthetic opioid toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB:2.2 ng/mL CB: 6.1 ng/mL | C/P =2.8 | Naloxone, nicotine, caffeine, trazodone, lidocaine, hydroxyzine | Rodriguez Salas J. et al. (2022) [261] | |
F-4-ANPP | 9.36 * | 3.65 * | PB: 0.86 ng/mL CB: 1.8 ng/mL | C/P =2.09 | |||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 37-year-old man | Multidrug toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 2.2 ng/mL CB: 16 ng/mL | C/P =7.3 | Morphine, cocaine, BZE, cocaethylene, levamisole, nicotine, ibuprofen, lidocaine | ||
9.36 * | 3.65 * | PB:1.3 ng/mL CB: 4.1 ng/mL | C/P =3.1 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 27-year-old man | Synthetic opioid toxicity: oxycodone and ethanol toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB:3.0 ng/mL CB: 2.2 ng/mL | C/P = 0.7 | Oxycodone, oxymorphone, noroxycodone, ethanol (0.143 g/dL) | ||
9.36 * | 3.65 * | PB:2.3 ng/mL CB: 4.7 ng/mL | C/P =2.04 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 36-year-old woman | Multidrug toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 0.88 ng/mL CB: 1.5 ng/mL | C/P = 1.7 | Morphine, amphetamine, methamphetamine, ibuprofen | ||
9.36 * | 3.65 * | PB: 2.3 ng/mL CB: 3.7 ng/mL | C/P =1.61 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 40-year-old man | Synthetic opioid Toxicity: acute and chronic ethanolism | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 19 ng/mL CB: 10 ng/mL | C/P = 0.5 | ortho-Methyl-4-ANPP, ethanol (0.258 g/dL), caffeine, ibuprofen | ||
9.36 * | 3.65 * | PB: 32 ng/mL CB: 12 ng/mL | C/P =0.37 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 40-year-old man | Synthetic opioid toxicity: cocaine toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 1.8 ng/mL CB: 10 ng/mL | C/P = 5.6 | Naloxone, cocaine, cocaethy lene, alprazolam, ethanol (0.048 g/dL), caffeine, levamisole, lidocaine | ||
9.36 * | 3.65 * | PB: 1.3 ng/mL CB: 2.3 ng/mL | C/P =1.77 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 31-year-old woman | Synthetic opioid toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 1.3 ng/mL CB: 1 ng/mL | C/P = 0.77 | Naloxone, sertraline | ||
9.36 * | 3.65 * | PB: positive CB: positive | --- | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 36-year-old man | Synthetic opioid toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 0.61 ng/mL CB: 1.3 ng/mL | C/P = 2.1 | Naloxone, 7-aminoclonazepam, ethanol (0.061 g/dL), caffeine, quinine | ||
9.36 * | 3.65 * | PB: positive CB: 0.56 ng/mL | --- | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 28-year-old man | Synthetic opioid toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 7.6 ng/mL CB: 12 ng/mL | C/P =1.6 | Morphine, noscapine, nor buprenorphine, THC, THC-OH, THC-CCOH, lidocaine | ||
9.36 * | 3.65 * | PB: 14 ng/mL CB: 16 ng/mL | C/P = 1.1 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 35-year-old man | Synthetic opioid toxicity: Morphine and ethanol intoxication | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 6.6 ng/mL CB: 11 ng/mL | C/P =1.6 | Morphine, naloxone, cocaine, benzoilecgonine,cocaethylene, phenacetin,levamisole, lidocaine,diphenhydramine, gabapentin | ||
9.36 * | 3.65 * | PB:0.88 ng/mL CB: 1.1 ng/mL | C/P = 1.2 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 45-year-old woman | Synthetic opioid toxicity: multidrug toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 2.7 ng/mL CB: 16 ng/mL | C/P = 5.9 | Naloxone, tramadol, o-desmethyltramadol, cocaine, cocaethylene, norcocaine, levamisole, lidocaine, sertra line, trazodone, hydroxyzine, gabapentin, bupropion, lam otrigine, mCPP, ethanol (0.011 g/dL) | ||
9.36 * | 3.65 * | PB: 3.8 ng/mL CB: 6.8 ng/mL | C/P = 1.8 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 53-year-old man | Multidrug toxicity: arteriosclerotic cardiovascular disease | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 14 ng/mL CB: 22 ng/mL | C/P =1.6 | Methamphetamine, cocaine, cocaethylene, ethanol (0.309 g/dL), caffeine, lidocaine | ||
9.36 * | 3.65 * | PB: 3.8 ng/mL CB: 6.8 ng/mL | C/P = 1.79 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 24-year-old man | Opioid toxicity: clonazepam intoxication | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 2.3 ng/mL CB: 12 ng/mL | C/P =5.2 | Hydrocodone, hydro morphone, clonazepam, 7-aminoclonazepam, acetaminophen, quinine, THC, THC-COOH | ||
9.36 * | 3.65 * | PB: 3.6 ng/mL CB: 7.8 ng/mL | C/P = 2.2 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 47-year-old man | Synthetic opioid toxicity: alprazolam intoxication | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 6.2 ng/mL CB: 73 ng/mL | C/P =11.8 | Alprazolam, clindamycin | ||
9.36 * | 3.65 * | PB: 5.8 ng/mL CB: 46 ng/mL | C/P = 7.9 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 40-year-old man | Synthetic opioid toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 23 ng/mL CB: 36 ng/mL | C/P =1.6 | Methamphetamine, lidocaine | ||
9.36 * | 3.65 * | PB: 7.4 ng/mL CB: 13 ng/mL | C/P = 1.7 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 62-year-old man | Synthetic opioid toxicity: cocaine and heroin intoxication, hypertensive cardiovascular disease | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 10 ng/mL CB: 6.6 ng/mL | C/P =0.7 | 6-AM, morphine, cocaine, BZE, Norcocaine, cocaethylene, levamisole, lidocaine, MEGX | ||
9.36 * | 3.65 * | PB: 2.3 ng/mL CB: 0.71 ng/mL | C/P = 0.3 | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 48-year-old man | Synthetic opioid toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 2.7 ng/mL CB: 6.6 ng/mL | C/P =2.4 | Naloxone, hydromorphone, alprazolam, caffeine, cyclobenzaprine, levetiracetam | ||
9.36 * | 3.65 * | PB: 0.56 ng/mL CB: positive | --- | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 42-year-old man | Synthetic opioid toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 0.53 ng/mL CB: 16 ng/mL | C/P =30 | Ethanol (0.267 g/dL) | ||
9.36 * | 3.65 * | PB: positive CB: 6.8 ng/mL | --- | ||||||||||
p-FFF F-4-ANPP | 8.99 * | 3.81 * | 49-year-old woman | Synthetic opioid toxicity: Multidrug toxicity | Unknown | b | LLE | LC-QTOF LC-MS/MS | PB: 2.9 ng/mL CB: 2.6 ng/mL | C/P = 0.9 | Naloxone, 6-MAM, codeine, methamphetamine, cocaine, BZE, lidocaine | ||
9.36 * | 3.65 * | PB: positive CB: positive | --- | ||||||||||
U-47700 | 9.2 * | 4.0 * | 30-year-old man | Polyintoxication with the likely contribution of coronary atherosclerosis. | Unknown | b, ur | SPE | LC–MS/MS | FB: 26 ng/mL HB: 45 ng/mL | C/P = 1.7 | Clonazepam: 94 ng/mL, mehylphenidate: 15 ng/mL, THC: 18 ng/mL, THCCOOH: 32 ng/mL, THC-OH: 3.3 ng/mL, naproxen: 2.12 ng/mL, nortriptyline: 14 ng/mL, diazepam: 11 ng/mL, 4-ANPP: 18 ng/mL and furanylfentanyl: 0.89 ng/mL | Garneau B. et al. (2020) [252] | |
9.2 * | 4.0 * | 31-year-old man | U-47700 toxicity, in the setting of a combined intake of multiple drugs | Unknown | b, gc, liver, brain, kidney | PP | LC-MS/MS | FB: 204 ng/mL CB: 470 ng/mL L: 198 ng/g | C/P = 2.3 L/P = 1.0 | Methadone: 290 ng/mL, EDDP: 14 ng/mL, flubromazepam: 480 ng/mL and hydroxyflu bromazepam: 85 ng/mL, diazepam: 300 ng/mLL, nordazepam: 100 ng/mL, temazepam: 10 ng/mL, oxazepam and duloxetine (<LOQ), ethanol (1.64 g/kg) | Giorgetti A. et al. (2024) [257] | ||
9.2 * | 4.0 * | 46-year-old man | Acute U-47700 and alprazolam abuse | ~28 h after he was found (autopsy) | b, vh, ur, gc liver | LLE | GC-MS | PB (iliac): 190 ng/mL HB: 340 ng/mL L: 1700 ng/g | C/P = 1.8 L/P = 8.9 | Alprazolam:0.12 mg/ L, nordiazepam: <0.05 mg/ L, doxylamine: 0.30 mg/L, diphenhydramine: 0.14 mg/L, ibuprofen: 2.4 mg/L, salicylicacid: <20 mg/L THC-COOH: 2.4 ng/mL | McIntyre IM et al. (2017) [262] | ||
9.2 * | 4.0 * | Unknown | U-47700 consumption | Unknown | b, ur, liver, lung, brain, kidney | LLE | LC-MS/MS | FB: 525 ng/mL HB: 1347 ng/mL L: 4300 ng/g | C/P = 2.6 L/P = 8.2 | Unknown matrix: diphenidine: approx. 1.7 ng/mL, methoxphenidine: approx. 26 ng/mL | Dziadosz M. et al. (2017) [263] | ||
Unknown | U-47700 consumption | Unknown | b, ur, liver, lung, brain, kidney | FB: 819 ng/mL HB: 1043 ng/mL L: 3100 ng/g | C/P = 1.3 L/P = 3.8 | Ibuprofen: approx. 1.8 mg/mL Naloxone: 1.9 ng/mL | |||||||
9.2 * | 4.0 * | 26-year-old man | Acute U-47700 intoxication | ~24 h after he was found (autopsy) | b, vh, ur, liver, brain | SPE | GC/MS GC-NPD | FB: 400 ng/mL HB: 260 ng/mL L: 280 ng/g | C/P = 0.6 L/P = 0.7 | THC: 19 ng/mL | Rohrig T.P. et al. (2017) [264] | ||
9.2 * | 4.0 * | 26-year-old man | Combined use of U-47700 with new stimulant drugs | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 580 ng/mL HB: 860 ng/mL L: 2200 ng/g | C/P = 1.5 L/P = 3.9 | MDPPP: ca. 1.9 ng/mL, α-PVP ca. 270 ng/mL, α-PHP ca. 18 ng/mL, α-PVT: detected, butane: detected | Fels H. et al. (2019) [265] | ||
9.2 * | 4.0 * | 30-year-old man | Combined use of U-47700 with new stimulant drugs | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 1000 ng/mL HB: 2000 ng/mL L: 3900 ng/g | C/P = 2.0 L/P = 3.9 | Diazepam: 240 ng/mL, nordazepam: 210 ng/mL, oxazepam: 14 ng/mL, temazepam 17 ng/mL, diphenhydramine: 160 ng/mL, amphetamine: trace amounts, MDMA: trace amounts, MDAI ca. 520 ng/mL, 3-FPM: ca. 440 ng/mL, 4-Methyl-N-ethyl norpentedrone: ca. 120 ng/mL, N-ethylpentylone ca. 330 ng/mL, 4-BMC: ca. 10 ng/mL | |||
9.2 * | 4.0 * | 29-year-old man | Combined use of U-47700 with new stimulant drugs | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 490 ng/mL HB: 880 ng/mL L: 6000 ng/g | C/P = 1.8 L/P = 12.2 | Pregabalin: 6200 ng/mL, quetiapine: 95 ng/mL, N-ethylhexedrone ca. 120 ng/mL (heart blood) | |||
9.2 * | 4.0 * | 31-year-old man | Combined use of U-47700 with new stimulant drugs | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 500 ng/mL HB: 590 ng/mL L: 1500 ng/g | C/P = 1.2 L/P = 3 | Pregabalin: 2800 ng/mL, doxepin: 42 ng/mL, nordoxepin: 39 ng/mL, amitriptyline: 8.1 ng/mL, nortriptyline: 4.6 ng/mL, 4F-MPH: ca. 110 ng/mL, PV8 ca. 100 ng/mL. | |||
9.2 * | 4.0 * | 49-year-old man | Monointoxication with U-47700 | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 1500 ng/mL HB: 4600 ng/mL L: 8400 ng/g | C/P = 3.1 L/P = 5.6 | Morphine: 5.6 ng/mL, codeine: 1.9 ng/mL, doxepin: 23 ng/mL, nordoxepin: 38 ng/mL, metoprolol: 130 ng/mL, 3-FPM ca.: 90 ng/mL (heart blood), methiopropamine; ca. 1.1 ng/mL (heart blood), methoxphenidine: ca. 5.9 ng/mL (heart blood), 3-MeO-PCP: detected | |||
9.2 * | 4.0 * | 45-year-old man | Combined use of U-47700 with new stimulant drugs | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 420 ng/mL HB: 440 ng/mL L: 3000 ng/g | C/P = 1.05 L/P = 7.1 | Citalopram: 67 ng/mL, diclofenac: 25 ng/mL, α-PNP: ca. 7.0 ng/mL, N-ethylhexedrone: ca. 160 ng/mL, N-ethylpentylone: ca. 900 ng/mL, etanol: 0.23%. | |||
9.2 * | 4.0 * | 33-year-old man | Monointoxication with U-47700 | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 2100 ng/mL HB: 2500 ng/mL L: 4100 ng/g | C/P = 1.2 L/P = 1.9 | Doxepin: 110 ng/mL, nordoxepin: 86 ng/mL, venlafaxine: 1400 ng/mL, N-desmethylvenlafaxine: 540 ng/mL, N-ethylhexedrone: ca. 7.4 ng/mL | |||
9.2 * | 4.0 * | 23-year-old man | Combined use of U-47700 along with synthetic cannabinoids | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 490 ng/mL HB: 870 ng/mL L: 5800 ng/g | C/P = 1.8 L/P = 11.8 | 5F-ADBICA: ca. 0.14 ng/mL, 5F-MDMB-PICA: ca. 0.70 ng/mL, AMB-CHMICA: <0.1 ng/mL, MDMB-CHMICA: <0.1 ng/mL, MDMB-FUBICA: <0.1 ng/ mL | |||
9.2 * | 4.0 * | 31-year-old man | Monointoxication with U-47700 | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 1000 ng/mL HB: 1100 ng/mL L: 1400 ng/g | C/P = 1.1 L/P = 1.4 | Amphetamine: 61 ng/mL, MDMA: 100 ng/mL, MDA 1.5 ng/mL, clonazolam: trace amounts, 8-aminoclonazolam:+ | |||
9.2 * | 4.0 * | 56-year-old man | Combined use of U-47700 along with other NPS | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 1600 ng/mL HB: 4900 ng/mL L: 7200 ng/g | C/P = 3.0 L/P = 4.5 | Trimipramine: 680 ng/mL, diphenhydramine: 99 ng/mL, fluoxetine: 290 g/mL, mitragynine: 8.4 ng/mL, butylone: ca. 3.5 ng/mL, sildenafil: 42 ng/mL, amlodipine: 4.3 ng/mL, 3,4-DMMC: ca. 1.8 ng/mL, 5F-ADB < 0.1 ng/mL, ADB-FUBINACA: ca. 4.7 ng/mL, AM-2201: ca. 0.12 ng/mL, AMB-CHMICA: ca. 0.1 ng/mL, EG-018: ca. 4.7 ng/mL | |||
9.2 * | 4.0 * | 31-year-old man | Monointoxication with U-47700 | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 400 ng/mL HB: 890 ng/mL L: 1600 ng/g | C/P = 1.8 L/P = 4.0 | Ethanol: 0.67% | |||
9.2 * | 4.0 * | 42-year-old man | Monointoxication with U-47700 | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 2000 ng/mL HB: 1200 ng/mL L: 2200 ng/g | C/P = 0.6 L/P = 1.1 | Amitriptyline: 340 ng/mL, nortriptyline: 300 ng/mL, diphenhydramine: ca. 28 ng/mL | |||
9.2 * | 4.0 * | 29-year-old man | Intoxication with fentanyl accompanied by U-47700 and alcohol | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 56 ng/mL HB: 39 ng/mL L: 72 ng/g | C/P = 0.7 L/P = 1.3 | Methadone: 24 ng/mL (serum), EDDP: trace amounts (serum), pregabalin: 15,000 ng/mL (serum), fentanyl 1.4 ng/mL (serum), norfentanyl: 2.0 ng/mL (serum), diazepam: traces (serum), nordazepam: traces (serum), ethanol: ca. 2% | |||
9.2 * | 4.0 * | 30-year-old man | Combined use of U-47700 with new stimulant drugs | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 540 ng/mL HB: 610 ng/mL L: 2500 ng/g | C/P = 1.1 L/P = 4.6 | Amitriptyline: 260 ng/mL, nortriptyline 280 ng/mL, methoxphenidine: ca. 200 ng/mL, bromazepam: 5.8 ng/mL, diazepam: traces, nordazepam: traces, lorazepam: traces, carbamazepine 35 ng/mL | |||
9.2 * | 4.0 * | 26-year-old man | Intoxication with both fentanyl and U-47700 | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 1000 ng/mL HB: 990 ng/mL L: 2800 ng/g | C/P = 1.0 L/P = 2.8 | Fentanyl: 2.4 ng/mL, norfentanyl: 0.67 ng/mL, diazepam: traces, nordazepam: 1.7 ng/mL, tilidine: traces, nortilidine: traces, fluoxetina: 9.8 ng/mL | |||
9.2 * | 4.0 * | 25-year-old man | Monointoxication with U-47700 | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 2100 ng/mL HB: 2600 ng/mL L: 4200 ng/g | C/P = 1.2 L/P = 2.0 | Methamphetamine: 31 ng/mL, amphetamine: 34 ng/mL, ephedrine: 19 ng/mL, benzoylecgonine: traces, morphine: 14 ng/mL, hydromorphone: traces, buprenorphine: ca. 0.3 ng/mL, α-PVP: 34 ng/mL, acetaminophen: traces | |||
