Propolis: Harnessing Nature’s Hidden Treasure for Sustainable Agriculture
Abstract
:1. Introduction
2. Propolis Chemical Composition, Origin and Biological Activity
- Found in Europe, North America and non-tropical regions of Asia;
- Plant source: Populus spp. bud exudates;
- Found in Brazil;
- Plant source: Bacharis dracunculifolia leaves;
- Found in the states of northeastern Brazil;
- Plant sources: Dalbergia ecastaphyllum resin and Clusia spp. flower resin;
- Found in southern Greece, Mediterranean islands and North Africa;
- Plant source: Cupressus sempervirens resin;
- Main biologically active compounds: diterpenoids (isocupressic acid, communic acid, pimaric acid, totarol) [8].
- Found in the Pacific islands (Okinawa, Taiwan, Hawaii);
- Plant source: Macaranga tanarius fruit resin;
- Main biologically active compounds: prenylated flavonoids [16].
3. Propolis as Fungicide and Bactericide
4. Propolis as Herbicide
5. Propolis as Insecticide
6. Other Applications of Propolis as an Agrochemical
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Cambrridge, MA, USA, 2020; pp. 25–54. [Google Scholar]
- Hossain, R.; Quispe, C.; Khan, R.A.; Saikat, A.S.M.; Ray, P.; Ongalbek, D.; Yeskaliyeva, B.; Jain, D.; Smeriglio, A.; Trombetta, S.; et al. Propolis: An update on its chemistry and pharmacological applications. Chin. Med. 2022, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.J.L.D.; Sodré, G.D.S. Application of propolis in agriculture. Arq. Inst. Biol. 2021, 88, e0632019. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent progress in pharmacological research of propolis. Phytother. Res. 2001, 15, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical diversity and challenges in quality control. Phytoch. Rev. 2022, 21, 1887–1911. [Google Scholar] [CrossRef] [PubMed]
- Graikou, K.; Popova, M.; Gortzi, O.; Bankova, V.; Chinou, I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT Food Sci. Technol. 2016, 65, 261–267. [Google Scholar] [CrossRef]
- Shuaib, M.; Ali, A.; Ali, M.; Panda, B.P.; Ahmad, M.I. Antibacterial activity of resin rich plant extracts. J. Pharm. Bioallied Sci. 2013, 5, 265–269. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Bogdanov, S.; Sabatini, A.G. Chemical composition of European propolis: Expected and unexpected results. Z. Naturforsch. C 2002, 57, 530–533. [Google Scholar] [CrossRef]
- Okińczyc, P.; Szumny, A.; Szperlik, J.; Kulma, A.; Franiczek, R.; Żbikowska, B.; Krzyzanowska, B.; Sroka, Z. Profile of polyphenolic and essential oil composition of polish propolis, black poplar and aspens buds. Molecules 2018, 23, 1262. [Google Scholar] [CrossRef]
- Bankova, V.; Boudourova-Krasteva, G.; Sforcin, J.M.; Frete, X.; Kujumgiev, A.; Maimoni-Rodella, R.; Popov, S. Phytochemical evidence for the plant origin of Brazilian propolis from São Paulo State. Z. Naturforsch. C 1999, 54, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Salatino, A.; Salatino, M.L.F.; Negri, G. How diverse is the chemistry and plant origin of Brazilian propolis? Apidologie 2021, 52, 1075–1097. [Google Scholar] [CrossRef] [PubMed]
- Trusheva, B.; Popova, M.; Bankova, V.; Simova, S.; Marcucci, M.C.; Miorin, P.L.; Pazin, F.d.R.; Tsvetkova, I. Bioactive constituents of Brazilian red propolis. Evid. Based Complement. Altern. Med. 2006, 3, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Freires, I.A.; de Alencar, S.M.; Rosalen, P.L. A pharmacological perspective on the use of Brazilian Red Propolis and its isolated compounds against human diseases. Eur. J. Med. Chem. 2016, 110, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Shahinozzaman, M.; Obanda, D.N.; Tawata, S. Chemical composition and pharmacological properties of Macaranga-type Pacific propolis: A review. Phytother. Res. 2021, 35, 207–222. [Google Scholar] [CrossRef]
- Shah, A.; Smith, D.L. Flavonoids in agriculture: Chemistry and roles in biotic and abiotic stress responses, and microbial associations. Agronomy 2020, 10, 1209. [Google Scholar] [CrossRef]
- Zulhendri, F.; Chandrasekaran, K.; Kowacz, M.; Ravalia, M.; Kripal, K.; Fearnley, J.; Perera, C.O. Antiviral, Antibacterial, Antifungal, and Antiparasitic Properties of Propolis: A Review. Foods 2021, 10, 1360. [Google Scholar] [CrossRef]
- Souza, E.; Perino, F.; Moscato, B.; Freitas, P.; Blumer, S.; Cardoso, A.; BoniniI, C.; Bonini Neto, A. Extract of propolis in control of Penicillium sp. and in the quality of cauliflower seeds. Braz. Arch. Biol. Technol. 2017, 11, 135–141. [Google Scholar]
- Al-Khafaji, H.A.; Al-Musafir, M.A.; Naas, H.A.J. Effectiveness of ethanolic extracts from chamomile and propolis against fungi (Rhizoctonai solani Kuhn) causing root rot of broad bean (Vicia faba L.). Biochem. Cell. Arch. 2020, 20, 5443–5448. [Google Scholar]
- La Torre, A.; Guccione, M.; Imbroglini, G. Preliminary observations on the action of propolis-based preparations on Botrytis cinerea on strawberry. Apicoltura 1990, 6, 169–177. [Google Scholar]
- Campo, Y.; Munoz, Y.; Lopez, A.; Contreras-Velasquez, J.; Martinez, M.; Bermudez, V. Evaluation of the antifungal capacity of ethanolic extracts of propolis against anthracnose in tree tomato (Solanum betaceum Cav.). Rev. Fac. Agron. LUZ 2018, 35, 435–462. [Google Scholar]
- Pastana, R.F.; Vieira, G.H.C.; Machado, P.P. Use of propolis on “in vitro” control of the fungus Colletotrichum gloeosporioides causing anthracnose in eggplant. Rev. Agric. Neotrop. 2016, 3, 12–15. [Google Scholar] [CrossRef]
- Davari, M.; Ezazi, R. Mycelial inhibitory effects of antagonistic fungi, plant essential oils and propolis against five phytopathogenic Fusarium species. Arch. Microbiol. 2022, 204, 480. [Google Scholar] [CrossRef] [PubMed]
- Cibanal, I.L.; Fernández, L.A.; Rodriguez, S.A.; Pellegrini, C.N.; Gallez, L.M. Propolis extract combined with oregano essential oil applied to lima bean seeds against Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 2022, 164, 33–43. [Google Scholar] [CrossRef]
- Yusuf, Y.; Durdane, Y.; Servet, A. Antifungal activity of Turkish propolis against Phytophthora species. Plant Pathol. J. 2005, 4, 58–60. [Google Scholar]
- Yılmaz, M.M.; Kara, Y.; Erdoğan, O. The antifungal effect of propolis extract against cotton wild disease (Verticillium dahliae Kleb.). Int. J. Second. Metab. 2023, 10, 257–268. [Google Scholar] [CrossRef]
- Pazin, W.M.; Santos, S.N.; Queiroz, S.C.; Soares, A.E.E.; Ito, A.S. In vitro studies of Brazilian propolis against a phytopathogen agent: Analyzing bioactivity and mechanism of action in model membranes. Rev. Bras. Fís. Méd. 2014, 8, 2–5. [Google Scholar]
