A Novel Approach for Assessing Technical Grade and Quality of Lambda-Cyhalothrin and Acetamiprid in Insecticides Used in Agricultural Systems by HPLC Technique in Southern Benin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Set-Up
2.3. Chemicals
2.4. Chromatographic System
2.5. Separation Condition and Mobile Phase
2.6. Working and Sample Solution Preparation
2.7. Method Validation
3. Results and Discussion
3.1. Social Characteristics of Producers
3.2. Method Validation
3.3. Analysis of Bulk Insecticides and Commercial Formulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazli, M.; Ishaq, M.; Hussain, A.; Saddozai, K.N. Post-harvest economic losses of tomato crop grown in Peshawar valley. Sarhad J. Agric. 2006, 22, 169. [Google Scholar]
- Food and Agriculture Organization (FAO). FAO’s Corporate Database. 2021. Available online: https://www.fao.org/faostat/fr/#data/QCL (accessed on 1 January 2023).
- Bell, J.C.; McGeoch, M.A. An evaluation of the pest status and research conducted on phytophagous Lepidoptera on cultivated plants in South Africa. Afr. Entomol. 1996, 4, 161–170. [Google Scholar]
- Charchar, A.U.; Gonzaga, J.M.; Giordano, V.; Boiteuy, L.; Reis, L.S. Reaction of tomato cultivars to infection by a mixed population of, M. incognita race and, M. javanica in the field. Nematol. Bras. 2003, 27, 49–54. [Google Scholar]
- Kim, M.R.; Na, M.A.; Jung, W.Y.; Kim, C.S.; Sun, N.K.; Seo, E.C.; Lee, E.M.; Pak, Y.G.; Byun, J.A.; Eom, J.H.; et al. Monitoring of pesticide residues in special products. Korean J. Pestic. Sci. 2008, 12, 323–334. [Google Scholar]
- Lee, Y.E.; Noh, H.H.; Park, Y.S.; Kang, K.W.; Jo, S.Y.; Lee, S.R.; Park, I.Y.; Kim, T.H.; Jin, Y.D.; Kyoung, K.S. Monitoring of pesticide residues in agricultural products collected from market in Cheongju and Jeonju. Korean J. Pestic. Sci. 2008, 12, 357–362. [Google Scholar]
- Comité Sahélien des Pesticides. Liste Globale des Pesticides Autorisés par le CSP. 2021. Available online: https://insah.cilss.int/index.php/csp/ (accessed on 1 December 2021).
- SPV, Agricultural Ministry of Benin; Comité National de Gestion des Pesticides. Liste Des Pesticides et Biopesticides Sous Autorisation Provisoire de Vente et Agrément. Avril 2022. 9p, 2022; Unpublished work. [Google Scholar]
- Bürger, J.; de Mol, F.; Gerowitt, B. The ‘‘necessary extent’’ of pesticide use—Thoughts about a key term in German pesticide policy. Crop Prot. 2008, 27, 343–351. [Google Scholar]
- Karasali, H.; Maragou, N. Pesticides and Herbicides: Types of Pesticide. In Encyclopedia of Food and Health, 1st ed.; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 319–325. [Google Scholar] [CrossRef]
- European Union. The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food. Available online: https://www.europarl.europa.eu/thinktank/en/document/EXPO_STU(2021)653622 (accessed on 1 January 2021).