9.2 * | 4.0 * | 36-year-old woman | Monointoxication with U-47700 | Unknown | b, vh, ur, gc, liver, pericardial fluid | SPE | LC-QTOF-MS LC-MS/MS | FB: 2200 ng/mL HB: 4400 ng/mL L: 4300 ng/g | C/P = 2.0 L/P = 1.9 | Venlafaxine: 1600 ng/mL, N-desmethylvenlafaxine: 1200 ng/mL, pipamperone: 96 ng/mL, promethazine: 15 ng/mL, diazepam: traces, nordazepam: 26 ng/mL, oxazepam: traces, temazepam: traces, oxycodone: 1.8 ng/mL, noroxycodone: ca. 13 ng/mL | |||
9.2 * | 4.0 * | 40-year-old man | Monointoxication with U-47700 | Unknown | b, vh, ur, gc, liver | SPE | LC-QTOF-MS LC-MS/MS | FB: 330 ng/mL HB: 2400 ng/mL L: 5200 ng/g | C/P = 7.3 L/P = 15.8 | Quetiapine: 570 ng/mL, doxylamine: 2.3 ng/mL | |||
AH-7921 | 9.1 * | 3.7 * | 19-year-old man | Opioid in toxication | Unknown | b, ur, gc, bile liver, kidney, lung, brain, spleen, heart | LLE | GC-MS | PB: 9100 ng/mL HB: 3900 ng/mL L: 6000 ng/g | C/P = 0.4 L/P = 0.6 | MPHP: 0.10 mg/L Dextrometorphane: positive | Vorce S.P. et al. (2014) [266] | |
AH-7921 | 9.1 * | 3.7 * | 22-year-old woman | Consumption of an overdose of AH-7921 | Unknown | b, vh, ur, gc, liver, pericardial fluid | PP | LC–QTOF-MS | PB: 450 ng/mL CB: 480 ng/mL L: 530 ng/g | C/P = 1.1 L/P = 1.2 | Methadone: positive Diphenhydramine: positive Tetrazepam: positive Methamphetamine: traces Amphetamine: traces Mirtazapine: 43.2 ng/mL | Fels H. et al. (2017) [267] | |
MT-45 | 8.94 * | 5.27 * | 24-year-old man | Death attributed to consumption of an MT-45 overdose | Unknown | b, vh, ur, gc, liver, pericardial fluid | PP | LC–QTOF-MS | PB: 660 ng/mL CB: 1300 ng/mL L: 24,000 ng/g | C/P = 1.9 L/P = 8.3 | Lidocaine: positive PB-22: <0.1 ng/mL 5F-AKB-48 (5F-APINACA): <0.1 ng/mL Methoxetamine: positive | Fels H. et al. (2017) [267] | |
Nitazenes | N-Pyrrolidino protonitazene | 8.5 | ≥4 | 29-year-old man | Multiple drug intoxication | Date collected: 07/02/2023 Date received: 10/02/2023 | b | LLE | LC-QTOF-MS LC-MS/MS | PB: 0.1 ng/mL CB: 0.4 ng/mL | C/P = 4 | 4-ANPP: 3.9 ng/mL, benzoylecgonine: 620 ng/mL, chlordiazepoxide, cotinine, diphenhydramine: 310 ng/mL, fentanyl: 24 ng/mL, hydroxyzine: 100 ng/mL, naloxone, nordiazepam, norfentanyl: 5.7 ng/mL, quetiapine, quinine, xylazine: 28 ng/mL. In cardiac blood also: protonitazene, metonitazene: 0.63 ng/mL, N-desethyl protonitazene: 0.12 ng/mL | De Vrieze L.M. et al. (2024) [268] |
Metonitazene | 8.79 * | ≥4 | 47-year-old man | Multiple drug intoxication | Unknown | b, ur | LLE | LC-QTOF-MS LC-MS/MS | PB: 5 ng/mL CB: 12 ng/mL | C/P = 2.4 | 8-aminoclonazolam, flualprazolam,fentanyl: 3.0 ng/mL, norfentanyl: 0.44 ng/mL, 4-ANPP, THC: 0.52 ng/mL, THCCOOH: 12 ng/mL, caffeine, nicotine, bupropion: 300 ng/mL, hydroxybupropion: 290 ng/mL, 10-OH-carbazepine: 9500 ng/mL,quetiapine: 590 ng/mL, gabapentin: 34,000 ng/mL. 5-aminometonitazene (352%), N-desethyl metonitazene (<5%), 4′-hydroxy nitazene (<5%) | Krotulski AJ. et al. (2021) [269] | |
Flunitazene | 8.79 * | ≥4 | PB: 2.1 ng/mL CB: 4.8 ng/mL | C/P = 2.3 | |||||||||
Isotonitazene | 8.79 | ≥4 | 41-year-old man | Acute intoxication with isotonitazene | Approximately 72 h after death | b, vh, ur, gc, CSF, pericardial fluid, liver, lung, kidney, splee, heart, muscle, hair | SPE | GC/MS LC-MS/MS | FB: 2.28 ng/mL HB: 1.70 ng/mL L: <0.05 ng/g | C/P = 0.7 | Diazepam: 29 ng/mL, nordiazepam: 71 ng/mL, oxazepam: 4.8 ng/mL, mefenamic acid <5.0 μg/mL, domperidone: 6.0 ng/mL, acetaminophen: 4.8 μg/mL | Mueller F. et al. (2021) [270] | |
8.79 | ≥4 | 47-year-old man | Approximately 48 h after death | FB: 0.59 ng/mL HB: 1.13 ng/mL L: <0.05 ng/g | C/P = 1.9 | Lorazepam: 12 ng/mL, THC: 56 ng/mL, THC-OH: 1.8 ng/mL, THC-COOH: 6.5 ng/mL, CBN: 2.9 ng/mL | |||||||
8.79 | ≥4 | 47-year-old man | Approximately 96 h after death | FB: 0.74 ng/mL HB: 0.70 ng/mL L: < 0.05 ng/g | C/P = 0.9 | Ethanol 57 mg/dL | |||||||
8.79 | ≥4 | 39-year-old man | Intoxication with isotonitazene | Unknown | b, vh, ur, gc, bile, spleen, liver, brain, lung, heart, kidney, muscle, SF, and presumed IS | LLE | LC-MS/MS | FB: 1.17 ng/mL HB: 1.76 ng/mL | C/P = 1.5 | Cetirizine, PB: 28 ng/mL, 4-OH-Nitazene (bile and ur), N-desethyl-isotonitazene: CB, 0.1 ng/mL, positive in ur, lung, heart and gc | Bendjilali-Sabiani J.J. et al. (2024) [271,272] | ||
Synthetic cannabinoids] | 5F-ADB | --- | 3.6 * | 39-year-old man | Multiple drug toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.37 ng/mL CB: 0.37 ng/mL | C/P = 1.0 | Ethanol and cocaine | Boland D.M. et al. [273] |
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 2.4 ng/mL CB: 2.5 ng/mL | C/P = 1.0 | |||||||||
5F-ADB | --- | 3.6 * | 50-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.05 ng/mL CB: 0.31 ng/mL | C/P = 6.2 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 4.6 ng/mL CB: 81 ng/mL | C/P = 17.6 | |||||||||
5F-ADB | --- | 3.6 * | 37-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.03 ng/mL CB: 0.01 ng/mL | C/P = 0.3 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 34 ng/mL PB: 64 ng/mL | C/P = 1.9 | |||||||||
5F-ADB | --- | 3.6 * | 48-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.02 ng/mL CB: 0.04 ng/mL | C/P = 2.0 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 11 ng/mL PB: 18 ng/mL | C/P = 1.6 | |||||||||
5F-ADB | --- | 3.6 * | 62-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.27 ng/mL CB: 0.11 ng/mL | C/P = 0.4 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 21 ng/mL CB: 41 ng/mL | C/P = 1.9 | |||||||||
5F-ADB | --- | 3.6 * | 37-year-old man | Acute poly-drug toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.08 ng/mL CB: 0.15 ng/mL | C/P = 1.9 | Cocaine, heroin | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 15 ng/mL CB: 73 ng/mL | C/P = 4.9 | |||||||||
5F-ADB | --- | 3.6 * | 34-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.19 ng/mL CB: 0.11 ng/mL | C/P = 0.6 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 31 ng/mL CB: 41 ng/mL | C/P = 1.3 | |||||||||
5F-ADB | --- | 3.6 * | 44-year-old man | Aspiration associated with 5-fluoro-ADB toxicity, Part II: cardiomegaly, hypertensive type | Unknown | b | SPE | LC-MS/MS | PB: 0.12 ng/mL CB: 0.01 ng/mL | C/P = 0.08 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 14 ng/mL CB: 21 ng/mL | C/P = 1.5 | |||||||||
5F-ADB | --- | 3.6 * | 49-year-old man | Acute combined drug toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.56 ng/mL CB: 0.66 ng/mL | C/P = 1.2 | MMB-2201, and N-ethylpentylone | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 10 ng/mL CB: 10 ng/mL | C/P = 1.0 | |||||||||
5F-ADB | --- | 3.6 * | 50-year-old man | 5-fluoro-ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.77 ng/mL CB: 0.76 ng/mL | C/P = 1.0 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 12 ng/mL CB: 6.8 ng/mL | C/P = 0.6 | |||||||||
5F-ADB | --- | 3.6 * | 56-year-old man | Acute 5-Fluoro- ADB Toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.15 ng/mL CB: 0.64 ng/mL | C/P = 4.2 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 4.9 ng/mL CB: 2.4 ng/mL | C/P = 0.5 | |||||||||
5F-ADB | --- | 3.6 * | 20-year-old man | 5-fluoro-ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.09 ng/mL CB: 1.9 ng/mL | C/P = 21.1 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 14 ng/mL CB: 39 ng/mL | C/P = 2.8 | |||||||||
5F-ADB | --- | 3.6 * | 29-year-old man | 5-fluoro-ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.07 ng/mL CB: 0.10 ng/mL | C/P = 1.4 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 15 ng/mL CB: 9.8 ng/mL | C/P = 0.5 | |||||||||
5F-ADB | --- | 3.6 * | 56-year-old man | 5-fluoro-ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.03 ng/mL CB: 0.23 ng/mL | C/P = 7.7 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 12 ng/mL CB: 23 ng/mL | C/P = 1.9 | |||||||||
5F-ADB | --- | 3.6 * | 32-year-old man | 5-Fluoro-ADB Toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.01 ng/mL CB: 0.70 ng/mL | C/P = 70 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 15 ng/mL CB: 63 ng/mL | C/P = 4.2 | |||||||||
5F-ADB | --- | 3.6 * | 50-year-old man | 5-fluoro-ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 0.05 ng/mL CB: 0.28 ng/mL | C/P = 5.6 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | PB: 14 ng/mL CB: 35 ng/mL | C/P = 2.5 | |||||||||
5F-ADB (COOH) | 3.84 * | 3.34 * | 46-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 11 ng/mL CB: 43 ng/mL | C/P = 3.9 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | 59-year-old man | Acute 5-fluoro-ADB and N-ethylpentylone toxicity | Unknown | b | SPE | LC-MS/MS | PB: 19 ng/mL CB: 33 ng/mL | C/P = 1.7 | N-ethylpentylone | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | 44-year-old man | Acute combined-drug toxicity (N-ethylpentylone and 5-Fluoro-ADB) | Unknown | b | SPE | LC-MS/MS | PB: 11 ng/mL CB: 16 ng/mL | C/P = 1.4 | N-ethylpentylone | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | 46-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 26 ng/mL CB: 37 g/mL | C/P = 1.4 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | 28-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 23 ng/mL CB: 29 ng/mL | C/P = 1.3 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | 56-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 41 ng/mL CB: 166 ng/mL | C/P = 4.0 | --- | ||
5F-ADB (COOH) | 3.84 * | 3.34 * | 62-year-old man | Acute 5-fluoro- ADB toxicity | Unknown | b | SPE | LC-MS/MS | PB: 15 ng/mL CB: 80 ng/mL | C/P = 5.3 | --- | ||
5F-ADB | --- | 3.6 * | male, in his 20s | Acute circulatory failure after drug inhalation | Unknown | b | QuEChERS | LC-MS/MS | IB: 0.12 ng/mL RHB: 0.24 ng/mL LHB: 0.45 ng/mL | C/P = 3.7 | --- | Usui K. et al. (2018) [274] | |
5F-ADB | --- | 3.6 * | male, in his 50s | Acute circulatory failure after drug inhalation | Unknown | b | IB: 0.23 ng/mL RHB: 1.35 ng/mL LHB: NA | C/P = 5.8 (calculated from RHB) | |||||
5F-ADB | --- | 3.6 * | male, in his 20s | Acute circulatory failure after drug inhalation | Unknown | b | IB: 0.16 ng/mL RHB: 0.14 ng/mL LHB: 0.11 ng/mL | C/P = 0.7 | |||||
5F-ADB | --- | 3.6 * | male, in his 50s | Acute circulatory failure after drug inhalation | Unknown | b | IB: 1.38 ng/mL RHB: 1.92 ng/mL LHB: NA | C/P = 1.4 (calculated from RHB) | |||||
AB-CHMINACA | --- | 2.96 * | 25-year-old man | Diabetic ketoacidosis | Unknown | b, vh, ur, CSF | SPE | LC-MS/MS | FB: 2.8 ng/mL HB: 1.1 ng/mL | C/P = 0.4 | AM-2201: traces <0.1 ng/mL, EAM-2201: traces <0.1 ng/mL, JWH-122: traces <0.1 ng/mL, MAM-2201: traces <0.1 ng/mL | Hess, C. et al. (2015) [275] | |
AB-FUBINACA | --- | --- | FB: 0.97 ng/mL HB: N.D. | --- | |||||||||
5F-AMB | --- | 3.06 * | FB: 0.19 ng/mL HB: traces <0.1 ng/mL | --- | |||||||||
5F-APINACA | --- | 3.98 * | FB: 0.51 ng/mL HB: traces <0.1 ng/mL | --- | |||||||||
STS135 | --- | --- | FB: 0.16 ng/mL HB: N.D. | --- | |||||||||
THJ 2201 | --- | 5.22 * | FB: 0.16 ng/mL HB: N.D. | --- | |||||||||
AB-CHMINACA | --- | 2.96 * | 23 year-old man | Acute intoxication by AB-CHMINACA” resulting in cardiac arrhythmia | Alive about 5 h before being found dead | b, vh, ur, gc, bile, liver | LLE | LC-MS/MS | FB: 7.0 ng/mL HB: 16.9 ng/mL L: 404 ng/g | C/P = 2.4 L/P = 57.7 | Caffeine:positive Cotinine:positive | Lavins, E.S. et al. (2015) [276] (abstract only) | |
33 year-old woman | Acute intoxication by the combined effects of AB CHMINACA, methadone and diphenhydramine” resulting in cardiac arrhythmia | Found at home in a state of moderate decomposition. She was last known alive two days earlier when leaving a party | b, liver, kidney, brain, hair | FB: 7.1 ng/mL HB: 7.8 ng/mL L: 115 ng/g | C/P = 1.1 L/P = 16.2 | Methadone: 167 ng/mL EDDP: 29.6 ng/mL Diphenhydramine: <50 ng/mL β-phenethylamine: positive Cotinine: positive | |||||||
AB-CHMINACA | --- | 2.96 * | 24 year-old man | AB-CHMINACA use | Unknown | b, vh, ur, liver, heart, spleen | LLE | LC-MS/MS | PB: 10.21 ng/mL L: 47.82 ng/g | L/P = 4.7 | --- | Knittel J.L. et al. (2015) [277] (abstract only) | |
AB—CHMINACA metabolite 4 | 2.49 * | 3.38 * | PB: 1.63 ng/mL L: 12.80 ng/g | L/P = 7.8 | |||||||||
AKB48 | --- | 4.48 * | PB: 0.36 ng/mL L: 1.03 ng/g | L/P = 2.9 | |||||||||
UR144-N-COOH metabolite | 4.67 * | 3.7 * | PB: 0.54 ng/mL L: 7.60 ng/g | L/P = 14.0 | |||||||||
XLR11 | --- | 4.61 * | 24 year-old man | Multidrug intoxication | Unknown | b, vh, ur, gc, liver, kidney, lung, spleen, heart, brain, adipose | LLE | LC-MS/MS | PB: 2.10 ng/mL CB: 1.95 ng/mL L: 0.31 ng/g | C/P = 0.9 L/P = 0.1 | Hydrocodon: 160 ng/mL, XLR11-N-OH | Knittel J.L. et al. (2015) [277] (abstract only) | |
UR144-N-COOH metabolite | 4.67 * | 3.7 * | PB: 45.20 ng/mL CB: 48.40 ng/mL | C/P = 1.1 | |||||||||
UR144-N-OH metabolite | 14.7 * | 3.9 * | PB: 6.11 ng/mL CB: 8.94 ng/mL L: 23.70 ng/g | C/P = 1.5 L/P = 3.9 | |||||||||
MAB-CHMINACA | --- | 3.6 * | 34-year-old man | Asphyxia due to aspiration of stomach contents into the trachea, which likely took place during vomiting under low-consciousness conditions provoked by inhala tion of the 5-fluoro-ADB smoke | 35–40 h | b, ur, gc, pericardial fluid, liver, kidney, lung, brain, spleen, heart muscle, adipose, pancreas | QuEChERS | LC-MS/MS | FB: 6.05 ng/mL HB: 9.30 ng/mL L: 156 ng/g | C/P = 1.5 L/P = 25.8 | 5F-ADB found in gc, adipose tissue, brain, heart muscle, pancreas | Hasegawa, K. et al. (2015) [278,279] | |
5F-MDMB-P7AICA | --- | 2.97 * | 31-year-old man | Lethal multiple trauma | Death 10 h after admission to the hospital. The autopsy was performed 4 days after death. | b, bile, liver, kidney, lung | PP+LLE (blood) SPE (tissues) | GC-MS LC-MS/MS | PB: 1.2 ng/mL HB: 0.69 ng/mL | C/P = 0.6 | Subtherapeutic concentration of morphine and a very low concentration of benzoylecgonine in peripheral blood | Walle, N. et al. (2022) [280] | |
5F-MDMB-P7AICA dimethyl butanoic acid metabolite | 3.8* | 2.71 * | PB:5.7 ng/mL HB:46 ng/mL L: 4 ng/ g | C/P = 8.0 L/P = 0.7 | |||||||||
N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide (NNEI) | --- | --- | Aged in his twenties, man | Probablyacutecirculatory disturbance inducedby NNEI poisoning | An autopsy was performed about 3 days after the estimated time of death. | plasma, urine, brain, heart, lung, liver, kidney, adipose, hair | SPE | LC-MS/MS | FB: 0.84 ng/mL HB: 0.64 ng/mL L: 1.31 ng/g | C/P = 0.8 L/P = 1.6 | --- | Sasaki, C. et al. (2015) [281] | |