- Gregolin, F.S.; Bonaldo, S.M.; Sinhorin, A.P.; Banderó, J.L.; Wobeto, C. The in vitro control of Fusarium proliferatum by propolis ethanolic extracts. Rev. Fac. Cienc. Agrar. 2019, 42, 456–463. [Google Scholar]
- El-Kafrawy, A.A. Effect of propolis on damping-off disease on cucumber in protected cultivation. Egypt. J. Agric. Res. 2008, 86, 15–25. [Google Scholar] [CrossRef]
- Macedo, L.P.; de Menezes Filho, A.C.P.; de Souza Castro, C.F.; Ventura, M.V.A. Agricultural fungicidal effect of Tetragonisca angustula Latreille propolis extract. Braz. J. Sci. 2023, 2, 65–71. [Google Scholar] [CrossRef]
- Çakar, G.; Sivrikaya, I.S.; Karakaya, E.; Güller, A. Inhibition effect of different propolis extracts against Fusarium solani in vitro. Avrupa Bilim Teknoloji Dergisi 2022, 35, 82–88. [Google Scholar] [CrossRef]
- Kurt, S.; Şahinler, N. Propolis ekstraktının bitki patojeni funguslara karşı antifungal aktivitesi. Uludağ Arıcılık Dergisi 2003, 3, 35–37. [Google Scholar]
- Bohinc, T.; Vučajnk, F.; Trdan, S. The efficacy of environmentally acceptable products for the control of major potato pests and diseases. Zemdirbyste 2019, 106, 135–142. [Google Scholar] [CrossRef]
- Wuaden, C.R.; Gaio, I.; Sperhacke, T.P.; Barro, J.P.; Milanesi, P.M. Atividade Antifungica do Extracto Alcoólico do Própolis e do Óleo Essencial de Mamjercão sobre Botrytis cinerea. Colloq. Agrar. 2018, 14, 48–55. [Google Scholar] [CrossRef]
- Guginski-Piva, C.A.; dos Santos, I.; Wagner Júnior, A.; Winter Heck, D.; Faber Flores, M.; Pazolini, K. Propolis for the control of powdery mildew and the induction of phytoalexins in cucumber. Idesia 2015, 33, 39–47. [Google Scholar] [CrossRef]
- Gallez, L.; Kiehr, M.; Fernández, L.; Delhey, R.; Stikar, D. Antifungal activity in vitro of propolis solutions from Argentina against two plant pathogenic fungi: Didymella bryoniae and Rhizotocnia solani. J. Apicult. Res. 2014, 53, 438–440. [Google Scholar] [CrossRef]
- Quintero-Cerón, J.P.; Váquiro, H.A.; Solanilla, J.F.; Murillo, E.; Méndez, J.J. In vitro fugistatic activity of ethanolic extract of propolis against postharvest phytopathogenic fungi: Prelimibary Assessment. Acta Hortic. 2014, 1016, 157–162. [Google Scholar] [CrossRef]
- Chelong, I.A.; Moye, J.J.; Adair, A.; Bonwanno, S. First report of efficacy study of bioextract to control Pestalotiopsis sp. Affecting para rubber leaf disease (Hevea brasiliensis Muell. Arg) under climate variability. Int. J. Adv. Eng. Technol. 2020, 11, 209–217. [Google Scholar]
- Quiroga, E.N.; Sampietro, D.A.; Soberon, J.R.; Sgariglia, M.A.; Vattuone, M.A. Propolis from the northwest of Argentina as a source of antifungal principles. J. Appl. Microbiol. 2006, 101, 103–110. [Google Scholar] [CrossRef]
- Cibanal, I.L.; Fernandez, L.A.; Murray, A.P.; Pellegrini, C.N.; Gallez, L.M. Propolis extract and oregano essential oil as biofungicides for garlic seed cloves: In vitro assays and synergistic interaction against Penicillium allii. J. Appl. Microbiol. 2021, 131, 1909–1918. [Google Scholar] [CrossRef]
- Cardoso, A.I.I.; Piacenti, L.Z.; Lino, P.R.; Padovan, I.M.; Kronka, A.Z. Control of Alternaria brassicicola with thermotherapy and propolis and effect on the physiological quality of kale seeds. Hortic. Bras. 2020, 38, 363–369. [Google Scholar] [CrossRef]
- