Element Composition of Fractionated Water-Extractable Soil Colloidal Particles Separated by Track-Etched Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Fractionation Setup
2.3. ICP–AES Measurements
2.4. Procedures
2.4.1. Membrane Leaching
2.4.2. Extraction of the Colloidal Fraction
2.4.3. Size Fractionation
2.4.4. Washing from Membranes
2.5. Data Treatment
3. Results
- Si, Al, and Fe as silicate matrix elements and Ti and Mn with correlation coefficients with Si, Al, and Fe above 0.9. The elements of this set are shaded in magenta (Figure 2).
- Ca and S (as other main elements), and Cd and also Cr, with strongly negative correlation coefficients with the matrix elements of Set 1 and shaded blue (Figure 2).
- Mg, Sr, K, and P, and also Ba, showing high correlation coefficients within the group, correlation coefficients with Set 1 over 0.5, and shaded violet (Figure 2).
- Cu and Zn showing a good correlation between one another and very low correlation coefficients with other groups. The set is shaded yellow (Figure 2).
4. Discussion
4.1. Interelement Correlations
4.2. Set 1: Silicon, Aluminum, Iron, Titanium, and Manganese
4.3. Set 2: Calcium, Sulfur, Chromium, and Cadmium
4.4. Set 3: Magnesium, Strontium, Barium, Potassium, and Phosphorus
4.5. Set 4: Copper and Zinc
4.6. Molar Ratios of Major Elements
4.7. Cluster Analysis and Modeling of Element Distributions
4.7.1. Distribution of Main Elements
4.7.2. Medium- and Low-Concentration Elements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chantigny, M.H.; Angers, D.A.; Kaiser, K.; Kalbitz, K. Extraction and characterization of dissolved organic matter. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Aiken, G.R.; Hsu-Kim, H.; Ryan, J.N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Technol. 2011, 45, 3196–3201. [Google Scholar] [CrossRef]
- Hendricks, S.B.; Fry, W.H. The Results of X-Ray and Microscopical Examinations of Soil Colloids. Soil Sci. Soc. Am. J. 1930, B11, 194–195. [Google Scholar] [CrossRef]
- Osman, K.T. Chemical Properties of Soil. In Soils: Principles, Properties and Management; Springer: Dordrecht, The Netherlands, 2013; pp. 97–111. [Google Scholar]
- Yang, W.; Bradford, S.A.; Wang, Y.; Sharma, P.; Shang, J.; Li, B. Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins. Environ. Pollut. 2019, 246, 855–863. [Google Scholar] [CrossRef]
- Ranville, J.F.; Chittleborough, D.J.; Beckett, R. Particle-Size and Element Distributions of Soil Colloids. Soil Sci. Soc. Am. J. 2005, 69, 1173–1184. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, Y.; Wang, Y.; Song, Z.; Wu, Y.; Ma, W.; Hou, Y.; Zhang, W.; Yang, Y. Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid. Appl. Sci. 2022, 12, 6591. [Google Scholar] [CrossRef]
- Li, C.; Guo, S. Structural evolution of soil aggregates in a karst rocky desertification area. RSC Adv. 2022, 12, 21004–21013. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, C.; Shang, J. Effect of reduced inherent organic matter on stability and transport behaviors of black soil colloids. Chemosphere 2023, 336, 139149. [Google Scholar] [CrossRef]
- Moens, C.; Dondeyne, S.; Panagea, I.; Smolders, E. Depth profile of colloidal iron in the pore water of an Albic Podzol. Eur. J. Soil Sci. 2022, 73, e13305. [Google Scholar] [CrossRef]
- Witzgall, K.; Vidal, A.; Schubert, D.I.; Hoschen, C.; Schweizer, S.A.; Buegger, F.; Pouteau, V.; Chenu, C.; Mueller, C.W. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 2021, 12, 4115. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Bai, S.; Tan, J.; Jiang, X. Intensive agricultural management-induced subsurface accumulation of water extractable colloidal P in lime concretion black soil. EGUsphere 2023, 2023, 1–24. [Google Scholar] [CrossRef]