MAM-2201 | --- | 5.67 * | 20-year-old man | Misuse of three synthetic cannabinoids | An autopsy was executed 20 h after the victim’s death. | b (plasma), ur | PP | LC–QTOF-MS | FB: 16.3 ng/mL HB: 85.8 ng/mL | C/P = 5.2 | ---- | Zaitsu, K. et al. (2015) [282] | |
AM-1220 | 8.76 * | 4.73 * | FB: 140 ng/mL HB: 438 ng/mL | C/P = 3.1 | |||||||||
AM-2232 | --- | 4.75 * | FB: 0.86 ng/mL HB: 1.95 ng/mL | C/P = 2.2 | |||||||||
3-Naphtoyl índole metabolite | --- | --- | FB: 9.19 ng/mL HB: 13.8 ng/mL | C/P = 1.5 | |||||||||
3-(4-Methyl-1-naphtoyl) indole metabolite | --- | --- | FB: 1.79 ng/mL HB: 9.76 ng/mL | C/P = 5.4 | |||||||||
5-OH-pentyl metabolite of MAM-2201 | --- | --- | FB: 116 ng/mL HB: 223 ng/mL | C/P = 1.9 | |||||||||
MAM-2201-COOH metabolite | 4.7 * | 4.76 * | FB: 7.30 ng/mL HB: 14.4 ng/mL | C/P = 1.9 | |||||||||
5F-Cumyl-PEGACLONE | --- | 4.79 * | 29-year-old man | 5F-Cumyl-PEGACLONE toxicity | The autopsy was performed 2 days after the retrieval of the corpse. | b, ur, hair | LLE | LC-MS/MS | PB: 0.45 ng/mL CB: 0.07 ng/mL | C/P =0.15 | 9-OH-risperidone: 18 ng/mL, trimipramine: 250 ng/mL, +cinnarizine, +diphenhydramine | Giorgetti, A. et al. (2020) [283] | |
48-year-old woman | The autopsy was performed with a postmortem interval of 7 days. | b, ur | PB: 0.23 ng/mL CB: 0.21 ng/mL | C/P =0.9 | Morphine: 297 ng/mL, 6-MAM: 20 ng/mL, codeine: 21 ng/mL, oxazepam: 450 ng/mL, alprazolam: 10 ng/mL and paroxetine: <10 ng/mL | ||||||||
36-year-old man | The autopsy was performed the same day of the death. | b, ur | PB: 0.12 ng/mL CB: 0.22 ng/mL | C/P =1.8 | Pregabalin: 6000 ng/mL, temazepa: 230 ng/mL, oxazepam: 12 ng/mL, alprazolam: 16 ng/mL, lorazepam <5 ng/mL | ||||||||
33-year-old man | The autopsy was performed with a PMI of 4 days. | b, ur, hair | PB: 0.09 ng/mL CB: 0.35 ng/mL | C/P =3.9 | Benzoilecgonine: 107 ng/mL, ecgonine methyl ester: 11 ng/mL, +cocaine, +THC-COOH | ||||||||
AB-PINACA | --- | 2.64 * | Unknown | Polydrug toxicity | Case from 2013 reanalysed in 2018 (blood and solid tissues preserved at −80 °C for five years) | b, liver, kidney, lung | LLE | LC-MS/MS | PB: 12.6 pg/mL RHB: 19.6 pg/mL LHB: 20.6 pg/mL L: 169 pg/g | C/P = 1.6 L/P = 13.4 | AB-FUBINACA, α-PVP (detected but <LOQ) | Yamagishi I. et al. [284] | |
EAM-2201 | --- | 6.09 * | PB: 56.6 pg/mL RHB: 28.7 pg/mL LHB: 31.0 pg/mL L: 126 pg/g | C/P = 0.5 L/P = 2.2 | |||||||||
Mepirapim | 8.09 * | 2.6 * | 60-year-old man | Acute poisoning by intravenous injection of mepiramim and acetylfentanyl | Unknown | b, ur | LLE | GC–MS GC-MS/MS LC-MS/MS | PB: 554 ng/mL HB: 587 ng/mL L: 6300 ng/g | C/P = 1.0 L/P = 11.4 | Acetylfentanyl: 125 ng/mL | Mochizuki A. et al. [285,286] |
- Postmortem Levels in Fatal Case Reports and PMR
3.11. Synthetic Cannabinoids
- Postmortem Levels in Fatal Case Reports
- Tissue Distribution and PMR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Glossary
11-hydroxy-THC | 11-Hydroxy-Δ9-tetrahydrocannabinol |
1-BZP | 1-Benzylpiperazine |
1B-LSD | 1-Butanoyl-lysergic acid diethylamide |
1cP-LSD | 1-Cyclopropanoyl-lysergic acid diethylamide |
1P-LSD | 1-Propanoyl-lysergic acid diethylamide |
1V-LSD | 1-Valeroyl-lysergic acid diethylamide |
25B-NBOMe | 2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxyphenyl)methyl-ethanamine |
25C-NBOMe | 2-(4-Chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine |
25H-NBOMe | 2-(2,5-Dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine |
25I-NBOMe | 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine |
2-AI | 2-Aminoindane |
2-Cl-DPH | 2-Chloro-diphenidine |
2C-T-7 | 2-(2,5-Dimethoxy-4-(n)-propylthio)phenylethylamine |
2F-DCK | 2-Fluorodeschloroketamine |
2-FMA | 2-Fluoromethamphetamine |
2-MAPB | 1-(1-Benzofuran-2-yl)-N-methylpropan-2-amine |
2-FMP | 2-Fluorophenmetrazine |
2-MXP | 2-Methoxyphenidine |
2-oxo-PCE | 2-(Ethylamino)-2-phenylcyclohexanone |
3,4-DMMC | 2-(Methylamino)-1-(3,4-dimethylphenyl)propan-1-one |
3,6-DMPM | 2-Phenyl-3,6-dimethylmorpholine |
3-FPM | 3-Fluorophenmetrazine |
3-MeO-PCP | 3-Methoxyphencyclidine |
3-Methyl-4-fluoro-PVP | (RS)-1-(3-Methyl-4-fluorophenyl)-2-(pyrrolidin-1-yl)pentan-1-one |
3-MMC | 3-Methylmethcathinone |
3-MPM | 3-Methylphenmetrazine |
3-MXP | 3-Methoxyphenidine |
3-OH-PCP | 3-Hydroxyphencyclidine |
4-CEC | 4-Chloro-ethcathinone |
4-Cl-α-PPP | 4-Chloro-alpha-pyrrolidinopropiophenone |
4-CEC | 4-Chloro-ethcathinone |
4-Cl-α-PVP | 4-Chloro-alpha-pyrrolidinovalerophenone |
4F-ANPP | 1-(4-Fluorophenyl)-N-phenylpiperidin-4-amine |
4F-EPH | 4-Fluoroethylphenidate |
4-Fluorobutyryl-fentanyl | N-[1-(2-Phenylethyl)-4-piperidinyl]-N-phenyl-4-fluorobutanamide |
4-FMC | 1-(4-Fluorophenyl)-2-(methylamino)propan-1-one |
4F-MPH | 4-Fluoromethylphenidate |
4-F-PHP | 4-Fluoro-pyrrolidinohexanophenone |
4-FPM | 4-Fluorophenmetrazine |
4-F-α-PVP | 1-(4-Fluorophenyl)-2-(pyrrolidin-1-yl)pentan-1-one |
4-MA | 4-Methylamphetamine |
4-MEAP | N-Ethyl-4′-methylnorpentedrone |
4-MEC | 4-Methylmethcathinone |
4-MeO-PCP | 4-Methoxyphencyclidine |
4-MeO-α-PVP | 1-(4-Methoxyphenyl)-2-(pyrrolidin-1-yl)pentan-1-one |
4-Methoxy-PV8 | 1-(4-Methoxyphenyl)-2-(pyrrolidin-1-yl)heptan-1-one |
4-Methoxy-PV9 | 1-(4-Methoxyphenyl)-2-(pyrrolidin-1-yl)octan-1-one |
4-MMC (mephedrone) | 4-methylmethcathinone |
4M-MPH | 4-Methylmethylphenidate |
4-MPD | 4-Methylpentedrone |
4-MTA | 4-Methylthioamphetamine |
4-PV8 | 4-Methoxy-PV8 |
5-APB | 5-(2-Aminopropyl)benzofuran |
5-API | 5-(2-Aminopropyl)indole |
5-APINACA | N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide |
5-EAPB | 5-(2-Ethylaminopropyl)benzofuran |
5F-ADB(COOH) | 1-(5-Fluoropentyl)-1H-indazole-3-carboxylic aci |
5F-ADB | Methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3-methylbutanoate |
5F-AMB | Methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3-methylbutanoate |
5F-MDMB-PICA | Methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate |
5F-NPB-22 | 1-(5-Fluoropentyl)-8-quinolinyl ester-1H-indole-3-carboxylic acid |
5-HT | Serotonin |
5-IAI | 5-Iodo-2-aminoindane |
5-MAPB | 5-(2-Aminomethylpropyl)benzofuran |
5-MeO-DiPT | 5-Methoxy-N,N-diisopropyltryptamine |
5-MeO-NiPT | 5-Methoxy-N-isopropyltryptamine |
5-OH-DiPT | 5-Hydroxy-N,N-diisopropyltryptamine |
6-APB | 1-(1-Benzofuran-6-yl)-2-(aminopropane) |
6-APDB | 6-(2-Aminopropyl)-2,3-dihydrobenzofuran |
AB | Aorta blood |
AB-CHMINACA | N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-1H-indazole-3-carboxamide |
AB-FUBINACA | N-(1-Amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide |
AB-PINACA | N-(1-Adamantyl)-1-pentyl-1H-indazole-3-carboxamide |
AB-PINACA | N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide |
Acetyl-fentanyl | N-(1-Phenethylpiperidin-4-yl)-N-phenylacetamide |
ADB-PINACA | N-(1-Amino-3,3-dimethylbutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide |
AET | Alpha-Ethyltryptamine |
AH-7921 | 3,4-Dichloro-N-((1-(dimethylamino)cyclohexyl)-methylbenzamide |
AKB48 (APINACA) | N-(1-Adamantyl)- 1-pentyl-1H-indazole-3-carboxamide) |
ALD-52 | 1-Acetyl- lysergic acid diethylamide |
ALDH | Aldehyde dehydrogenase |
AM-1220 | 1-(2-Methoxyphenyl)-2-(1-pentyl-1H-indol-3-yl)ethanone |
AM-2201 | 1-(5-Fluoropentyl)-3-(1-naphthoyl)indole |
AM-2232 | 1-(4-Fluorophenyl)-2-(1-pentyl-1H-indol-3-yl)ethanone |
AMT | Alpha-Methyltryptamine |
AM | Antemortem |
ADHD | attention deficit hyperactivity disorder |
BZDs | Benzodiazepines |
BZP | 1-Benzylpiperazine |
COMT | catechol-O-methyltransferase |
CB | Central blood |
C/P | Central Blood/Peripheral Blood |
DA | Dopamine |
DBZP | 1,4-Dibenzylpiperazine |
DCK | Deschloroketamine |
DCPP | 2,3-Dichlorophenylpiperazine |
DET | Diethyltryptamine |
DHC | dihydrocodeine |
DiPT | N,N-diisopropyltryptamine |
DMT | N,N-Dimethyltryptamine |
DOB | 2,5-Dimethoxy-4-bromoamphetamine |
DPH (diphenidine) | 1-(1,2-Diphenylethyl)piperidine |
DPT | N,N-Dipropyltryptamine |
EAM-2201 | 5-Fluoro-N-ethyl-N-(1-pentyl)indole-3-carboxamide |
EMCDDA | European Monitoring Center for Drugs and Drug Addiction |
EPE (ephenidine) | N-Ethyl-(1,2-diphenyl)ethanamine |
EPH | Ethylphenidate |
EUDA | The European Union Drugs Agency |
FAB-144 | 1-Pentyl-3-(2,2,3,3-tetramethylcyclopropoyl)indole |
FB | Femoral blood |
FBZP | 1-(4-Fluorobenzyl)piperazine |
p-FFF | p-Fluorofuranylfentanyl |
p-FiBF | Fluoroisobutyrfentanyl |
FMC | Fluoromethcathinone |
Fb | fraction bound to plasma proteins |
GI | gastrointestinal tract |
GC-MS | Gas Chromatography—Mass Spectrometry |
HB | Heart blood |
IB | Iliac blood |
IIPH | Isopropylphenidate |
IS | Injection site |
JWH | John W. Huffman |
JWH-007 | 1-Pentyl-3-(2-chlorophenylacetyl)indole |
JWH-018 | 1-Pentyl-3-(1-naphthoyl)indole |
JWH-201 | 1-(5-Fluoropentyl)-3-(4-methyl-1-naphthoyl)indole |
L | Liver |
LC–HRMS/MS | Liquid Chromatography—High-Resolution Tandem Mass Spectrometry |
LC-MS/MS | Liquid Chromatography—Tandem Mass Spectrometry |
LC-QQQ | Liquid Chromatography—Triple Quadrupole Mass Spectrometry |
LHB | Left heart blood |
L/P | Liver/Blood |
LLE | Liquid–Liquid Extraction |
logP | log of the partition coefficient of a solute between octanol and water |
LSD | Lysergic acid diethylamide |
m/p-CPP | 1-(3/4-Chlorophenyl)piperazine |
m/p-MPP | 1-(3/4-Methylphenyl)piperazine |
MAB-CHMINACA | Methyl 2-(1-(cyclohexylmethyl)-1H-indazole-3-carboxamido)-3-methylbutanoate |
MAM-2201 | 1-(5-Fluoropentyl)-3-(2,2,3,3-tetramethylcyclopropyl)indole |
MAO | monoaminoxydase |
MBDB | N-Methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine |
MBZP | 1-Benzyl-4-methylpiperazine |
mCPCPP | 1-(3-Chlorophenyl)-4-(3-chloropropyl)piperazine |
MDAI | 5,6-Methylenedioxy-2-aminoindane |
MDAT | 6,7-Methylenedioxy-2-aminotetralin |
MDDM | 5,6-Methylenedioxy-N,N-dimethyl-2-aminoindane |
MDMAI | 5,6-Methylenedioxy-N-methyl-2-aminoindane |
MDMB-4en-PINACA | Methyl-2-(1-(4-methoxyphenyl)-3-indazole-carboxamido)-3,3-dimethylbutanoate |
MDPV | 3,4-Methylenedioxypyrovalerone |
MEAI | 5-Methoxy-2-aminoindane |
MMAI | 5-Methoxy-6-methyl-2-aminoindane |
MPA | Methiopropamine |
MPH | Methylphenidate |
MPHP | 4′-Methyl-α-pyrrolidinohexiophenone |
mMPP | 1-(3-methylphenyl)pyperazine |
MT-45 | 1-Cyclohexyl-4-(1,2-diphenylethyl)piperazine |
MXE (methoxetamine) | 2-(ethylamino)-2-(3-methoxyphenyl)-cyclohexanone |
MXPr (methoxpropamine) | 2-(3-methoxyphenyl)-2-(propylamino)cyclohexan-1-one |
NA | Not available |
NBOMes | N-methoxybenzyl derivatives |
NE | Noradrenaline |
NPS | New Psychoactive Substances |
NIDA | National Institute on Drug Abuse |
NM-2-AI | N-Methyl-2-aminoindane |
NPD | N-Propylpentedrone |
o/p-MeOPP | 1-(2/4Methoxyphenyl)piperazine |
PB | Peripheral Blood |
PCE | Ethylphencyclidine |
PCP | 1-(1-Phenylcyclohexyl)piperidine |
pFPP | 1-(4-Fluorophenyl) piperazine |
PEAs | Phenylethylamines |
PMEA | para-Methoxyethylamphetamine |
PMMA | para-Methoxymethamphetamine |
PM | Postmortem |
PMR | Postmortem redistribution |
PP | Protein Precipitation |
PV8 | 1-phenyl-2-(1-pyrrolidinyl)-1-heptanone |
PV9 | 1-phenyl-2-(1-pyrrolidinyl)-1-octanone |
QuEChERS | Quick, Easy, Cheap, Effective, Rugged, and Safe |
Rasagiline | N-Propargyl-1(R)-aminoindane |
RHB | Right heart blood |
SA | Serum antemortem |
SB | Subclavian blood |
SC | Serum cardiac |
STS135 (5-fluoro-APICA) | 1-(5-fluoropentyl)-N-tricyclo[3.3.1.13,7]dec-1-yl-1H-indole-3-carboxamide |
SF | Subcutaneous fat |
SPE | Solid-Phase Extraction |
TFMPP | 1-(3-Trifluoromethylphenyl)piperazine |
THC | Δ9-Tetrahydrocannabinol |
THC-COOH | 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol |
THH | Tetrahydroharmine |
THJ-018 | 1-Naphthoyl-3-(1-pentylindazole) |
THJ 2201 | 1-(5-fluoropentyl)-1H-indazol-3-yl]-1-naphthalenyl-methanone |
U-47700 | 3,4-Dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide |
UNODC | United Nations Office on Drugs and Crime |
Ur | Urine |
Vd | Volume of distribution |
XLR11 | (5-Fluoro-UR-144) ((1-(5-fluoropentyl)-1H-indol-3-yl)(2,2,3,3- tetramethylcyclopropyl)methanone |
vh | Vitreous humor |
α-PBP | Alpha-pyrrolidinobutiophenone |
α-PiHP | Alpha-pyrrolidinoisohexanophenone |
α-PVP | Alpha-pyrrolidinovalerophenone |
Δ9-THC | (-)-Δ9-trans-Tetrahydrocannabinol |
References
- Han, E.; Kim, E.; Hong, H.; Jeong, S.; Kim, J.; In, S.; Chung, H.; Lee, S. Evaluation of postmortem redistribution phenomena for commonly encountered drugs. Forensic Sci. Int. 2012, 219, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, L.; Heuvel, C.V.D.; Scott, T.; Byard, R.W. Difficulties associated with the interpretation of postmortem toxicology. J. Anal. Toxicol. 2024, 48, 405–412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glicksberg, L.; Kartick, C.; Gangadhar, J.; Vijayachari, P. Postmortem distribution and redistribution of synthetic cathinones. Forensic Toxicol. 2018, 36, 291–303. [Google Scholar] [CrossRef]
- Dalpe-Scott, M.; Degouffe, M.; Garbutt, D.; Drost, M. A Comparison of drug concentrations in postmortem cardiac and peripheral blood in 320 cases. Can. Soc. Forensic Sci. J. 1995, 28, 113–121. [Google Scholar] [CrossRef]
- Gerostamoulos, D.; Beyer, J.; Staikos, V.; Tayler, P.; Woodford, N.; Drummer, O.H. The effect of the postmortem interval on the redistribution of drugs: A comparison of mortuary admission and autopsy blood specimens. Forensic Sci. Med. Pathol. 2012, 8, 373–379. [Google Scholar] [CrossRef]
- McIntyre, I.M. Analytical data supporting the “theoretical” postmortem redistribution factor (Ft): A new model to evaluate postmortem redistribution. Forensic Sci. Res. 2016, 1, 33–37. [Google Scholar] [CrossRef]
- Pélissier-Alicot, A.-L.; Gaulier, J.-M.; Champsaur, P.; Marquet, P. Mechanisms underlying postmortem redistribution of drugs: A review. J. Anal. Toxicol. 2003, 27, 533–544. [Google Scholar] [CrossRef]
- Drummer, O.H. Postmortem toxicology of drugs of abuse. Forensic Sci. Int. 2004, 142, 101–113. [Google Scholar] [CrossRef]
- Júnior, E.F.; Leite, B.H.M.; Gomes, E.B.; Vieira, T.M.; Sepulveda, P.; Caldas, E.D. Fatal cases involving new psychoactive substances and trends in analytical techniques. Front. Toxicol. 2022, 4, 1033733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zapata, F.; Matey, J.M.; Montalvo, G.; García-Ruiz, C. Chemical classification of new psychoactive substances (NPS). Microchem. J. 2021, 163, 105877. [Google Scholar] [CrossRef]
- UNODC. United Nations Office on Drugs and Crime NPS Substance Groups. Available online: www.unodc.org (accessed on 20 July 2024).
- EMCDDA. European Monitoring Centre for Drugs and Drug Addiction. Available online: www.euda.europa.eu/topics/nps_en (accessed on 20 July 2024).
- Dinis-Oliveira, R.J.; Vieira, D.N.; Magalhães, T. Guidelines for Collection of Biological Samples for Clinical and Forensic Toxicological Analysis. Forensic Sci. Res. 2017, 1, 42–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baselt, R.C. Disposition of Toxic Drugs and Chemicals in Man, 12th ed.; Biomedical Publications: Seal Beach, CA, USA, 2020. [Google Scholar]
- Barnhart, F.; Fogacci, J.; Reed, D. Methamphetamine—A study of postmortem redistribution. J. Anal. Toxicol. 1999, 23, 69–70. [Google Scholar] [CrossRef] [PubMed]
- de Groot, A.D.E.; Borra, L.C.P.; van der Hulst, R.; Etsouli, O.; Kloos, D.-P.; Rijken, D.J.; Elsinga, P.H.; Boersma, H.H.; Bosman, I.J.; Touw, D.J. Postmortem redistribution of amphetamines and benzodiazepines in humans: Important variables that might be influencing the central blood/peripheral blood ratio. Forensic Sci. Int. 2023, 353, 111876. [Google Scholar] [CrossRef] [PubMed]
- Prouty, R.; Anderson, W. The Forensic Science Implications of Site and Temporal Influences on Postmortem Blood-Drug Concentrations. J. Forensic Sci. 1990, 35, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.P. MDMA and MDA Concentrations in Antemortem and Postmortem Specimens in Fatalities Following Hospital Admission. J. Anal. Toxicol. 2005, 29, 296–300. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; Nelson, C.L.; Schaber, B.; Hamm, C.E. Antemortem and Postmortem Methamphetamine Blood Concentrations: Three Case Reports. J. Anal. Toxicol. 2013, 37, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Clauwaert, K.M.; Van Bocxlaer, J.F.; De Leenheer, A.P. Stability study of the designer drugs “MDA, MDMA and MDEA” in water, serum, whole blood, and urine under various storage temperatures. Forensic Sci. Int. 2001, 124, 36–42. [Google Scholar] [CrossRef]
- Alsenedi, K.A.; Morrison, C. Determination of amphetamine-type stimulants (ATSs) and synthetic cathinones in urine using solid phase micro-extraction fibre tips and gas chromatography-mass spectrometry. Anal. Methods 2018, 10, 1431–1440. [Google Scholar] [CrossRef]
- da Cunha, K.F.; Eberlin, M.N.; Huestis, M.A.; Costa, J.L. NBOMe instability in whole blood. Forensic Toxicol. 2019, 37, 82–89. [Google Scholar] [CrossRef]
- Caspar, A.T.; Kollas, A.B.; Maurer, H.H.; Meyer, M.R. Development of a quantitative approach in blood plasma for low-dosed hallucinogens and opioids using LC-high resolution mass spectrometry. Talanta 2018, 176, 635–645. [Google Scholar] [CrossRef]
- Gerostamoulos, D.; Glowacki, L.; Pricone, M.; Crump, K.; Di Rago, M.; Joubert, S.; Lynch, M.J.; Woodford, N.W.; Drummer, O.H. Fatal Intoxications from a Combination of 4-Fluoroamphetamine and 25C-NBOMe. J. Anal. Toxicol. 2023, 47, 191–196. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), AH7921: EMCDDA–Europol Joint Report on a New Psychoactive Substance: AH7921 3,4-dichloro-N-{[1-(dimethylamino)cyclohexyl]methyl} benzamide. 2014. Available online: www.emcdda.europa.eu/system/files/publications/816/AH-7921_465209.pdf (accessed on 16 July 2024).
- World Health Organization (WHO). AH-7921 Critical Review Report Agenda item 4.21: Expert Committee on Drug Dependence. In Proceedings of the Thirty-Sixth Meeting, Geneva, Switzerland, 16–20 June 2014. Available online: http://www.who.int/medicines/areas/quality_safety/4_21_review.pdf (accessed on 19 July 2024).
- Karinen, R.; Tuv, S.S.; Rogde, S.; Peres, M.D.; Johansen, U.; Frost, J.; Vindenes, V.; Øiestad, M.L. Lethal poisonings with AH-7921 in combination with other substances. Forensic Sci. Int. 2014, 244, e21–e24. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.P. Fatal Poisoning with a New Phenylethylamine: 4-Methylthioamphetamine (4-MTA). J. Anal. Toxicol. 2000, 24, 85–89. [Google Scholar] [CrossRef] [PubMed]
- De Letter, E.A.; Coopman, V.A.E.; Cordonnier, J.A.C.M.; Piette, M.H.A. One fatal and seven non-fatal cases of 4-methylthioamphetamine (4-MTA) intoxication: Clinico-pathological findings. Int. J. Leg. Med. 2001, 114, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Kueppers, V.B.; Cooke, C.T. 25I-NBOMe related death in Australia: A case report. Forensic Sci. Int. 2015, 249, e15–e18. [Google Scholar] [CrossRef] [PubMed]
- Wiergowski, M.; Aszyk, J.; Kaliszan, M.; Wilczewska, K.; Anand, J.S.; Kot-Wasik, A.; Jankowski, Z. Identification of novel psychoactive substances 25B-NBOMe and 4-CMC in biological material using HPLC-Q-TOF-MS and their quantification in blood using UPLC–MS/MS in case of severe intoxications. J. Chromatogr. B Analyt Technol Biomed Life Sci. 2017, 1041, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Société Française de Toxicologie Analytique (SFTA), Recommandations de la SFTA pour la réalisation des analyses toxicologiques dans les cas de décès impliquant des NPS, SFTA Guidelines for the Achievement of Toxicological Analyzes for Deaths Involving NPS. 2017. Available online: www.RecoSFTApourRCMavecNPS.pdf (accessed on 19 July 2024).
- Epain, M.; Cartiser, N.; Bevalot, F.; Bottinelli, C.; Chatenay, C.; Fanton, L. Alpha-methyltryptamine and 5-(2-methylaminopropyl)-benzofuran (5-MAPB) fatal co-intoxication: Case report and review of literature. Int. J. Leg. Med. 2024, 138, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.; Evans, J. A 3-year review of new psychoactive substances in casework. Forensic Sci. Int. 2014, 243, 55–60. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), MT45: Report on the Risk Assessment of MT-45 in the Framework of the Council Decision on New Psychoactive Substances. 2015. Available online: http://www.emcdda.europa.eu/system/files/publications/1865/TDA%20K14006ENN.pdf (accessed on 19 July 2024).
- Deville, M.; Dubois, N.; Cieckiewicz, E.; De Tullio, P.; Lemaire, E.; Charlier, C. Death following consumption of MDAI and 5-EAPB. Forensic Sci. Int. 2019, 299, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Carter, N.; Rutty, G.N.; Milroy, C.M.; Forrest, A.R.W. Deaths associated with MBDB misuse. Int. J. Leg. Med. 2000, 113, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Zaitsu, K.; Katagi, M.; Kamata, T.; Kamata, H.; Shima, N.; Tsuchihashi, H.; Hayashi, T.; Kuroki, H.; Matoba, R. Determination of a newly encountered designer drug “p-methoxyethylamphetamine” and its metabolites in human urine and blood. Forensic Sci. Int. 2008, 177, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Balíková, M. Nonfatal and fatal DOB (2,5-dimethoxy-4-bromamphetamine) overdose. Forensic Sci. Int. 2005, 153, 85–91. [Google Scholar] [CrossRef] [PubMed]
- De Letter, E.A.; Lambert, W.E.; Bouche, M.-P.L.A.; Cordonnier, J.A.C.M.; Van Bocxlaer, J.F.; Piette, M.H.A. Postmortem distribution of 3,4-methylenedioxy-N,N-dimethyl-amphetamine (MDDM or MDDA) in a fatal MDMA overdose. Int. J. Leg. Med. 2007, 121, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Morini, L.; Bernini, M.; Vezzoli, S.; Restori, M.; Moretti, M.; Crenna, S.; Papa, P.; Locatelli, C.; Osculati, A.M.M.; Vignali, C.; et al. Death after 25C-NBOMe and 25H-NBOMe consumption. Forensic Sci. Int. 2017, 279, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Poklis, J.L.; Devers, K.G.; Arbefeville, E.F.; Pearson, J.M.; Houston, E.; Poklis, A. Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci. Int. 2014, 234, e14–e20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andreasen, M.F.; Telving, R.; Rosendal, I.; Eg, M.B.; Hasselstrøm, J.B.; Andersen, L.V. A fatal poisoning involving 25C-NBOMe. Forensic Sci. Int. 2015, 251, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Curtis, B.; Kemp, P.; Harty, L.; Choi, C.; Christensen, D. Postmortem identification and quantitation of 2,5-dimethoxy-4-n-propylthiophenethylamine using GC-MSD and GC-NPD. J. Anal. Toxicol. 2003, 27, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, V.; Sundermann, T.R.; Landmann, A.; Rechtsteiner, S.; Schmitt, G.; Bartel, M. Simultaneous Determination of 5- and 6-APB in Blood, Other Body Fluids, Hair and Various Tissues by HPLC--MS-MS. J. Anal. Toxicol. 2022, 46, 264–269. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; Gary, R.D.; Trochta, A.; Stolberg, S.; Stabley, R. Acute 5-(2-aminopropyl)benzofuran (5-APB) intoxication and fatality: A case report with postmortem concentrations. J. Anal. Toxicol. 2015, 39, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Theofel, N.; Budach, D.; Vejmelka, E.; Scholtis, S.; Tsokos, M. Toxicological investigations in a death involving 2-MAPB. Forensic Sci. Med. Pathol. 2021, 17, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Shintani-Ishida, K.; Saka, K.; Nakamura, M.; Yoshida, K.; Ikegaya, H. Experimental Study on the Postmortem Redistribution of the Substituted Phenethylamine, 25B-NBOMe. J. Forensic Sci. 2018, 63, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Dearden, J.C. Prediction of physicochemical properties. Methods Mol. Biol. 2012, 929, 93–138. [Google Scholar] [CrossRef] [PubMed]
- Shimshoni, J.A.; Sobol, E.; Golan, E.; Ben Ari, Y.; Gal, O. Pharmacokinetic and pharmacodynamic evaluation of 5-methoxy-2-aminoindane (MEAI): A new binge-mitigating agent. Toxicol. Appl. Pharmacol. 2018, 343, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Mestria, S.; Odoardi, S.; Federici, S.; Bilel, S.; Tirri, M.; Marti, M.; Rossi, S.S. Metabolism Study of N-Methyl 2-Aminoindane (NM2AI) and Determination of Metabolites in Biological Samples by LC–HRMS. J. Anal. Toxicol. 2020, 45, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.K.; Felske, C.; Eckstein, N.; Meyer, M.R. The metabolic fate of two new psychoactive substances − 2-aminoindane and N-methyl-2-aminoindane—Studied in vitro and in vivo to support drug testing. Drug Test. Anal. 2019, 12, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Soh, Y.N.A.; Elliott, S. An investigation of the stability of emerging new psychoactive substances. Drug Test. Anal. 2014, 6, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Maskell, P.; Smith, P.; Cole, R.; Hikin, L.; Morley, S. Seven fatalities associated with ethylphenidate. Forensic Sci. Int. 2016, 265, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Corkery, J.M.; Elliott, S.; Schifano, F.; Corazza, O.; Ghodse, A.H. MDAI (5,6-methylenedioxy-2-aminoindane; 6,7-dihydro-5H-cyclopenta[f][1,3]benzodioxol-6-amine; ‘sparkle’; ‘mindy’) toxicity: A brief overview and update. Hum. Psychopharmacol. Clin. Exp. 2013, 28, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Staeheli, S.N.; Boxler, M.I.; Oestreich, A.; Marti, M.; Gascho, D.; Bolliger, S.A.; Kraemer, T.; Steuer, A.E. Postmortem distribution and redistribution of MDAI and 2-MAPB in blood and alternative matrices. Forensic Sci. Int. 2017, 279, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Wurita, A.; Minakata, K.; Gonmori, K.; Nozawa, H.; Yamagishi, I.; Watanabe, K.; Suzuki, O. Postmortem distribution of AB-CHMINACA, 5-fluoro-AMB, and diphenidine in body fluids and solid tissues in a fatal poisoning case: Usefulness of adipose tissue for detection of the drugs in unchanged forms. Forensic Toxicol. 2015, 33, 45–53. [Google Scholar] [CrossRef]
- Kudo, K.; Usumoto, Y.; Kikura-Hanajiri, R.; Sameshima, N.; Tsuji, A.; Ikeda, N. A fatal case of poisoning related to new cathinone designer drugs, 4-methoxy PV8, PV9, and 4-methoxy PV9, and a dissociative agent, diphenidine. Leg. Med. 2015, 17, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Bottinelli, C.; Cartiser, N.; Gaillard, Y.; Boyer, B.; Bévalot, F. A fatal case of 3-methylmethcathinone (3-MMC) poisoning. Toxicol. Anal. Clin. 2017, 29, 123–129. [Google Scholar] [CrossRef]
- Palazzoli, F.; Santunione, A.; Verri, P.; Vandelli, D.; Silingardi, E. Post-mortem distribution of mephedrone and its metabolites in body fluids and organ tissues of an intoxication case. J. Pharm. Biomed. Anal. 2021, 201, 114093. [Google Scholar] [CrossRef] [PubMed]
- Braham, M.Y.; Franchi, A.; Cartiser, N.; Bévalot, F.; Bottinelli, C.M.; Fabrizi, H.; Fanton, L. Fatal 4-MEC Intoxication: Case Report and Review of Literature. Am. J. Forensic Med. Pathol. 2020, 42, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Benedicte, L.; Camille, R.; Audrey, C.; Deborah, I.; Morgan, B.; Marie, D.; David, B.; Delphine, A.; Severine, F.; Guillaume, D.; et al. Case report on two-cathinones abuse: MPHP and N-ethyl-4′methylnorpentedrone, with a fatal outcome. Forensic Toxicol. 2020, 38, 243–254. [Google Scholar] [CrossRef]
- Marinetti, L.J.; Antonides, H.M. Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: Method development, drug distribution and interpretation of results. J. Anal. Toxicol. 2013, 37, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Strehmel, N.; Vejmelka, E.; Kastner, K.; Roscher, S.; Tsokos, M.; Scholtis, S. NPS-findings in forensic toxicology—Three case reports. Toxichem. Krimtech. 2017, 84, 199–204. [Google Scholar]
- Yonemitsu, K.; Sasao, A.; Mishima, S.; Ohtsu, Y.; Nishitani, Y. A fatal poisoning case by intravenous injection of “bath salts” containing acetyl fentanyl and 4-methoxy PV8. Forensic Sci. Int. 2016, 267, e6–e9. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.M.; Hargraves, T.L.; Hair, L.S.; Massucci, C.J.; Frazee, C.C.; Garg, U.; Pietak, B.R. Three fatal intoxications due to methylone. J. Anal. Toxicol. 2012, 36, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, E.T.; Briones, A.J.; Warren, W.S.; Addison, J.W.; Knittel, J.L.; Shoemaker, S.A.; King, T.D.; Bosy, T.Z. Case Report of Methylone, Oxymorphone and Ethanol in a Fatality Case with Tissue Distribution. J. Anal. Toxicol. 2016, 40, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Cawrse, B.M.; Levine, B.; Jufer, R.A.; Fowler, D.R.; Vorce, S.P.; Dickson, A.J.; Holler, J.M. Distribution of methylone in four postmortem cases. J. Anal. Toxicol. 2012, 36, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Corey; Lightfoot, A.; Lavins, E.S.; Niblo, C.A.; Wyman, J.F.; Meditz, C.M.; Mazzola, C.D.; Schueler, H.E.; Gilson, T.P. Methylone Induced Death: Distribution of Methylone in Postmortem fluids ad Tissues. 2014 SOFT-TIAFT Meeting, Boca Raton, FL. Programme book, P-70. 2014; Available online: https://www.soft-tox.org/assets/docs/SOFT_2014_meeting_abstracts.pdf (accessed on 21 September 2024).
- Rojek, S.; Kłys, M.; Strona, M.; Maciów, M.; Kula, K. “Legal highs”—Toxicity in the clinical and medico-legal aspect as exemplified by suicide with bk-MBDB administration. Forensic Sci. Int. 2012, 222, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; Hamm, C.E.; Sherrard, J.L.; Gary, R.D.; Burton, C.G.; Mena, O. Acute 3,4-methylenedioxy-N-ethylcathinone (Ethylone) intoxication and related fatality: A case report with postmortem concentrations. J. Anal. Toxicol. 2015, 39, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Poston, A.; Jufer-Phipps, R.A.; Levine, B.S. Postmortem distribution of N ethylpentylone. In Proceedings of the 2017 SOFT-TIAFT Meeting, Grand Rapids, MI, USA, 9–14 September 2017; pp. 460–461. Available online: https://www.soft-tox.org/assets/docs/SOFT_2017_meeting_abstracts.pdf (accessed on 21 September 2024).
- Sykutera, M.; Cychowska, M.; Bloch-Boguslawska, E. A Fatal Case of Pentedrone and -Pyrrolidinovalerophenone Poisoning. J. Anal. Toxicol. 2015, 39, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Cartiser, N.; Sahy, A.; Advenier, A.-S.; Franchi, A.; Revelut, K.; Bottinelli, C.; Bévalot, F.; Fanton, L. Fatal intoxication involving 4-methylpentedrone (4-MPD) in a context of chemsex. Forensic Sci. Int. 2021, 319, 110659. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, M.; Celiński, R.; Kowalska, T.; Sajewicz, M. Fatal case of poisoning with a new cathinone derivative: α-propylaminopentiophenone (N-PP). Forensic Toxicol. 2018, 36, 525–533. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wurita, A.; Hasegawa, K.; Minakata, K.; Gonmori, K.; Nozawa, H.; Yamagishi, I.; Suzuki, O.; Watanabe, K. Postmortem distribution of α-pyrrolidinobutiophenone in body fluids and solid tissues of a human cadaver. Leg. Med. 2014, 16, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Potocka-Banaś, B.; Janus, T.; Majdanik, S.; Banaś, T.; Dembińska, T.; Borowiak, K. Fatal Intoxication with α-PVP, a Synthetic Cathinone Derivative. J. Forensic Sci. 2017, 62, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Suzuki, O.; Wurita, A.; Minakata, K.; Yamagishi, I.; Nozawa, H.; Gonmori, K.; Watanabe, K. Postmortem distribution of α-pyrrolidinovalerophenone and its metabolite in body fluids and solid tissues in a fatal poisoning case measured by LC–MS–MS with the standard addition method. Forensic Toxicol. 2014, 32, 225–234. [Google Scholar] [CrossRef]
- Wachholz, P.; Celiński, R.; Bujak-Giżycka, B.; Skowronek, R.; Pawlas, N. A fatal case of poisoning with a cathinone derivative: α-PiHP and its postmortem distribution in body fluids and organ tissues. J Anal Toxicol. 2023, 47, 547–551. [Google Scholar] [CrossRef]
- Hobbs, J.M.; DeRienz, R.T.; Baker, D.D.; Shuttleworth, M.R.; Pandey, M. Fatal Intoxication by the Novel Cathinone 4-Fluoro-3-methyl-α-PVP. J. Anal. Toxicol. 2022, 46, e101–e104. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, A.; Adachi, N.; Shojo, H. Detection of 4-FMC, 4-MeO-α-PVP, 4-F-α-PVP, and PV8 in blood in a forensic case using liquid chromatography–electrospray ionization linear ion trap mass spectrometry. Forensic Sci. Int. 2021, 325, 110888. [Google Scholar] [CrossRef] [PubMed]
- Wink, C.S.D.; Michely, J.A.; Jacobsen-Bauer, A.; Zapp, J.; Maurer, H.H. Diphenidine, a new psychoactive substance: Metabolic fate elucidated with rat urine and human liver preparations and detectability in urine using GC-MS, LC-MSn, and LC-HR-MSn. Drug Test. Anal. 2016, 8, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Beck, O.; Bäckberg, M. Intoxications by the dissociative new psychoactive substances diphenidine and methoxphenidine. Clin. Toxicol. 2015, 53, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Kusano, M.; Zaitsu, K.; Taki, K.; Hisatsune, K.; Nakajima, J.; Moriyasu, T.; Asano, T.; Hayashi, Y.; Tsuchihashi, H.; Ishii, A. Fatal intoxication by 5F–ADB and diphenidine: Detection, quantification, and investigation of their main metabolic pathways in humans by LC/MS/MS and LC/Q-TOFMS. Drug Test. Anal. 2018, 10, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Ferec, S.; Gegu, C.; Bruneau, C.; Leroux, G.; Abbara, C.; Lelievre, B.; Boels, D.; Bretaudeau, M.; Turcant, A. Méthiopropamine, méthoxphénidine, diphénidine, D2PM, 5-MeO-DALT: À propos de nouveaux cas d’exposition unique ou en polyconsommation. Toxicol. Anal. Clin. 2015, 27, 2. [Google Scholar] [CrossRef]
- Elliott, S.P.; Brandt, S.D.; Wallach, J.; Morris, H.; Kavanagh, P.V. First Reported Fatalities Associated with the 'Research Chemical' 2-Methoxydiphenidine. J. Anal. Toxicol. 2015, 39, 287–293. [Google Scholar] [CrossRef]
- Shimshoni, J.A.; Britzi, M.; Sobol, E.; Willenz, U.; Nutt, D.; Edery, N. 3-Methyl-methcathinone: Pharmacokinetic profile evaluation in pigs in relation to pharmacodynamics. J. Psychopharmacol. 2015, 29, 734–743. [Google Scholar] [CrossRef]
- López-Arnau, R.; Martínez-Clemente, J.; Carbó; M l Pubill, D.; Escubedo, E.; Camarasa, J. An integrated pharmacokinetic and pharmacodynamic study of a new drug of abuse, methylone, a synthetic cathinone sold as “bath salts”. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 64–72. [Google Scholar] [CrossRef]
- Martínez-Clemente, J.; López-Arnau, R.; Carbó, M.; Pubill, D.; Camarasa, J.; Escubedo, E. Mephedrone pharmacokinetics after intravenous and oral administration in rats: Relation to pharmacodynamics. Psychopharmacology 2013, 229, 295–306. [Google Scholar] [CrossRef]
- Dams, R.; De Letter, E.; Mortier, K.; Cordonnier, J.; Lambert, W.; Piette, M.; Van Calenbergh, S.; De Leenheer, A. Fatality due to combined use of the designer drugs MDMA and PMA: A distribution study. J. Anal. Toxicol. 2003, 27, 318–323. [Google Scholar] [CrossRef] [PubMed]
- A De Letter, E.; Bouche, M.-P.L.; Van Bocxlaer, J.F.; E Lambert, W.; Piette, M.H. Interpretation of a 3,4-methylenedioxymethamphetamine (MDMA) blood level: Discussion by means of a distribution study in two fatalities. Forensic Sci. Int. 2004, 141, 85–90. [Google Scholar] [CrossRef] [PubMed]
- De Letter, E.A.; Clauwaert, K.M.; Lambert, W.E.; Van Bocxlaer, J.F.; De Leenheer, A.P.; Piette, M.H.A. Distribution study of 3,4- methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine in a fatal overdose. J. Anal. Toxicol. 2002, 26, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.; Weiss, E.; Harruff, R. Case report: Distribution of methamphetamine in a massive fatal ingestion. J. Forensic Sci. 1996, 41, 322–323. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, K.; Mikuma, T.; Kuwayama, K.; Miyaguchi, H.; Kanamori, T.; Iwata, Y.T.; Inoue, H. Degradation pathways of 4-methylmethcathinone in alkaline solution and stability of methcathinone analogs in various pH solutions. Forensic Sci. Int. 2012, 220, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Glicksberg, L.; Kerrigan, S. Stability of Synthetic Cathinones in Blood. J. Anal. Toxicol. 2017, 41, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.K. Determination of cathinones and related ephedrines in forensic whole-blood samples by liquid-chromatography–electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 727–736. [Google Scholar] [CrossRef]
- Adamowicz, P.; Malczyk, A. Stability of synthetic cathinones in blood and urine. Forensic Sci. Int. 2019, 295, 36–45. [Google Scholar] [CrossRef] [PubMed]
- López-Arnau, R.; Martínez-Clemente, J.; Carbó; M l Pubill, D.; Escubedo, E.; Camarasa, J. Extended Stability Evaluation of Selected Cathinones. Front. Chem. 2020, 8, 597726. [Google Scholar] [CrossRef] [PubMed]
- Glicksberg, L.; Rana, S.; Kerrigan, S. Cathinone stability in authentic urine specimens. Forensic Sci. Int. 2018, 286, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.P.; Ferro, R.A.; Milhazes, M.; Figueira, M.; Caldeira, M.J.; Antunes, A.M.M.; Gaspar, H. Metabolic stability and metabolite profiling of emerging synthetic cathinones. Front. Pharmacol. 2023, 14, 1145140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aldubayyan, A.A.; Castrignanò, E.; Elliott, S.; Abbate, V. Influence of long-term storage temperatures and sodium fluoride preservation on the stability of synthetic cathinones and dihydro-metabolites in human whole blood. Forensic Toxicol. 2023, 41, 81–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aldubayyan, A.A.; Castrignanò, E.; Elliott, S.; Abbate, V. Short- and long-term stability of synthetic cathinones and dihydro-metabolites in human urine samples. Forensic Toxicol. 2024, 42, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, P. Blood concentrations of synthetic cathinones. Clin. Toxicol. 2021, 59, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.K.; Banaszkiewicz, L.; Wiergowski, M.; Tomczak, E.; Kata, M.; Szpiech, B.; Biziuk, M. Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood. Forensic Toxicol. 2020, 38, 42–58. [Google Scholar] [CrossRef]
- Kubo, S.-I.; Waters, B.; Hara, K.; Fukunaga, T.; Ikematsu, K. A report of novel psychoactive substances in forensic autopsy cases and a review of fatal cases in the literature. Leg. Med. 2017, 26, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Namera, A.; Urabe, S.; Saito, T.; Torikoshi-Hatano, A.; Shiraishi, H.; Arima, Y.; Nagao, M. A fatal case of 3,4-methylenedioxypyrovalerone poisoning: Coexistence of α-pyrrolidinobutiophenone and α-pyrrolidinovalerophenone in blood and/or hair. Forensic Toxicol. 2013, 31, 338–343. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Wojcieszak, J. α-Pyrrolidinophenones: A new wave of designer cathinones. Forensic Toxicol. 2017, 35, 201–216. [Google Scholar] [CrossRef]
- Beck, O.; Bäckberg, M.; Signell, P.; Helander, A. Intoxications in the STRIDA project involving a panorama of psychostimulant pyrovalerone derivatives, MDPV copycats. Clin. Toxicol. 2017, 56, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Pieprzyca, E.; Skowronek, R.; Korczyńska, M.; Kulikowska, J.; Chowaniec, M. A two fatal cases of poisoning involving new cathinone derivative PV8. Leg. Med. 2018, 33, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Kovács, K.; Kereszty, E.; Berkecz, R.; Tiszlavicz, L.; Sija, E.; Körmöczi, T.; Jenei, N.; Révész-Schmehl, H.; Institóris, L. Fatal intoxication of a regular drug user following N-ethyl-hexedrone and ADB-FUBINACA consumption. J. Forensic Leg. Med. 2019, 65, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Krotulski, A.J.; Papsun, D.M.; De Martinis, B.S.; A Mohr, A.L.; Logan, B.K. N-Ethyl Pentylone (Ephylone) Intoxications: Quantitative Confirmation and Metabolite Identification in Authentic Human Biological Specimens. J. Anal. Toxicol. 2018, 42, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Mercieca, G.; Odoardi, S.; Cassar, M.; Rossi, S.S. Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS. J. Pharm. Biomed. Anal. 2018, 149, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, P.; Hydzik, P. Fetal death associated with the use of 3,4-MDPHP and α-PHP. Clin. Toxicol. 2018, 57, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Di Candia, D.; Boracchi, M.; Ciprandi, B.; Giordano, G.; Zoja, R. A unique case of death by MDPHP with no other co-ingestion: A forensic toxicology case. Int. J. Leg. Med. 2022, 136, 1291–1296. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grumann, C.; Huppertz, L.M.; Bisel, P.; Angerer, V.; Auwärter, V. Method validation and preliminary pharmacokinetic studies on the new designer stimulant 3-fluorophenmetrazine (3-FPM). Drug Test. Anal. 2019, 11, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Raisi, A.; Beckett, A.H. Identification and quantitative analysis of phendimetrazine and some of its metabolites in biological fluids. Monatshefte Fuer Chemie/Chemical Mon. 1986, 117, 1047–1055. [Google Scholar] [CrossRef]
- Rossi, S.S.; de la Torre, X.; Botrè, F. A fast gas chromatography/mass spectrometry method for the determination of stimulants and narcotics in urine. Rapid Commun. Mass Spectrom. 2010, 24, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Norheim, G. A Fatal Case of Phenmetrazine Poisoning. J. Forensic Sci. Soc. 1973, 13, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Bäckberg, M.; Westerbergh, J.; Beck, O.; Helander, A. Adverse events related to the new psychoactive substance 3-fluorophenmetrazine—Results from the Swedish STRIDA project. Clin. Toxicol. 2016, 54, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Bonnichsen, R.; Maehly, A.C.; Ryhage, R.; Schubert, B. Determination and identification of sympathomimetic amines in blood samples from drivers by a combination of gas chromatography and mass spectrometry. Zeitschrift fur Rechtsmedizin. J. Leg. Med. 1970, 67, 19–26. [Google Scholar]
- Musshoff, F.; Padosch, S.; Steinborn, S.; Madea, B. Fatal blood and tissue concentrations of more than 200 drugs. Forensic Sci. Int. 2004, 142, 161–210. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, L.; Cravey, R.H. Toxicological and Pathological Studies on Psychoactive Drug-Induced Deaths; Biomedical Publications: Irving, CA, USA, 1980. [Google Scholar]
- Hood, I.; Monforte, J.; Gault, R.; Mirchandani, H. Fatality from illicit phendimetrazine use. J. Toxicol. Clin. Toxicol. 1988, 26, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Ellefsen, K.N.; A Taylor, E.; Simmons, P.; Willoughby, V.; Hall, B.J. Multiple Drug-Toxicity Involving Novel Psychoactive Substances, 3-Fluorophenmetrazine and U-47700. J. Anal. Toxicol. 2017, 41, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, S.; Sczyslo, A.; Froch-Cortis, J.; Rothschild, M.A.; Thevis, M.; Andresen-Streichert, H.; Mercer-Chalmers-Bender, K. Organ distribution of diclazepam, pyrazolam and 3-fluorophenmetrazine. Forensic Sci. Int. 2019, 303, 109959. [Google Scholar] [CrossRef] [PubMed]
- Souto, C.; Göethel, G.; Peruzzi, C.P.; Cestonaro, L.V.; Garcia, I.; Ávila, D.S.; Eifler-Lima, V.; Carmo, H.; Bastos, M.d.L.; Garcia, S.C.; et al. Piperazine designer drugs elicit toxicity in the alternative in vivo model Caenorhabditis elegans. J. Appl. Toxicol. 2020, 40, 363–372. [Google Scholar] [CrossRef]
- Cantrell, F.L.; Ogera, P.; Mallett, P.; McIntyre, I.M. Fatal oral methylphenidate intoxication with postmortem concentrations. J. Forensic Sci. 2014, 59, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Theofel, N.; Möller, P.; Vejmelka, E.; Kastner, K.; Roscher, S.; Scholtis, S.; Tsokos, M. A Fatal Case Involving N-Ethyldeschloroketamine (2-Oxo-PCE) and Venlafaxine. J. Anal. Toxicol. 2019, 43, e2–e6. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; Trochta, A.; Gary, R.D.; Storey, A.; Corneal, J.; Schaber, B. A Fatality Related to Two Novel Hallucinogenic Compounds: 4-Methoxyphencyclidine and 4-Hydroxy-N-methyl-N-ethyltryptamine. J. Anal. Toxicol. 2015, 39, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Seetohul, L.N.; Pounder, D.J. Four Fatalities Involving 5-IT. J. Anal. Toxicol. 2013, 37, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Timko, C.; Phipps, R.J.; Southall, P.; Fowler, D. Postmortem Distribution of N,N-Dipropyltryptamine in an Intoxication Case. 2019 SOFT Anual Meeting, San Antonio, TX, USA, 2019; p. 85. Available online: https://www.SOFT_2019_meeting_abstracts.pdf (accessed on 21 September 2024).
- McIntyre, I.M.; Trochta, A.; Stolberg, S.; Campman, S.C. Mitragynine ‘kratom’ related fatality: A case report with postmortem concentrations. J. Anal. Toxicol. 2015, 39, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Mata, D.C.; Chang, H.H. Postmortem Mitragynine Distribution in a Single Drug Fatality Case. Acad. Forensic Pathol. 2023, 13, 34–40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crichton, M.L.; Shenton, C.F.; Drummond, G.; Beer, L.J.; Seetohul, L.N.; Maskell, P.D. Analysis of phenazepam and 3-hydroxyphenazepam in post-mortem fluids and tissues. Drug Test. Anal. 2015, 7, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, A.; Sommer, M.J.; Wilde, M.; Perdekamp, M.G.; Auwärter, V. A case of fatal multidrug intoxication involving flualprazolam: Distribution in body fluids and solid tissues. Forensic Toxicol. 2023, 40, 180–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kolbe, V.; Rentsch, D.; Boy, D.; Schmidt, B.; Kegler, R.; Büttner, A. The adulterated XANAX pill: A fatal intoxication with etizolam and caffeine. Int. J. Leg. Med. 2020, 134, 1727–1731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gevorkyan, J.; Kinyua, J.; Pearring, S.; Rodda, L.N. A Case Series of Etizolam in Opioid-Related Deaths. J. Anal. Toxicol. 2021, 45, E4–E17. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Lintemoot, J.; Montero, T.; Anderson, D. Etizolam: There’s a New Benzodiazepine in Town. 2014 SOFT-TIAFT Meeting, Grand Rapids, MI, USA, S-29. 2014. Available online: http://www.soft-tox.org/assets/docs/SOFT_2014_meeting_abstracts.pdf (accessed on 21 September 2024).
- Staack, R.F.; Maurer, H.H. Metabolism of Designer Drugs of Abuse. Curr. Drug Metab. 2005, 6, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Antia, U.; Tingle, M.D.; Russell, B.R. Validation of an LC–MS method for the detection and quantification of BZP and TFMPP and their hydroxylated metabolites in human plasma and its application to the pharmacokinetic study of TFMPP in humans*. J. Forensic Sci. 2010, 55, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Peters, F.T.; Schaefer, S.; Staack, R.F.; Kraemer, T.; Maurer, H.H. Screening for and validated quantification of amphetamines and of amphetamine- and piperazine-derived designer drugs in human blood plasma by gas chromatography/mass spectrometry. J. Mass Spectrom. 2003, 38, 659–676. [Google Scholar] [CrossRef] [PubMed]
- Al-Saffar, Y.; Stephanson, N.N.; Beck, O. Multicomponent LC–MS/MS screening method for detection of new psychoactive drugs, legal highs, in urine—Experience from the Swedish population. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 930, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Lau, T.; LeBlanc, R.; Botch-Jones, S. Stability of Synthetic Piperazines in Human Whole Blood. J. Anal. Toxicol. 2018, 42, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, S.; Kieliba, T.; Thevis, M.; Rothschild, M.A.; Mercer-Chalmers-Bender, K. Fatalities associated with NPS stimulants in the Greater Cologne area. Int. J. Leg. Med. 2020, 134, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.; Smith, C. Investigation of the first deaths in the United Kingdom involving the detection and quantitation of the piperazines BZP and 3-TFMPP. J. Anal. Toxicol. 2008, 32, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J. Metabolomics of Methylphenidate and Ethylphenidate: Implications in Pharmacological and Toxicological Effects. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Josefsson, M.; Rydberg, I. Determination of methylphenidate and ritalinic acid in blood, plasma and oral fluid from adolescents and adults using protein precipitation and liquid chromatography tandem mass spectrometry—A method applied on clinical and forensic investigations. J. Pharm. Biomed. Anal. 2011, 55, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Karinen, R.; Øiestad, E.L.; Andresen, W.; Wethe, G.; Smith-Kielland, A.; Christophersen, A. Comparison of ethanol and other drugs of abuse concentrations in whole blood stored in venoject(R) glass and plastic and venosafe plastic evacuated tubes. J. Anal. Toxicol. 2010, 34, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-J.; Patrick, K.S.; Markowitz, J.S. Enantiospecific determination of DL-methylphenidate and DL-ethylphenidate in plasma by liquid chromatography—Tandem mass spectrometry: Application to human ethanol interactions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 783–788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levine, B.; Caplan, Y.H.; Kauffman, G. Fatality resulting from methylphenidate overdose. J. Anal. Toxicol. 1986, 10, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, R.; Rasmussen, H.B.; Linnet, K. The INDICES consortium enantioselective determination of methylphenidate and ritalinic acid in whole blood from forensic cases using automated solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2012, 36, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Charreteur, R.; Gerardin, M.; Faucherre, V.; Xatart, S.; Eiden, C.; Vigneau, C.; Peyrière, H. Serious Complications Associated With the Injection of Ethylphenidate: 2 Case Reports. J. Clin. Psychopharmacol. 2020, 40, 87–89. [Google Scholar] [CrossRef]
- Parks, C.; McKeown, D.; Torrance, H.J. A review of ethylphenidate in deaths in east and west Scotland. Forensic Sci. Int. 2015, 257, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Shoff, E.N.; Kahl, J.H.; Hime, G.W.; Coburn, M.; Boland, D.M. 4-Fluoromethylphenidate: Fatal Intoxication Involving a Previously Unreported Novel Psychoactive Substance in the USA. J. Anal. Toxicol. 2019, 43, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Corkery, J.M.; Schifano, F. First Death Involving 4-Fluoroethylphenidate (4F-EPH): Case Report, User Experiences, and Review of the Related Literature. Acad. Forensic Pathol. 2022, 12, 149–166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pelletier, R.; Le Daré, B.; Le Bouëdec, D.; Kernalléguen, A.; Ferron, P.-J.; Morel, I.; Gicquel, T. Arylcyclohexylamine Derivatives: Pharmacokinetic, Pharmacodynamic, Clinical and Forensic Aspects. Int. J. Mol. Sci. 2022, 23, 15574. [Google Scholar] [CrossRef]
- Hijazi, Y.; Bolon, M.; Boulieu, R. Stability of ketamine and its metabolites norketamine and dehydronorketamine in human biological samples. Clin. Chem. 2001, 47, 1713–1715. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, A.; Costantino, A.; Lappas, N. Stability of phencyclidine in stored blood samples. J. Anal. Toxicol. 1998, 22, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.; Boehmer, A.; Madea, B.; Maas, A. Death cases involving certain new psychoactive substances: A review of the literature. Forensic Sci. Int. 2019, 298, 186–267. [Google Scholar] [CrossRef] [PubMed]
- Copeland, C.S.; Hudson, S.; Treble, R.; Hamnett, H.J. The First Fatal Intoxication with 3-MeO-PCP in the UK and a Review of the Literature. J. Anal. Toxicol. 2022, 46, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Gicquel, T.; Richeval, C.; Mesli, V.; Gish, A.; Hakim, F.; Pelletier, R.; Cornez, R.; Balgairies, A.; Allorge, D.; Gaulier, J.-M. Fatal intoxication related to two new arylcyclohexylamine derivatives (2F-DCK and 3-MeO-PCE). Forensic Sci. Int. 2021, 324, 110852. [Google Scholar] [CrossRef] [PubMed]
- Wikström, M.; Thelander, G.; Dahlgren, M.; Kronstrand, R. An Accidental Fatal Intoxication with Methoxetamine. J. Anal. Toxicol. 2013, 37, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Wiergowski, M.; Anand, J.S.; Krzyżanowski, M.; Jankowski, Z. Acute methoxetamine and amphetamine poisoning with fatal outcome: A case report. Int. J. Occup. Med. Environ. Health 2014, 27, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, B.R.; Wallage, H.R. Postmortem blood ketamine distribution in two fatalities. J. Anal. Toxicol. 2004, 28, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.D.; Kavanagh, P.V.; Westphal, F.; Stratford, A.; Elliott, S.P.; Hoang, K.; Wallach, J.; Halberstadt, A.L. Return of the lysergamides. Part I: Analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD). Drug Test. Anal. 2016, 8, 891–902. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandt, S.D.; Kavanagh, P.V.; Westphal, F.; Elliott, S.P.; Wallach, J.; Colestock, T.; Burrow, T.E.; Chapman, S.J.; Stratford, A.; Nichols, D.E.; et al. Return of the lysergamides. Part II: Analytical and behavioural characterization of N6-allyl-6-norlysergic acid diethylamide (AL-LAD) and (2’S,4’S)-lysergic acid 2,4-dimethylazetidide (LSZ). Drug Test. Anal. 2016, 9, 38–50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandt, S.D.; Kavanagh, P.V.; Westphal, F.; Elliott, S.P.; Wallach, J.; Stratford, A.; Nichols, D.E.; Halberstadt, A.L. Return of the lysergamides. Part III: Analytical characterization of N6-ethyl-6-norlysergic acid diethylamide (ETH-LAD) and 1-propionyl ETH-LAD (1P–ETH-LAD). Drug Test. Anal. 2017, 9, 1641–1649. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandt, S.D.; Kavanagh, P.V.; Twamley, B.; Westphal, F.; Elliott, S.P.; Wallach, J.; Stratford, A.; Klein, L.M.; McCorvy, J.D.; Nichols, D.E.; et al. Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775). Drug Test. Anal. 2018, 10, 310–322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandt, S.D.; Kavanagh, P.V.; Westphal, F.; Stratford, A.; Elliott, S.P.; Dowling, G.; Wallach, J.; Halberstadt, A.L. Return of the lysergamides. Part V: Analytical and behavioural characterization of 1-butanoyl-d-lysergic acid diethylamide (1B-LSD). Drug Test. Anal. 2019, 11, 1122–1133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandt, S.D.; Kavanagh, P.V.; Westphal, F.; Stratford, A.; Odland, A.U.; Klein, A.K.; Dowling, G.; Dempster, N.M.; Wallach, J.; Passie, T.; et al. Return of the lysergamides. Part VI: Analytical and behavioural characterization of 1-cyclopropanoyl-d-lysergic acid diethylamide (1CP-LSD). Drug Test. Anal. 2020, 12, 812–826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandt, S.D.; Kavanagh, P.V.; Westphal, F.; Pulver, B.; Morton, K.; Stratford, A.; Dowling, G.; Halberstadt, A.L. Return of the lysergamides. Part VII: Analytical and behavioural characterization of 1-valeroyl-d-lysergic acid diethylamide (1V-LSD). Drug Test. Anal. 2022, 14, 733–740. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Junior, L.F.N.; Fabris, A.L.; Barbosa, I.L.; Ponce, J.d.C.; Martins, A.F.; Costa, J.L.; Yonamine, M. Lucy is back in Brazil with a new dress. Forensic Sci. Int. 2022, 341, 111497. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Kawamura, M.; Mizutani, S.; Kikura-Hanajiri, R. Identification of LSD analogs, 1cP-AL-LAD, 1cP-MIPLA, 1V-LSD and LSZ in sheet products. Forensic Toxicol. 2023, 41, 294–303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, R.; Kawamura, M.; Mizutani, S.; Kikura-Hanajiri, R. Characterization of the lysergic acid diethylamide analog, 1-(thiophene-2-carbonyl)-N,N-diethyllysergamide (1T-LSD) from a blotter product. Drug Test. Anal. 2024, 16, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Segawa, H.; Yamamuro, T.; Kuwayama, K.; Tsujikawa, K.; Kanamori, T.; Iwata, Y.T. Synthesis and analytical characterization of 1-(2-thienoyl)-6-allyl-nor-d-lysergic acid diethylamide (1T-AL-LAD). Drug Test. Anal. 2024. [Google Scholar] [CrossRef] [PubMed]
- Halberstadt, A.L.; Chatha, M.; Klein, A.K.; McCorvy, J.D.; Meyer, M.R.; Wagmann, L.; Stratford, A.; Brandt, S.D. Pharmacological and biotransformation studies of 1-acyl-substituted derivatives of D-lysergic acid diethylamide (LSD). Neuropharmacology 2019, 172, 107856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin, R.; Schürenkamp, J.; Gasse, A.; Pfeiffer, H.; Köhler, H. Determination of psilocin, bufotenine, LSD and its metabolites in serum, plasma and urine by SPE-LC-MS/MS. Int. J. Leg. Med. 2013, 127, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Francom, P.; Andrenyak, D.; Lim, H.-K.; Bridges, R.R.; Foltz, R.L.; Jones, R.T. Determination of LSD in urine by capillary column gas chromatography and electron impact mass spectrometry. J. Anal. Toxicol. 1988, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wagmann, L.; Richter, L.H.J.; Kehl, T.; Wack, F.; Bergstrand, M.P.; Brandt, S.D.; Stratford, A.; Maurer, H.H.; Meyer, M.R. In vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures. Anal. Bioanal. Chem. 2019, 411, 4751–4763. [Google Scholar] [CrossRef] [PubMed]
- Fysh, R.; Oon, M.; Robinson, K.; Smith; White, P.; Whitehouse, M. A fatal poisoning with LSD. Forensic Sci. Int. 1985, 28, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Mardal, M.; Johansen, S.S.; Thomsen, R.; Linnet, K. Advantages of analyzing postmortem brain samples in routine forensic drug screening—Case series of three non-natural deaths tested positive for lysergic acid diethylamide (LSD). Forensic Sci. Int. 2017, 278, e14–e18. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J. Metabolism of psilocybin and psilocin: Clinical and forensic toxicological relevance. Drug Metab. Rev. 2017, 49, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Hasler, F.; Bourquin, D.; Brenneisen, R.; Vollenweider, F.X. Renal excretion profiles of psilocin following oral administration of psilocybin: A controlled study in man. J. Pharm. Biomed. Anal. 2002, 30, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Tittarelli, R.; Mannocchi, G.; Pantano, F.; Romolo, F.S. Recreational Use, Analysis and Toxicity of Tryptamines. Curr. Neuropharmacol. 2015, 13, 26–46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Araújo, A.M.; Carvalho, F.; Bastos, M.d.L.; de Pinho, P.G.; Carvalho, M. The hallucinogenic world of tryptamines: An updated review. Arch. Toxicol. 2015, 89, 1151–1173. [Google Scholar] [CrossRef] [PubMed]
- Malaca, S.; Faro, A.F.L.; Tamborra, A.; Pichini, S.; Busardò, F.P.; Huestis, M.A. Toxicology and Analysis of Psychoactive Tryptamines. Int. J. Mol. Sci. 2020, 21, 9279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliver, J.; Smith, H.; Williams, D. The detection, identification and measurement of indole, tryptamine and 2-phenethylamine in putrefying human tissue. Forensic Sci. 1977, 9, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Brito-Da-Costa, A.M.; Dias-Da-Silva, D.; Gomes, N.G.M.; Dinis-Oliveira, R.J.; Madureira-Carvalho, Á. Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact. Pharmaceuticals 2020, 13, 334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://www.drugbank.ca/drug (accessed on 27 July 2024).
- Ramanathan, S.; Parthasarathy, S.; Murugaiyah, V.; Magosso, E.; Tan, S.C.; Mansor, S.M. Understanding the Physicochemical Properties of Mitragynine, a Principal Alkaloid of Mitragyna speciosa, for Preclinical Evaluation. Molecules 2015, 20, 4915–4927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.; Li, M.; Yan, X.; Wu, E.; Zhu, H.; Lee, K.J.; Chu, V.M.; Zhan, L.; Lee, W.; Kang, J.S. Determining the pharmacokinetics of psilocin in rat plasma using ultra-performance liquid chromatography coupled with a photodiode array detector after orally administering an extract of Gymnopilus spectabilis. J. Chromatogr. B 2011, 879, 2669–2672. [Google Scholar] [CrossRef] [PubMed]
- Tiscione, N.B.; Vacha, R.E.; Alford, I.; Yeatman, D.T.; Shan, X. Long-Term Blood Alcohol Stability in Forensic Antemortem Whole Blood Samples. J. Anal. Toxicol. 2015, 39, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Schürenkamp, J.; Pfeiffer, H.; Lehr, M.; Köhler, H. Synthesis, hydrolysis and stability of psilocin glucuronide. Forensic Sci. Int. 2014, 237, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.T.; Nicholas, C.R.; Cozzi, N.V.; Gassman, M.C.; Cooper, K.M.; Muller, D.; Thomas, C.D.; Hetzel, S.J.; Henriquez, K.M.; Ribaudo, A.S.; et al. Pharmacokinetics of Escalating Doses of Oral Psilocybin in Healthy Adults. Clin. Pharmacokinet. 2017, 56, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Basiliere, S.; Kerrigan, S. Temperature and pH-Dependent Stability of Mitragyna Alkaloids. J. Anal. Toxicol. 2020, 44, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, S.; Ramanathan, S.; Ismail, S.; Adenan, M.I.; Mansor, S.M.; Murugaiyah, V. Determination of mitragynine in plasma with solid-phase extraction and rapid HPLC–UV analysis, and its application to a pharmacokinetic study in rat. Anal. Bioanal. Chem. 2010, 397, 2023–2030. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Tran, B.N.; Nelsen, J.L.; Aldous, K.M. Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Sklerov, J.; Levine, B.; Moore, K.A.; King, T.; Fowler, D. A fatal intoxication following the ingestion of 5-methoxy-N,N- dimethyltryptamine in an ayahuasca preparation. J. Anal. Toxicol. 2005, 29, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Neukamm, M.A.; Pollak, S.; Thoma, V.; Vogt, S.; Huppertz, L.M.; Auwärter, V. A fatal case of aspiration due to consumption of the hallucinogenic tryptamine derivative dipropyltryptamine (DPT). J. Pharm. Biomed. Anal. 2024, 240, 115959. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Kamata, T.; Katagi, M.; Tsuchihashi, H.; Honda, K. A fatal poisoning with 5-methoxy-N,N-diisopropyltryptamine, Foxy. Forensic Sci. Int. 2006, 163, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Meatherall, R.; Sharma, P. Foxy, a Designer Tryptamine Hallucinogen*. J. Anal. Toxicol. 2003, 27, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; McGeorge, F.; Smolinske, S.; Meatherall, R. A foxy intoxication. Forensic Sci. Int. 2005, 148, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Honyiglo, E.; Franchi, A.; Cartiser, N.; Bottinelli, C.; Advenier, A.; Bévalot, F.; Fanton, L. Unpredictable Behavior Under the Influence of “Magic Mushrooms”: A Case Report and Review of the Literature. J. Forensic Sci. 2019, 64, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Boland, D.M.; Andollo, W.; Hime, G.W.; Hearn, W.L. Fatality Due to Acute α-Methyltryptamine Intoxication. J. Anal. Toxicol. 2005, 29, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Daldrup, T.; Heller, C.; Matthiesen, U.; Honus, S.; Bresges, A.; Haarhoff, K. Etryptamin, eine neue Designer-Droge mit fataler Wirkung [Etryptamine, a new designer drug with a fatal effect]. Z Rechtsmed. 1986, 97, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kronstrand, R.; Roman, M.; Thelander, G.; Eriksson, A. Unintentional fatal intoxications with mitragynine and O-desmethyltramadol from the herbal blend krypton. J. Anal. Toxicol. 2011, 35, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Neerman, M.F.; Frost, R.E.; Deking, J. A Drug Fatality Involving Kratom. J. Forensic Sci. 2013, 58, S278–S279. [Google Scholar] [CrossRef] [PubMed]
- Karinen, R.; Fosen, J.T.; Rogde, S.; Vindenes, V. An accidental poisoning with mitragynine. Forensic Sci. Int. 2014, 245, e29–e32. [Google Scholar] [CrossRef] [PubMed]
- Mata, D.C.; Davis, J.F. Simultaneous quantitative analysis of 39 common toxicological drugs for increased efficiency in an ante- and postmortem laboratory. Forensic Sci. Int. 2022, 334, 111246. [Google Scholar] [CrossRef] [PubMed]
- Manchester, K.R.; Maskell, P.D.; Waters, L. Experimental versus theoretical log D7.4, pKa and plasma protein binding values for benzodiazepines appearing as new psychoactive substances. Drug Test. Anal. 2018, 10, 1258–1269. [Google Scholar] [CrossRef] [PubMed]
- Zilg, B.; Thelander, G.; Giebe, B.; Druid, H. Postmortem blood sampling—Comparison of drug concentrations at different sample sites. Forensic Sci. Int. 2017, 278, 296–303. [Google Scholar] [CrossRef]
- Mantinieks, D.; Gerostamoulos, D.; Glowacki, L.; Di Rago, M.; Schumann, J.; Woodford, N.W.; Drummer, O.H. Postmortem Drug Redistribution: A Compilation of Postmortem/Antemortem Drug Concentration Ratios. J. Anal. Toxicol. 2021, 45, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Oertel, R.; Pietsch, J.; Arenz, N.; Zeitz, S.; Goltz, L.; Kirch, W. Distribution of metoprolol, tramadol, and midazolam in human autopsy material. J. Chromatogr. A 2011, 1218, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- Mata, D.C. Stability of 26 Sedative Hypnotics in Six Toxicological Matrices at Different Storage Conditions. J. Anal. Toxicol. 2016, 40, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.D.; Drummer, O. Stability of Nitrobenzodiazepines in Postmortem Blood. J. Forensic Sci. 1998, 43, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.D.; Drummer, O. Postmortem distribution and redistribution of nitrobenzodiazepines in man. J. Forensic Sci. 1998, 43, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Casey, B.K.; Papsun, D.M.; Mudd, A. Elucidating the Potential Role of Microorganisms in Postmortem Biotransformation: A Comparison of Clonazolam and Its Metabolite in Postmortem and DUID Cases. J. Anal. Toxicol. 2024, 48, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Bergstrand, M.P.; Helander, A.; Beck, O. Development and application of a multi-component LC–MS/MS method for determination of designer benzodiazepines in urine. J. Chromatogr. B 2016, 1035, 104–110. [Google Scholar] [CrossRef]
- Watson, S.S.K.H.; O'Connor, L.; McKeown, D.A. Determination of the stability of 10 novel benzodiazepines and 3 metabolites in urine using LC-MS/MS. In Proceedings of the 6th Annual Meeting of the United Kingdom and Ireland Association of Forensic Toxicologists (UKIAFT), Manchester, UK, 31 May 2017. [Google Scholar]
- Papsun, D.M.; Krotulski, A.J.; Homan, J.; Temporal, K.D.H.; Logan, B.K. Flualprazolam Blood Concentrations in 197 Forensic Investigation Cases. J. Anal. Toxicol. 2021, 45, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.; Hikin, L.; Lawson, A.; Smith, P.R.; Morley, S. Quantification of Flualprazolam in Blood by LC–MS-MS: A Case Series of Nine Deaths. J. Anal. Toxicol. 2021, 45, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Abdul, K.; Hikin, L.; Smith, P.; Kurimbokus, H.; Ashong, E.; Couchman, L.; Morley, S.R. Flubromazolam: Detection in five post-mortem cases. Med. Sci. Law 2020, 60, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Hikin, L.J.; Smith, P.R.; Maskell, P.D.; Kurimbokus, H.; Ashong, E.; Couchman, L.; Morley, S.R. Femoral blood concentrations of the designer benzodiazepine etizolam in post-mortem cases. Med. Sci. Law 2021, 61, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Mérette, S.A.M.; Thériault, S.; Piramide, L.E.C.; Davis, M.D.; Shapiro, A.M. Bromazolam Blood Concentrations in Postmortem Cases—A British Columbia Perspective. J. Anal. Toxicol. 2023, 47, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Maskell, P.D.; Wilson, G.; Manchester, K.R. Designer Benzodiazepines Gidazepam and Desalkygidazepam (Bromonordiazepam): What Do We Know? J. Anal. Toxicol. 2023, 47, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Mérette, S.A.M.; Kim, S.; Davis, M.D.; Shapiro, A.M. Desalkylgidazepam blood concentrations in 63 forensic investigation cases. J. Anal. Toxicol. 2023, 47, 858–866. [Google Scholar] [CrossRef] [PubMed]
- PubChem Open Chemistry Database at the National Institutes of Health (NIH), U.S. National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 7 January 2021).
- Nisbet, L.A.; DiEmma, G.E.; Scott, K.S. Drug stability in forensic toxicology. WIREs Forensic Sci. 2023, 5, e1481. [Google Scholar] [CrossRef]
- Palmquist, K.B.; Swortwood, M.J. Long-Term Stability of 13 Fentanyl Analogs in Blood. J. Anal. Toxicol. 2021, 45, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kolodziej, A.; Pape, E.; Bisch, M.; Javot, L.; Gibaja, V.; Jouzeau, J.-Y.; Scala-Bertola, J.; Gambier, N. Multiplex detection of 14 fentanyl analogues and U-47700 in biological samples: Application to a panel of French hospitalized patients. Forensic Sci. Int. 2020, 317, 110437. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bernert, J.T. Analysis of 13 Fentanils, Including Sufentanil and Carfentanil, in Human Urine by Liquid Chromatography-Atmospheric-Pressure Ionization-Tandem Mass Spectrometry. J. Anal. Toxicol. 2006, 30, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Schackmuth, M.; Kerrigan, S. Temperature and pH-dependent stability of fentanyl analogs: Degradation pathways and potential biomarkers. J. Forensic Sci. 2024, 69, 1799–1814. [Google Scholar] [CrossRef] [PubMed]
- Concheiro, M.; Chesser, R.; Pardi, J.; Cooper, G. Postmortem Toxicology of New Synthetic Opioids. Front. Pharmacol. 2018, 9, 1210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ojanperä, I.; Gergov, M.; Rasanen, I.; Lunetta, P.; Toivonen, S.; Tiainen, E.; Vuori, E. Blood Levels of 3-Methylfentanyl in 3 Fatal Poisoning Cases. Am. J. Forensic Med. Pathol. 2006, 27, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Sofalvi, S.; Schueler, H.E.; Lavins, E.S.; Kaspar, C.K.; Brooker, I.T.; Mazzola, C.D.; Dolinak, D.; Gilson, T.P.; Perch, S. An LC–MS-MS Method for the Analysis of Carfentanil, 3-Methylfentanyl, 2-Furanyl Fentanyl, Acetyl Fentanyl, Fentanyl and Norfentanyl in Postmortem and Impaired-Driving Cases. J. Anal. Toxicol. 2017, 41, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Papsun, D.; Krywanczyk, A.; Vose, J.C.; Bundock, E.A.; Logan, B.K. Analysis of MT-45, a Novel Synthetic Opioid, in Human Whole Blood by LC-MS-MS and its Identification in a Drug-Related Death. J. Anal. Toxicol. 2016, 40, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Gonyea, J.; Zaney, M.E.; Kahl, J.; Moore, D.M. The evolution of fentanyl-related substances: Prevalence and drug concentrations in postmortem biological specimens at the Miami-Dade Medical Examiner Department. J. Anal. Toxicol. 2024, 48, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G. The rise and rise of fentanyl in postmortem casework. J Forensic Sci 2023, 68, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.T.; Muto, J.J. Duragesic(R) Transdermal Patch: Postmortem Tissue Distribution of Fentanyl in 25 Cases. J. Anal. Toxicol. 2000, 24, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.B.; Janssen, J.; Luckasevic, T.M.; Williams, K.E. Report of Increasing Overdose Deaths that include Acetyl Fentanyl in Multiple Counties of the Southwestern Region of the Commonwealth of Pennsylvania in 2015–2016. J. Forensic Sci. 2017, 63, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Matey, J.M.; Ruíz, C.G.; García, G.M.; Soro, J.C.G.; Delicado, D.G.; Gallardo, J.R.; Martínez, M. Ultraviolet-Visible and High-Resolution Mass Spectrometry for the Identification of Cyclopropyl-Fentanyl in the First Fatal Case in Spain. J. Anal. Toxicol. 2020, 44, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Van Bever, W.F.; Niemegeers, C.J.; Schellekens, K.H.; A Janssen, P. N-4-Substituted 1-(2-arylethyl)-4-piperidinyl-N-phenylpropanamides, a novel series of extremely potent analgesics with unusually high safety margin. Arzneimittel-Forschung 1976, 26, 1548–1551. [Google Scholar] [PubMed]
- McIntyre, I.M.; Trochta, A.; Gary, R.D.; Malamatos, M.; Lucas, J.R. An Acute Acetyl Fentanyl Fatality: A Case Report with Postmortem Concentrations. J. Anal. Toxicol. 2015, 39, 490–494. [Google Scholar] [CrossRef]
- McIntyre, I.M.; Trochta, A.; Gary, R.D.; Wright, J.; Mena, O. An Acute Butyr-Fentanyl Fatality: A Case Report with Postmortem Concentrations. J. Anal. Toxicol. 2016, 40, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Poklis, J.; Poklis, A.; Wolf, C.; Mainland, M.; Hair, L.; Devers, K.; Chrostowski, L.; Arbefeville, E.; Merves, M.; Pearson, J. Postmortem tissue distribution of acetyl fentanyl, fentanyl and their respective nor-metabolites analyzed by ultrahigh performance liquid chromatography with tandem mass spectrometry. Forensic Sci. Int. 2015, 257, 435–441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pearson, J.; Poklis, J.; Poklis, A.; Wolf, C.; Mainland, M.; Hair, L.; Devers, K.; Chrostowski, L.; Arbefeville, E.; Merves, M. Postmortem Toxicology Findings of Acetyl Fentanyl, Fentanyl, and Morphine in Heroin Fatalities in Tampa, Florida. Acad. Forensic Pathol. 2015, 5, 676–689, Erratum in: Acad Forensic Pathol. 2017, 7, 667–704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fort, C.; Curtis, B.; Nichols, C.; Niblo, C. Acetyl Fentanyl Toxicity: Two Case Reports. J. Anal. Toxicol. 2016, 40, 754–757. [Google Scholar] [CrossRef] [PubMed]
- Poklis, J.; Poklis, A.; Wolf, C.; Hathaway, C.; Arbefeville, E.; Chrostowski, L.; Devers, K.; Hair, L.; Mainland, M.; Merves, M.; et al. Two Fatal Intoxications Involving Butyryl Fentanyl. J. Anal. Toxicol. 2016, 40, 703–708. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Staeheli, S.N.; Baumgartner, M.R.; Gauthier, S.; Gascho, D.; Jarmer, J.; Kraemer, T.; Steuer, A.E. Time-dependent postmortem redistribution of butyrfentanyl and its metabolites in blood and alternative matrices in a case of butyrfentanyl intoxication. Forensic Sci. Int. 2016, 266, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Rojkiewicz, M.; Majchrzak, M.; Celiński, R.; Kuś, P.; Sajewicz, M. Identification and physicochemical characterization of 4-fluorobutyrfentanyl (1-((4-fluorophenyl)(1-phenethylpiperidin-4-yl)amino)butan-1-one, 4-FBF) in seized materials and post-mortem biological samples. Drug Test. Anal. 2017, 9, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.P.; Lopez, E.H. A Series of Deaths Involving Carfentanil in the UK and Associated Post-mortem Blood Concentrations. J. Anal. Toxicol. 2018, 42, e41–e45. [Google Scholar] [CrossRef] [PubMed]
- Garneau, B.; Desharnais, B.; Beauchamp-Doré, A.; Lavallée, C.; Mireault, P.; Lajeunesse, A. Challenges Related to Three Cases of Fatal Intoxication to Multiple Novel Synthetic Opioids. J. Anal. Toxicol. 2020, 44, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, M.; Wachełko, O.; Chłopaś-Konowałek, A.; Szpot, P. Quantification and distribution of 4-fluoroisobutyryl fentanyl (4-FiBF) in postmortem biological samples using UHPLC–QqQ-MS/MS. Forensic Toxicol. 2021, 39, 451–463. [Google Scholar] [CrossRef]
- Roosendaal, J.; Oosting, R.; Kloos, D.-P.; de Boer, H.H.; Berg, J.D.v.D.; Oldenhof, S.; Bosman, I.J. A fatal mono-intoxication with 4-fluoroisobutyrylfentanyl: Case report with postmortem concentrations. J. Anal. Toxicol. 2023, 47, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Martucci, H.F.; Ingle, E.A.; Hunter, M.D.; Rodda, L.N. Distribution of furanyl fentanyl and 4-ANPP in an accidental acute death: A case report. Forensic Sci. Int. 2018, 283, e13–e17. [Google Scholar] [CrossRef] [PubMed]
- Freni, F.; Pezzella, S.; Vignali, C.; Moretti, M.; Cisini, S.; Rossetti, C.; Ravizza, R.; Motta, M.; Groppi, A.; Morini, L. A case report on potential postmortem redistribution of furanyl fentanyl and 4-ANPP. Forensic Sci. Int. 2019, 304, 109915. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, A.; Perdekamp, M.G.; Franchetti, G.; Pircher, R.; Pollak, S.; Pelotti, S.; Auwärter, V. Intoxications involving methoxyacetylfentanyl and U-47700: A study of 3 polydrug fatalities. Int. J. Leg. Med. 2024, 138, 1801–1811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allibe, N.; Richeval, C.; Phanithavong, M.; Faure, A.; Allorge, D.; Paysant, F.; Stanke-Labesque, F.; Eysseric-Guerin, H.; Gaulier, J. Fatality involving ocfentanil documented by identification of metabolites. Drug Test. Anal. 2018, 10, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Coopman, V.; Cordonnier, J.; De Leeuw, M.; Cirimele, V. Ocfentanil overdose fatality in the recreational drug scene. Forensic Sci. Int. 2016, 266, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Dussy, F.; Hangartner, S.; Hamberg, C.; Berchtold, C.; Scherer, U.; Schlotterbeck, G.; Wyler, D.; Briellmann, T. An Acute Ocfentanil Fatality: A Case Report with Postmortem Concentrations. J. Anal. Toxicol. 2016, 40, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Salas, J.R.; Krotulski, A.J.; Newman, R.; Thogmartin, J.R.; A Mohr, A.L.; Logan, B.K. Concentrations of para-Fluorofuranylfentanyl in Paired Central and Peripheral Blood Collected during Postmortem Death Investigations. J. Anal. Toxicol. 2021, 46, 358–373. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, I.M.; Gary, R.D.; Joseph, S.; Stabley, R. A Fatality Related to the Synthetic Opioid U-47700: Postmortem Concentration Distribution. J. Anal. Toxicol. 2017, 41, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Dziadosz, M.; Klintschar, M.; Teske, J. Postmortem concentration distribution in fatal cases involving the synthetic opioid U-47700. Int. J. Leg. Med. 2017, 131, 1555–1556. [Google Scholar] [CrossRef] [PubMed]
- Rohrig, T.P.; A Miller, S.; Baird, T.R. U-47700: A Not So New Opioid. J. Anal. Toxicol. 2018, 42, e12–e14. [Google Scholar] [CrossRef] [PubMed]
- Fels, H.; Lottner-Nau, S.; Sax, T.; Roider, G.; Graw, M.; Auwärter, V.; Musshoff, F. Postmortem concentrations of the synthetic opioid U-47700 in 26 fatalities associated with the drug. Forensic Sci. Int. 2019, 301, e20–e28. [Google Scholar] [CrossRef] [PubMed]
- Vorce, S.P.; Knittel, J.L.; Holler, J.M.; Magluilo, J.; Levine, B.; Berran, P.; Bosy, T.Z. A Fatality Involving AH-7921. J. Anal. Toxicol. 2014, 38, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Fels, H.; Krueger, J.; Sachs, H.; Musshoff, F.; Graw, M.; Roider, G.; Stoever, A. Two fatalities associated with synthetic opioids: AH-7921 and MT-45. Forensic Sci. Int. 2017, 277, e30–e35. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, L.M.; Walton, S.E.; Pottie, E.; Papsun, D.; Logan, B.K.; Krotulski, A.J.; Stove, C.P.; Vandeputte, M.M. In vitro structure–activity relationships and forensic case series of emerging 2-benzylbenzimidazole ‘nitazene’ opioids. Arch. Toxicol. 2024, 98, 2999–3018. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krotulski, A.J.; Papsun, D.M.; Walton, S.E.; Logan, B.K. Metonitazene in the United States—Forensic toxicology assessment of a potent new synthetic opioid using liquid chromatography mass spectrometry. Drug Test. Anal. 2021, 13, 1697–1711. [Google Scholar] [CrossRef] [PubMed]
- Mueller, F.; Bogdal, C.; Pfeiffer, B.; Andrello, L.; Ceschi, A.; Thomas, A.; Grata, E. Isotonitazene: Fatal intoxication in three cases involving this unreported novel psychoactive substance in Switzerland. Forensic Sci. Int. 2021, 320, 110686. [Google Scholar] [CrossRef]
- Bendjilali-Sabiani, J.-J.; Eiden, C.; Lestienne, M.; Cherki, S.; Gautre, D.; Broek, T.V.D.; Mathieu, O.; Peyrière, H. Isotonitazene, a synthetic opioid from an emerging family: The nitazenes. Therapies 2024. [Google Scholar] [CrossRef] [PubMed]
- Bendjilali-Sabiani, J.-J.; Descoeur, J.; Lossois, M.; Eiden, C.; Peyriere, H.; Mathieu, O. Post mortem distribution of isotonitazene and its three metabolites in the first lethal case observed in France. In Proceedings of the Annual Conference, St. Gallen, Switzerland, 6 September 2024; p. 101. Available online: https://www.WEB_KSSG-9258_Programm_TIAFT_A4_ZUSAMMEN_NEU_03_ES.cleaned.pdf (accessed on 21 September 2024).
- Boland, D.M.; Reidy, L.J.; Seither, J.M.; Radtke, J.M.; Lew, E.O. Forty-Three Fatalities Involving the Synthetic Cannabinoid, 5-Fluoro-ADB: Forensic Pathology and Toxicology Implications. J. Forensic Sci. 2020, 65, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Usui, K.; Fujita, Y.; Kamijo, Y.; Kokaji, T.; Funayama, M. Identification of 5-Fluoro ADB in Human Whole Blood in Four Death Cases. J. Anal. Toxicol. 2018, 42, E21–E25. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Stockhausen, S.; Kernbach-Wighton, G.; Madea, B. Death due to diabetic ketoacidosis: Induction by the consumption of synthetic cannabinoids? Forensic Sci. Int. 2015, 257, e6–e11. [Google Scholar] [CrossRef] [PubMed]
- Lavins, E.S.; Shanks, K.G.; Engelhart, D.E.; Schueler, H.E.; Galita, D.; McCollom, A. Postmortem Tissue Distribution of AB-CHMINACA Following Lethal Intoxication Compared with AB-CHMINACA Concentrations in Impaired Drivers. Presented at the annual meeting of Society of Forensic Toxicologists Annual Conference 2015 in Atlanta Abstracts P33. Available online: https://www.soft-tox.org/assets/docs/SOFT_2015_meeting_abstracts.pdf (accessed on 21 September 2024).
- Knittel, J.L.; Magluilo, J.; Mazuchowski, E.L. The isolation and distribution of synthetic cannabinoids in two postmortem cases. Presented at the annual meeting of Society of Forensic Toxicologists Annual Conference 2015 in Atlanta Abstracts P79. Available online: https://www.soft-tox.org/assets/docs/SOFT_2015_meeting_abstracts.pdf (accessed on 21 September 2024).
- Hasegawa, K.; Wurita, A.; Minakata, K.; Gonmori, K.; Yamagishi, I.; Nozawa, H.; Watanabe, K.; Suzuki, O. Identification and quantitation of 5-fluoro-ADB, one of the most dangerous synthetic cannabinoids, in the stomach contents and solid tissues of a human cadaver and in some herbal products. Forensic Toxicol. 2015, 33, 112–121. [Google Scholar] [CrossRef]
- Hasegawa, K.; Wurita, A.; Minakata, K.; Gonmori, K.; Nozawa, H.; Yamagishi, I.; Watanabe, K.; Suzuki, O. Postmortem distribution of MAB-CHMINACA in body fluids and solid tissues of a human cadaver. Forensic Toxicol. 2015, 33, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Walle, N.; Doerr, A.A.; Schmidt, P.H.; Schaefer, N. ‘Flying high?’—Jump from a height in a ‘Spice’ high?: A case report on the synthetic cannabinoid 5F-MDMB-P7AICA. Drug Test. Anal. 2023, 15, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, C.; Saito, T.; Shinozuka, T.; Irie, W.; Murakami, C.; Maeda, K.; Nakamaru, N.; Oishi, M.; Nakamura, S.; Kurihara, K. A case of death caused by abuse of a synthetic cannabinoid N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide. Forensic Toxicol. 2014, 33, 165–169. [Google Scholar] [CrossRef]
- Zaitsu, K.; Nakayama, H.; Yamanaka, M.; Hisatsune, K.; Taki, K.; Asano, T.; Kamata, T.; Katagai, M.; Hayashi, Y.; Kusano, M.; et al. High-resolution mass spectrometric determination of the synthetic cannabinoids MAM-2201, AM-2201, AM-2232, and their metabolites in postmortem plasma and urine by LC/Q-TOFMS. Int. J. Leg. Med. 2015, 129, 1233–1245. [Google Scholar] [CrossRef]
- Giorgetti, A.; Mogler, L.; Halter, S.; Haschimi, B.; Alt, A.; Rentsch, D.; Schmidt, B.; Thoma, V.; Vogt, S.; Auwärter, V. Four cases of death involving the novel synthetic cannabinoid 5F-Cumyl-PEGACLONE. Forensic Toxicol. 2020, 38, 314–326. [Google Scholar] [CrossRef]
- Yamagishi, I.; Minakata, K.; Nozawa, H.; Hasegawa, K.; Suzuki, M.; Kitamoto, T.; Suzuki, O.; Watanabe, K. A case of intoxication with a mixture of synthetic cannabinoids EAM-2201, AB-PINACA and AB-FUBINACA, and a synthetic cathinone α-PVP. Leg. Med. 2018, 35, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, A.; Nakazawa, H.; Adachi, N.; Takekawa, K.; Shojo, H. Identification and quantification of mepirapim and acetyl fentanyl in authentic human whole blood and urine samples by GC–MS/MS and LC–MS/MS. Forensic Toxicol. 2018, 36, 81–87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mochizuki, A.; Nakazawa, H.; Adachi, N.; Takekawa, K.; Shojo, H. Postmortem distribution of mepirapim and acetyl fentanyl in biological fluid and solid tissue specimens measured by the standard addition method. Forensic Toxicol. 2019, 37, 27–33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vandeputte, M.M.; Van Uytfanghe, K.; Layle, N.K.; Germaine, D.M.S.; Iula, D.M.; Stove, C.P. Synthesis, Chemical Characterization, and μ-Opioid Receptor Activity Assessment of the Emerging Group of “Nitazene” 2-Benzylbenzimidazole Synthetic Opioids. ACS Chem. Neurosci. 2021, 12, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Grimmett, M.R. Advances in Imidazole Chemistry; Elsevier: Amsterdam, The Netherlands, 1970; pp. 103–183. [Google Scholar]
- Ujváry, I.; Christie, R.; Evans-Brown, M.; Gallegos, A.; Jorge, R.; de Morais, J.; Sedefov, R. DARK Classics in Chemical Neuroscience: Etonitazene and Related Benzimidazoles. ACS Chem. Neurosci. 2021, 12, 1072–1092. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, T.; Okada, Y.; Segawa, H.; Yamamuro, T.; Kuwayama, K.; Tsujikawa, K.; Iwata, Y.T. Metabolism of highly potent synthetic opioid nitazene analogs: N-ethyl-N-(1-glucuronyloxyethyl) metabolite formation and degradation to N-desethyl metabolites during enzymatic hydrolysis. Drug Test. Anal. 2024. [Google Scholar] [CrossRef] [PubMed]
- Taoussi, O.; Berardinelli, D.; Zaami, S.; Tavoletta, F.; Basile, G.; Kronstrand, R.; Auwärter, V.; Busardò, F.P.; Carlier, J. Human metabolism of four synthetic benzimidazole opioids: Isotonitazene, metonitazene, etodesnitazene, and metodesnitazene. Arch. Toxicol. 2024, 98, 2101–2116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krotulski, A.J.; Papsun, D.M.; Kacinko, S.L.; Logan, B.K. Isotonitazene Quantitation and Metabolite Discovery in Authentic Forensic Casework. J. Anal. Toxicol. 2020, 44, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Parks, C.; Maskell, P.D.; A McKeown, D.; Couchman, L. Identification of 5-aminometonitazene and 5-acetamidometonitazene in a post-mortem case: Are nitro-nitazenes unstable? J. Anal. Toxicol. 2024, 5, bkae076. [Google Scholar] [CrossRef] [PubMed]
- Schüller, M.; Lucic, I.; Øiestad, Å.M.L.; Pedersen-Bjergaard, S.; Øiestad, E.L. High-throughput quantification of emerging “nitazene” benzimidazole opioid analogs by microextraction and UHPLC–MS-MS. J. Anal. Toxicol. 2023, 47, 787–796. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://www.cfsre.org/images/Presentations/WaltonSE_NPS_Quarterly_Webinar_230705SW.pdf (accessed on 15 September 2024). [PubMed]
- Maruejouls, C.; Ameline, A.; Gheddar, L.; Mazoyer, C.; Teston, K.; Aknouche, F.; Kintz, P. First evidence in an oversea French department of the deadly risk of protonitazene use: About 5 post mortem cases. Int. J. Leg. Med. 2024, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, M.M.; Krotulski, A.J.; Walther, D.; Glatfelter, G.C.; Papsun, D.; Walton, S.E.; Logan, B.K.; Baumann, M.H.; Stove, C.P. Pharmacological evaluation and forensic case series of N-pyrrolidino etonitazene (etonitazepyne), a newly emerging 2-benzylbenzimidazole ‘nitazene’ synthetic opioid. Arch. Toxicol. 2022, 96, 1845–1863. [Google Scholar] [CrossRef] [PubMed]
- Fantegrossi, W.E.; Moran, J.H.; Radominska-Pandya, A.; Prather, P.L. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: Mechanism underlying greater toxicity? Life Sci. 2013, 97, 45–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Atwood, B.K.; Huffman, J.; Straiker, A.; Mackie, K. JWH018, a common constituent of ‘Spice’ herbal blends, is a potent and efficacious cannabinoid CB1 receptor agonist. Br. J. Pharmacol. 2010, 160, 585–593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kasper, A.M.; Ridpath, A.D.; Gerona, R.R.; Cox, R.; Galli, R.; Kyle, P.B.; Parker, C.; Arnold, J.K.; Chatham-Stephens, K.; Morrison, M.A.; et al. Severe illness associated with reported use of synthetic cannabinoids: A public health investigation (Mississippi, 2015). Clin. Toxicol. 2018, 57, 10–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- New Psychoactive Substances—The Current Situation in Europe (European Drug Report 2024). Available online: https://www.euda.europa.eu/publications/european-drug-report/2024/new-psychoactive-substances_en (accessed on 7 September 2024).
- Hermanns-Clausen, M.; Kneisel, S.; Szabo, B.; Auwärter, V. Acute toxicity due to the confirmed consumption of synthetic cannabinoids: Clinical and laboratory findings. Addiction 2013, 108, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Cooper, Z.D. Adverse Effects of Synthetic Cannabinoids: Management of Acute Toxicity and Withdrawal. Curr. Psychiatry Rep. 2016, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giorgetti, A.; Busardò, F.P.; Tittarelli, R.; Auwärter, V.; Giorgetti, R. Post-Mortem Toxicology: A Systematic Review of Death Cases Involving Synthetic Cannabinoid Receptor Agonists. Front. Psychiatry 2020, 11, 464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lie, W.; Cheong, E.J.Y.; Goh, E.M.L.; Moy, H.Y.; Cannaert, A.; Stove, C.P.; Chan, E.C.Y. Diagnosing intake and rationalizing toxicities associated with 5F-MDMB-PINACA and 4F-MDMB-BINACA abuse. Arch. Toxicol. 2022, 95, 489–508. [Google Scholar] [CrossRef] [PubMed]
- Kakehashi, H.; Shima, N.; Ishikawa, A.; Nitta, A.; Asai, R.; Wada, M.; Nakano, S.; Matsuta, S.; Sasaki, K.; Kamata, H.; et al. Effects of lipophilicity and functional groups of synthetic cannabinoids on their blood concentrations and urinary excretion. Forensic Sci. Int. 2020, 307, 110106. [Google Scholar] [CrossRef] [PubMed]
- Diao, X.; Huestis, M.A. New Synthetic Cannabinoids Metabolism and Strategies to Best Identify Optimal Marker Metabolites. Front. Chem. 2019, 7, 109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hutter, M.; Broecker, S.; Kneisel, S.; Franz, F.; Brandt, S.D.; Auwarter, V. Metabolism of Nine Synthetic Cannabinoid Receptor Agonists Encountered in Clinical Casework: Major in vivo Phase I Metabolites of AM-694, AM-2201, JWH-007, JWH-019, JWH-203, JWH-307, MAM-2201, UR-144 and XLR-11 in Human Urine Using LC-MS/MS. Curr. Pharm. Biotechnol. 2018, 19, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Chimalakonda, K.C.; Seely, K.A.; Bratton, S.M.; Brents, L.K.; Moran, C.L.; Endres, G.W.; James, L.P.; Hollenberg, P.F.; Prather, P.L.; Radominska-Pandya, A.; et al. Cytochrome P450-Mediated Oxidative Metabolism of Abused Synthetic Cannabinoids Found in K2/Spice: Identification of Novel Cannabinoid Receptor Ligands. Drug Metab. Dispos. 2012, 40, 2174–2184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hess, C.; Krueger, L.; Unger, M.; Madea, B. Freeze-thaw stability and long-term stability of 84 synthetic cannabinoids in serum. Drug Test. Anal. 2017, 9, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Krotulski, A.J.; Bishop-Freeman, S.C.; A Mohr, A.L.; Logan, B.K. Evaluation of Synthetic Cannabinoid Metabolites in Human Blood in the Absence of Parent Compounds: A Stability Assessment. J. Anal. Toxicol. 2021, 45, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Kneisel, S.; Speck, M.; Moosmann, B.; Auwärter, V. Stability of 11 prevalent synthetic cannabinoids in authentic neat oral fluid samples: Glass versus polypropylene containers at different temperatures. Drug Test. Anal. 2013, 5, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Angerer, V.; Jacobi, S.; Franz, F.; Auwärter, V.; Pietsch, J. Three fatalities associated with the synthetic cannabinoids 5F-ADB, 5F-PB-22, and AB-CHMINACA. Forensic Sci. Int. 2017, 281, e9–e15. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, L.R.; Rosengren, R.J.; Glass, M. Potential Implications of Multi-Drug Exposure with Synthetic Cannabinoids: A Scoping Review of Human Case Studies. Psychoactives 2024, 3, 365–383. [Google Scholar] [CrossRef]
- Groth, O.; Roider, G.; Angerer, V.; Schäper, J.; Graw, M.; Musshoff, F.; Auwärter, V. “Spice”-related deaths in and around Munich, Germany: A retrospective look at the role of synthetic cannabinoid receptor agonists in our post-mortem cases over a seven-year period (2014–2020). Int. J. Leg. Med. 2023, 137, 1059–1069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simon, G.; Kuzma, M.; Mayer, M.; Petrus, K.; Tóth, D. Fatal Overdose with the Cannabinoid Receptor Agonists MDMB-4en-PINACA and 4F-ABUTINACA: A Case Report and Review of the Literature. Toxics 2023, 11, 673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tokarczyk, B.; Jurczyk, A.; Krupińska, J.; Adamowicz, P. Fatal intoxication with new synthetic cannabinoids 5F-MDMB-PICA and 4F-MDMB-BINACA—Parent compounds and metabolite identification in blood, urine and cerebrospinal fluid. Forensic Sci. Med. Pathol. 2022, 18, 393–402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neukamm, M.A.; Halter, S.; Auwärter, V.; Schmitt, G.; Giorgetti, A.; Bartel, M. Death after smoking of fentanyl, 5F-ADB, 5F-MDMB-P7AICA and other synthetic cannabinoids with a bucket bong. Forensic Toxicol. 2023, 42, 82–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adamowicz, P. Blood concentrations of synthetic cannabinoids. Clin. Toxicol. 2021, 59, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Di Rago, M.; Mantinieks, D.; Glowacki, L.; Woodford, N.W.; Gerostamoulos, D.; Drummer, O.H. Time-Dependent Changes in THC Concentrations in Deceased Persons. J. Anal. Toxicol. 2021, 45, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tascon, I.; Côté, C.; Garneau, B.; Desharnais, B.; Gosselin, V.; Mireault, P. Postmortem redistribution of cannabinoids: Statistical analysis of a novel dataset and meta-analysis. Forensic Sci. Int. 2023, 353, 111873. [Google Scholar] [CrossRef] [PubMed]
- Kacinko, S.L.; Isenschmid, D.S.; Logan, B.K. Are Postmortem Cannabinoid Concentrations Forensically Reliable? Am. J. Forensic Med. Pathol. 2024, 45, 92–93. [Google Scholar] [CrossRef] [PubMed]
- Gerostamoulos, D.; Elliott, S.; Walls, H.C.; Peters, F.T.; Lynch, M.; Drummer, O.H. To Measure or Not to Measure? That is the NPS Question. J. Anal. Toxicol. 2016, 40, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Wille, S.M.R.; Elliott, S. The future of analytical and interpretative toxicology: Where are we going and how do we get there? J. Anal. Toxicol. 2021, 45, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Matey, J.M.; Zapata, F.; Menéndez-Quintanal, L.M.; Montalvo, G.; García-Ruiz, C. Identification of new psychoactive substances and their metabolites using non-targeted detection with high-resolution mass spectrometry through diagnosing fragment ions/neutral loss analysis. Talanta 2023, 265, 124816. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menéndez-Quintanal, L.M.; Matey, J.M.; del Fresno González, V.; Bravo Serrano, B.; Hernández-Díaz, F.J.; Zapata, F.; Montalvo, G.; García-Ruiz, C. The State of the Art in Post-Mortem Redistribution and Stability of New Psychoactive Substances in Fatal Cases: A Review of the Literature. Psychoactives 2024, 3, 525-610. https://doi.org/10.3390/psychoactives3040033
Menéndez-Quintanal LM, Matey JM, del Fresno González V, Bravo Serrano B, Hernández-Díaz FJ, Zapata F, Montalvo G, García-Ruiz C. The State of the Art in Post-Mortem Redistribution and Stability of New Psychoactive Substances in Fatal Cases: A Review of the Literature. Psychoactives. 2024; 3(4):525-610. https://doi.org/10.3390/psychoactives3040033
Chicago/Turabian StyleMenéndez-Quintanal, Luis Manuel, Jose Manuel Matey, Violeta del Fresno González, Begoña Bravo Serrano, Francisco Javier Hernández-Díaz, Félix Zapata, Gemma Montalvo, and Carmen García-Ruiz. 2024. "The State of the Art in Post-Mortem Redistribution and Stability of New Psychoactive Substances in Fatal Cases: A Review of the Literature" Psychoactives 3, no. 4: 525-610. https://doi.org/10.3390/psychoactives3040033
APA StyleMenéndez-Quintanal, L. M., Matey, J. M., del Fresno González, V., Bravo Serrano, B., Hernández-Díaz, F. J., Zapata, F., Montalvo, G., & García-Ruiz, C. (2024). The State of the Art in Post-Mortem Redistribution and Stability of New Psychoactive Substances in Fatal Cases: A Review of the Literature. Psychoactives, 3(4), 525-610. https://doi.org/10.3390/psychoactives3040033