- Garau, V.L.; Angioni, A.; Del Real, A.G.; Russo, M.; Cabras, P. Disappearance of azoxystrobin, cyprodinil, and fludioxonil on tomato in a greenhouse. J. Agric. Food Chem. 2002, 50, 1929–1932. [Google Scholar] [CrossRef]
- Chiron, S.; Dupas, S.; Scribe, P.; Barceló, D. Application of on-line solid-phase extraction followed by liquid chromatogaraphy-thermospray mass spectrometry to the determination of pesticides in environmental waters. J. Chromatogr. A 1994, 665, 295–305. [Google Scholar] [CrossRef]
- Brinkman, U.A.T.; Slobodnik, J.; Vreuls, J.J. Trace level detection and identification of polar pesticides in surface waters. Trends. Anal. Chem. 1994, 13, 373–381. [Google Scholar]
- Geerdink, R.B.; Niessen, W.; Brinkman, A. Trace-level determination of pesticides in waters by means of liquid and gas chromatography. J. Chromatogr. A 2002, 970, 65–93. [Google Scholar] [PubMed]
- Ali, N.A.; Lemme, D.; Jira, T.; Attef, O.; Al-rahwi, K. Determination of pesticide residues in khat leaves by solid-phase extraction and high-performance liquid chromatography. Afr. J. Tradit. Complement. Altern. Med. 2006, 3, 1–10. [Google Scholar]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar]
- Da Rocha, C.G.; França, F.H.R.; Cardoso, C.A.L. Quantification of Thiamethoxam in Rhizomes and Leaves of the Hedychium coronarium and Water and Soil by High-Pressure Liquid Chromatography. Am. J. Anal. Chem. 2012, 3, 242–249. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008, 29, 49–52. [Google Scholar]
- Gouda, A.-I.; Toko, I.I.; Salami, S.-D.; Richert, M.; Scippo, M.-L.; Kestemont, P.; Schiffers, B. Pratiques phytosanitaires et niveau d’exposition aux pesticides des producteurs de coton du nord du Bénin. Cah. Agric. 2018, 27, 65002. [Google Scholar] [CrossRef]
- Kouakou, E.Y.; Koné, B.; Bonfoh, B.; Kientga, S.M.; N’Go, Y.A.; Savane, I.; Cissé, G. L’étalement urbain au péril des activités agro-pastorales à Abidjan. Vertigo 2010, 10. Available online: https://journals.openedition.org/vertigo/10066 (accessed on 1 January 2023).
- Kpan-Kpan, K.G.; Yao, L.B.; Diemeleou, C.A.; Guettia, K.N.; Traore, S.K.; Dembele, A. Pratiques phytosanitaires en agriculture périurbaine et contamination des denrées par les pesticides: Cas des maraîchers de Port-Bouët (Abidjan). J. Anim. Plant Sci. 2019, 41, 6847–6863. [Google Scholar]
- Kumral, A.Y.; Kumral, N.A.; Kolcu, A.; Maden, B.; Artik, B. Simulation Study for the Degradation of Some Insecticides during Different Black Table Olive Processes. ACS Omega 2020, 5, 14164–14172. [Google Scholar] [CrossRef]
- Aislabie, J.; Lloyd-Jones, G. A review of bacterial degradation of pesticides. Soil. Res. 1995, 33, 925–942. [Google Scholar] [CrossRef]
- Oliva, J.; Cermeno, S.; Camara, M.A.; Martínez, G.; Barba, A. Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chem. 2017, 229, 172–177. [Google Scholar]
- Dasgupta, S.; Meisner, C.; Wheeler, D. Stockpiles of obsolete pesticides and cleanup priorities: A methodology and application for Tunisia. J. Environ. Manag. 2010, 91, 824–830. [Google Scholar]
- Ortiz-Hernández, M.L.; Sánchez-Salinas, E.; Olvera-Velona, A.; Folch-Mallol, J.L. Pesticides in the Environment: Impacts and Its Biodegradation as a Strategy for Residues Treatment, 1st ed.; InTech: Rijeka, Croatia, 2011; pp. 551–574. [Google Scholar]
- Corbel, V.; N’Guessan, R.; Brengues, C.; Chandre, F.; Djogbenou, L.; Martin, T.; Akogbéto, M.; Hougard, J.M.; Rowland, M. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, west Africa. Acta Trop. 2007, 101, 207–216. [Google Scholar] [PubMed]
- Djègbè, I.; Boussari, O.; Sidick, A.; Martin, T.; Ranson, H.; Chandre, F.; Akogbéto, M.; Corbel, V. Dynamics of insecticide resistance in malaria vectors in Benin: First evidence of the presence of L1014S Kdr mutation in Anopheles gambiae from West Africa. Malar. J. 2011, 10, 261–271. [Google Scholar]
- Tossou, E.; Dannon, E.A.; Djegbe, I.; Zeukeng, F.; Akoton, R.; Tchigossou, G.M.; Bokonon-Ganta, A. Inhibitory effect of PBO and DEF on detoxification mechanisms involved in deltamethrin resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Benin, West Africa. Eur. J. Sci. Res. 2019, 154, 385–398. [Google Scholar]
- Chen, H.; He, X.; Rong, X.; Chen, W.; Cai, P.; Liang, W.; Li, S.; Huang, Q. Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Appl. Clay Sci. 2009, 46, 102–108. [Google Scholar]
- Chevillard, A.; Coussy, H.A.; Guillard, V.; Gontard, N.; Gastaldi, E. Investigating the biodegradation pattern of an ecofriendly pesticide delivery system based on wheat gluten and organically modified montmorillonites. Polym. Degrad. Stabil. 2012, 97, 2060–2068. [Google Scholar]
- Ortiz-Hernández, M.L.; Sánchez-Salinas, E.; Castrejon Godinez, M.L.; Dantan Gonzalez, E.; Popoca Ursino, E. Mechanisms and strategies for pesticide biodegradation: Opportunity for waste, soils and water cleaning. Rev. Int. Contam. Ambie 2013, 29, 85–104. [Google Scholar]
Localities | Trade Names | Codes | Technical Grades | Concen-Trations | Compagny | Expiration Date |
---|---|---|---|---|---|---|
Klouékanmè | Lambda Super 1 | Insecticide 1 | λ-cyhalothrin | 25 g·L−1 | KUMARK Compagny | November 2020 |
Lambda Super 2 | Insecticide 2 | λ-cyhalothrin | 25 g·L−1 | KUMARK Compagny | June 2019 (Expired) | |
Lambda Super 3 | Insecticide 3 | λ-cyhalothrin | 25 g·L−1 | KUMARK Compagny | November 2020 | |
Lambda Finer 1 | Insecticide 4 | λ-cyhalothrin | 25 g·L−1 | GSK Stell Compagny | January 2020 | |
Lambda Finer 2 | Insecticide 5 | λ-cyhalothrin | 25 g·L−1 | CROPSTAR Chem industry | May 2017 (Expired) | |
Pacha 1 | Insecticide 6 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SAVANA | July 2020 | |
Pacha 2 | Insecticide 7 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SAVANA | July 2020 | |
Pacha 3 | Insecticide 8 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SAVANA | July 2020 | |
Lambdace 1 | Insecticide 9 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SEBA 3D/King Quenson | February 2020 | |
Lambdace 2 | Insecticide 10 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SEBA 3D/King Quenson | February 2020 | |
Lambdace 3 | Insecticide 11 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SEBA 3D/King Quenson | February 2020 | |
Allada | Lambda Super 4 | Insecticide 12 | λ-cyhalothrin | 25 g·L−1 | KUMARK Compagny | July 2020 |
Lambda Super 5 | Insecticide 13 | λ-cyhalothrin | 25 g·L−1 | KUMARK Compagny | July 2021 | |
Lambda Super 6 | Insecticide 14 | λ-cyhalothrin | 25 g·L−1 | KUMARK Compagny | June 2020 | |
Lambda Finer 3 | Insecticide 15 | λ-cyhalothrin | 25 g·L−1 | KUMARK Compagny | January 2021 | |
Lambda Finer 4 | Insecticide 16 | λ-cyhalothrin | 25 g·L−1 | AGRO-Science Co. LTD. | June 2016 (Expired) | |
Pacha 4 | Insecticide 17 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SAVANA | January 2019 (Expired) | |
Pacha 5 | Insecticide 18 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SAVANA | July 2020 | |
Pacha 6 | Insecticide 19 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SAVANA | September 2016 (Expired) | |
Lambdace 4 | Insecticide 20 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SEBA 3D/King Quenson | July 2019 (Expired) | |
Lambdace 5 | Insecticide 21 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SEBA 3D/ King Quenson | July 2020 | |
Lambdace 6 | Insecticide 22 | λ-cyhalothrin + Acetamiprid | 15 g·L−1 + 10 g·L−1 | SEBA 3D/King Quenson | July 2020 |
Insecticides | Column Type | Mobile Phase | Flow Rate | Injection Volume | Wave-Length | Retention Time (mn) | |
---|---|---|---|---|---|---|---|
H2O | ACN | ||||||
λ-cyhalothrin | C18 | 11% | 89% | 1 mL·min−1 | 20 µL | 226 nm | 7.94 |
Acetamiprid | C18 | 35% | 65% | 1.4 mL·min−1 | 20 µL | 250 nm | 2.35 |
Insecticides | Linearity Range (µg·mL−1) | Regression Equation | r2 | Slope | Intercept | LOD (µg·mL−1) | LOQ (µg·mL−1) |
---|---|---|---|---|---|---|---|
λ-cyhalothrin | 0.625–20 | y = 133.948x + 20.64 | 0.9999 | 133.948 | 20.645 | 0.3332 | 1.0097 |
Acetamiprid | 0.625–20 | y = 98.998x − 7.07 | 0.9999 | 98.998 | −7.074 | 0.3934 | 1.1923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tossou, E.; Tepa-Yotto, G.; Tchigossou, G.M.; Soglo, M.F.; Mbokou, S.F.; Bougna Tchoumi, H.H.; Bokonon-Ganta, A.H.; Tamò, M.; Djouaka, R. A Novel Approach for Assessing Technical Grade and Quality of Lambda-Cyhalothrin and Acetamiprid in Insecticides Used in Agricultural Systems by HPLC Technique in Southern Benin. Agrochemicals 2023, 2, 551-560. https://doi.org/10.3390/agrochemicals2040031
Tossou E, Tepa-Yotto G, Tchigossou GM, Soglo MF, Mbokou SF, Bougna Tchoumi HH, Bokonon-Ganta AH, Tamò M, Djouaka R. A Novel Approach for Assessing Technical Grade and Quality of Lambda-Cyhalothrin and Acetamiprid in Insecticides Used in Agricultural Systems by HPLC Technique in Southern Benin. Agrochemicals. 2023; 2(4):551-560. https://doi.org/10.3390/agrochemicals2040031
Chicago/Turabian StyleTossou, Eric, Ghislain Tepa-Yotto, Genevieve M. Tchigossou, Murielle F. Soglo, Serge Foukmeniok Mbokou, Honorine Hortense Bougna Tchoumi, Aimé H. Bokonon-Ganta, Manuele Tamò, and Rousseau Djouaka. 2023. "A Novel Approach for Assessing Technical Grade and Quality of Lambda-Cyhalothrin and Acetamiprid in Insecticides Used in Agricultural Systems by HPLC Technique in Southern Benin" Agrochemicals 2, no. 4: 551-560. https://doi.org/10.3390/agrochemicals2040031
APA StyleTossou, E., Tepa-Yotto, G., Tchigossou, G. M., Soglo, M. F., Mbokou, S. F., Bougna Tchoumi, H. H., Bokonon-Ganta, A. H., Tamò, M., & Djouaka, R. (2023). A Novel Approach for Assessing Technical Grade and Quality of Lambda-Cyhalothrin and Acetamiprid in Insecticides Used in Agricultural Systems by HPLC Technique in Southern Benin. Agrochemicals, 2(4), 551-560. https://doi.org/10.3390/agrochemicals2040031