- Cheng, T.; Saiers, J.E. Effects of dissolved organic matter on the co-transport of mineral colloids and sorptive contaminants. J. Contam. Hydrol. 2015, 177–178, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, H.; Wei, Q.; Farooq, U.; Zhang, Q.; Lu, T.; Wang, X.; Chen, W.; Qi, Z. Mobility of water-soluble aerosol organic matters (WSAOMs) and their effects on soil colloid-mediated transport of heavy metal ions in saturated porous media. J. Hazard. Mater. 2022, 440, 129733. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Liang, M.; Bao, X.; Sun, T.; Huang, Y. Effects of soil colloids on the aggregation and degradation of engineered nanoparticles (Ti(3)C(2)T(x) MXene). Environ. Res. 2022, 214, 113886. [Google Scholar] [CrossRef] [PubMed]
- Petrofanov, V.L. Role of the soil particle-size fractions in the sorption and desorption of potassium. Eurasian Soil Sci. 2012, 45, 598–611. [Google Scholar] [CrossRef]
- Swift, R.S.; McLaren, R.G. Micronutrient Adsorption by Soils and Soil Colloids. In Interactions at the Soil Colloid—Soil Solution Interface; Bolt, G.H., De Boodt, M.F., Hayes, M.H.B., McBride, M.B., De Strooper, E.B.A., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 257–292. [Google Scholar]
- Molina, F.V. Soil Colloids, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Lead, J.R.; Wilkinson, K.J. Environmental Colloids and Particles: Current Knowledge and Future Developments. In Environmental Colloids and Particles; Wiley: Chichester, UK, 2007; pp. 1–15. [Google Scholar]
- Schluter, S.; Leuther, F.; Albrecht, L.; Hoeschen, C.; Kilian, R.; Surey, R.; Mikutta, R.; Kaiser, K.; Mueller, C.W.; Vogel, H.J. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 2022, 13, 2098. [Google Scholar] [CrossRef]
- Devitt, E.C.; Wiesner, M.R. Dialysis Investigations of Atrazine-Organic Matter Interactions and the Role of a Divalent Metal. Environ. Sci. Technol. 1998, 32, 232–237. [Google Scholar] [CrossRef]
- Jansen, B.; Kotte, M.C.; van Wijk, A.J.; Verstraten, J.M. Comparison of diffusive gradients in thin films and equilibrium dialysis for the determination of Al, Fe(III) and Zn complexed with dissolved organic matter. Sci. Total Environ. 2001, 277, 45–55. [Google Scholar] [CrossRef]
- Pan, Y.; Li, H.; Zhang, X.; Li, A. Characterization of natural organic matter in drinking water: Sample preparation and analytical approaches. Trends Environ. Anal. Chem. 2016, 12, 23–30. [Google Scholar] [CrossRef]
- Brezinski, K.; Gorczyca, B. An overview of the uses of high performance size exclusion chromatography (HPSEC) in the characterization of natural organic matter (NOM) in potable water, and ion-exchange applications. Chemosphere 2019, 217, 122–139. [Google Scholar] [CrossRef]
- Picó, Y.; Barceló, D. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: Focus on organic matter and microplastics. TrAC Trends Anal. Chem. 2020, 130, 115964. [Google Scholar] [CrossRef]
- Volkov, D.; Rogova, O.; Proskurnin, M. Organic Matter and Mineral Composition of Silicate Soils: FTIR Comparison Study by Photoacoustic, Diffuse Reflectance, and Attenuated Total Reflection Modalities. Agronomy 2021, 11, 1879. [Google Scholar] [CrossRef]
- Quinn, J.A.; Anderson, J.L.; Ho, W.S.; Petzny, W.J. Model pores of molecular dimension. The preparation and characterization of track-etched membranes. Biophys. J. 1972, 12, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Chakarvarti, S.K. Track-etch membranes enabled nano-/microtechnology: A review. Radiat. Meas. 2009, 44, 1085–1092. [Google Scholar] [CrossRef]
- Brink, L.E.S.; Elbers, S.J.G.; Robbertsen, T.; Both, P. The anti-fouling action of polymers preadsorbed on ultrafiltration and microfiltration membranes. J. Membr. Sci. 1993, 76, 281–291. [Google Scholar] [CrossRef]
- Yamazaki, I.M.; Paterson, R.; Geraldo, L.P. A new generation of track etched membranes for microfiltration and ultrafiltration. Part I. Preparation and characterisation. J. Membr. Sci. 1996, 118, 239–245. [Google Scholar] [CrossRef]
- Croue, J.-P.; Korshin, G.V.; Benjamin, M.M. Characterization of Natural Organic Matter in Drinking Water; American Water Works Association, AwwRF: Denver, CO, USA, 2000. [Google Scholar]
- Minor, E.C.; Swenson, M.M.; Mattson, B.M.; Oyler, A.R. Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis. Environ. Sci. Process Impacts 2014, 16, 2064–2079. [Google Scholar] [CrossRef]
- Sillanpää, M.; Metsämuuronen, S.; Mänttäri, M. Membranes. In Natural Organic Matter in Water; Sillanpää, M., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 113–157. [Google Scholar]
- Ben-Sasson, M.; Zidon, Y.; Calvo, R.; Adin, A. Enhanced removal of natural organic matter by hybrid process of electrocoagulation and dead-end microfiltration. Chem. Eng. J. 2013, 232, 338–345. [Google Scholar] [CrossRef]
- Proskurnin, M.A.; Volkov, D.S.; Rogova, O.B. Two-Dimensional Correlation IR Spectroscopy of Humic Substances of Chernozem Size Fractions of Different Land Use. Agronomy 2023, 13, 1696. [Google Scholar] [CrossRef]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A.; Farkhodov, Y.R.; Markeeva, L.B. Thermal stability of organic matter of typical chernozems under different land uses. Soil Tillage Res. 2020, 197, 104500. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Harrison-Kirk, T.; Curtin, D.; Beare, M. Temperature and duration of extraction affect the biochemical composition of soil water-extractable organic matter. Soil Biol. Biochem. 2014, 75, 161–166. [Google Scholar] [CrossRef]
- Zsolnay, Á. Chapter 4—Dissolved Humus in Soil Waters. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996; pp. 171–223. [Google Scholar]
- Waller, P.A.; Pickering, W.F. The lability of copper ions sorbed on humic acid. Chem. Speciat. Bioavailab. 1990, 2, 127–138. [Google Scholar] [CrossRef]
- Stevenson, F.J.; Chen, Y. Stability Constants of Copper(II)-Humate Complexes Determined by Modified Potentiometric Titration. Soil Sci. Soc. Am. J. 1991, 55, 1586–1591. [Google Scholar] [CrossRef]
- Boguta, P.; Sokołowska, Z. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties. PLoS ONE 2016, 11, e0153626. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, S.R.; Harvey, G.R.; Boran, D.A.; Weisel, C.P.; Springer-Young, M. Cadmium, copper, and zinc interactions with marine humus as a function of ligand structure. Mar. Chem. 1984, 14, 333–346. [Google Scholar] [CrossRef]
- Lyvén, B.; Hassellöv, M.; Turner, D.R.; Haraldsson, C.; Andersson, K. Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochim. Cosmochim. Acta 2003, 67, 3791–3802. [Google Scholar] [CrossRef]
- Sokolova, T.A.; Zaidel’man, F.R.; Ginzburg, T.M. Clay minerals in chernozem-like soils of mesodepressions in the northern forest-steppe of European Russia. Eurasian Soil Sci. 2010, 43, 76–84. [Google Scholar] [CrossRef]
- Goldberg, S. Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties: A review. Commun. Soil Sci. Plant Anal. 1989, 20, 1181–1207. [Google Scholar] [CrossRef]
- Krivoshein, P.K.; Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. FTIR photoacoustic spectroscopy for identification and assessment of soil components: Chernozems and their size fractions. Photoacoustics 2020, 18, 100162. [Google Scholar] [CrossRef]
- Mitrović, B.; Milačič, R. Speciation of aluminium in forest soil extracts by size exclusion chromatography with UV and ICP-AES detection and cation exchange fast protein liquid chromatography with ETAAS detection. Sci. Total Environ. 2000, 258, 183–194. [Google Scholar] [CrossRef]
- Milnes, A.R.; Fitzpatrick, R.W. Titanium and Zirconium Minerals. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science America: Madison, WI, USA, 1989; Volume 1. [Google Scholar]
- Schulze, D.G. An Introduction to Soil Mineralogy. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science America: Madison, WI, USA, 1989; Volume 1. [Google Scholar]
- Barré, P.; Velde, B.; Abbadie, L. Dynamic role of “illite-like” clay minerals in temperate soils: Facts and hypotheses. Biogeochemistry 2006, 82, 77–88. [Google Scholar] [CrossRef]
- Bühmann, C.; Beukes, D.J.; Turner, D.P. Clay mineral associations in soils of the Lusikisiki area, Eastern Cape Province, and their agricultural significance. S. Afr. J. Plant Soil 2006, 23, 78–86. [Google Scholar] [CrossRef]
- Tao, L.; Wen, X.; Li, H.; Huang, C.; Jiang, Y.; Liu, D.; Sun, B. Influence of manure fertilization on soil phosphorous retention and clay mineral transformation: Evidence from a 16-year long-term fertilization experiment. Appl. Clay Sci. 2021, 204, 106021. [Google Scholar] [CrossRef]
- Simonsson, M.; Hillier, S.; Öborn, I. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma 2009, 151, 109–120. [Google Scholar] [CrossRef]
- Kumari, N.; Mohan, C. Basics of Clay Minerals and Their Characteristic Properties. In Clay and Clay Minerals; Gustavo Morari Do, N., Ed.; IntechOpen: Rijeka, Croatia, 2021; p. 2. [Google Scholar]
- Goldberg, S.R.; Lebron, I.; Seaman, J.C.; Suarez, D.L. Soil colloidal behavior. In Handbook of Soil Sciences Properties and Processes, 2nd ed.; Huang, P.M., Li, Y., Sumner, M.E., Eds.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2012; pp. 15-11–15-39. [Google Scholar]
- Davis, J.A.; Kent, D.B. Surface complexation modeling in aqueous geochemistry. Rev. Mineral. Geochem. 1990, 23, 177–260. [Google Scholar]
- Beamlaku, A.; Habtemariam, T. Soil Colloids, Types and their Properties: A review. Open J. Bioinform. Biostat. 2021, 5, 008–113. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Sposito, G. Derivation of the Freundlich Equation for Ion Exchange Reactions in Soils. Soil Sci. Soc. Am. J. 1980, 44, 652–654. [Google Scholar] [CrossRef]
- Lair, G.J.; Gerzabek, M.H.; Haberhauer, G. Sorption of heavy metals on organic and inorganic soil constituents. Environ. Chem. Lett. 2006, 5, 23–27. [Google Scholar] [CrossRef]
- Covelo, E.F.; Vega, F.A.; Andrade, M.L. Competitive sorption and desorption of heavy metals by individual soil components. J. Hazard. Mater. 2007, 140, 308–315. [Google Scholar] [CrossRef]
- Golia, E.E.; Kantzou, O.-D.; Chartodiplomenou, M.-A.; Papadimou, S.G.; Tsiropoulos, N.G. Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration. Soil Syst. 2023, 7, 16. [Google Scholar] [CrossRef]
- Nikishina, M.; Perelomov, L.; Atroshchenko, Y.; Ivanova, E.; Mukhtorov, L.; Tolstoy, P. Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals. Soil Syst. 2022, 6, 2. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Derbalah, A.S.; Moghanm, F.S. Removal of Heavy Metals from Aqueous Solution by Zeolite in Competitive Sorption System. Int. J. Environ. Sci. Dev. 2012, 3, 362–367. [Google Scholar] [CrossRef]
- Sposito, G. The Thermodynamics of Soil Solutions; Oxford University Press: Oxford, UK, 1981. [Google Scholar]
- Rieu, M.; Sposito, G. Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory. Soil Sci. Soc. Am. J. 1991, 55, 1231–1238. [Google Scholar] [CrossRef]
- Tokar’, E.; Kuzmenkova, N.; Rozhkova, A.; Egorin, A.; Shlyk, D.; Shi, K.; Hou, X.; Kalmykov, S. Migration Features and Regularities of Heavy Metals Transformation in Fresh and Marine Ecosystems (Peter the Great Bay and Lake Khanka). Water 2023, 15, 2267. [Google Scholar] [CrossRef]
- Ling, S.Y.; Asis, J.; Musta, B. Distribution of metals in coastal sediment from northwest sabah, Malaysia. Heliyon 2023, 9, e13271. [Google Scholar] [CrossRef]
- Sheng, W.; Hou, Q.; Yang, Z.; Yu, T. Impacts of periodic saltwater inundation on heavy metals in soils from the Pearl River Delta, China. Mar. Environ. Res. 2023, 187, 105968. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Li, X.; Luo, J.; Han, R.; Chen, Q.; Shen, D.; Shentu, J. Soil heterogeneity influence on the distribution of heavy metals in soil during acid rain infiltration: Experimental and numerical modeling. J. Environ. Manag. 2022, 322, 116144. [Google Scholar] [CrossRef]
- Ke, W.; Zeng, J.; Zhu, F.; Luo, X.; Feng, J.; He, J.; Xue, S. Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting. Environ. Pollut. 2022, 307, 119486. [Google Scholar] [CrossRef]
- Anaman, R.; Peng, C.; Jiang, Z.; Liu, X.; Zhou, Z.; Guo, Z.; Xiao, X. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar] [CrossRef]
- Zeng, J.; Tabelin, C.B.; Gao, W.; Tang, L.; Luo, X.; Ke, W.; Jiang, J.; Xue, S. Heterogeneous distributions of heavy metals in the soil-groundwater system empowers the knowledge of the pollution migration at a smelting site. Chem. Eng. J. 2023, 454, 140307. [Google Scholar] [CrossRef]
- Tian, Z.; Pan, Y.; Chen, M.; Zhang, S.; Chen, Y. The relationships between fractal parameters of soil particle size and heavy-metal content on alluvial-proluvial fan. J. Contam. Hydrol. 2023, 254, 104140. [Google Scholar] [CrossRef]
- Gong, C.; Shao, Y.; Luo, M.; Xu, D.; Ma, L. Distribution Characteristics of Heavy Metals in Different Particle Size Fractions of Chinese Paddy Soil Aggregates. Processes 2023, 11, 1873. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Measurement conditions | |
Power, kW | 1.30 |
Plasma flow, L/min | 18.0 |
Axial flow, L/min | 1.50 |
Nebulizer flow, L/min | 0.95 |
Replica reading time, s | 25 |
Stabilization time, s | 35 |
Replicates | 3 |
Sample introduction parameters | |
Sample introduction delay, s | 20 |
Wash time, s | 5 |
Pump, rpm | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, D.S.; Rogova, O.B.; Ovseenko, S.T.; Odelskii, A.; Proskurnin, M.A. Element Composition of Fractionated Water-Extractable Soil Colloidal Particles Separated by Track-Etched Membranes. Agrochemicals 2023, 2, 561-580. https://doi.org/10.3390/agrochemicals2040032
Volkov DS, Rogova OB, Ovseenko ST, Odelskii A, Proskurnin MA. Element Composition of Fractionated Water-Extractable Soil Colloidal Particles Separated by Track-Etched Membranes. Agrochemicals. 2023; 2(4):561-580. https://doi.org/10.3390/agrochemicals2040032
Chicago/Turabian StyleVolkov, Dmitry S., Olga B. Rogova, Svetlana T. Ovseenko, Aleksandr Odelskii, and Mikhail A. Proskurnin. 2023. "Element Composition of Fractionated Water-Extractable Soil Colloidal Particles Separated by Track-Etched Membranes" Agrochemicals 2, no. 4: 561-580. https://doi.org/10.3390/agrochemicals2040032
APA StyleVolkov, D. S., Rogova, O. B., Ovseenko, S. T., Odelskii, A., & Proskurnin, M. A. (2023). Element Composition of Fractionated Water-Extractable Soil Colloidal Particles Separated by Track-Etched Membranes. Agrochemicals, 2(4), 561-580. https://doi.org/10.3390/agrochemicals2040032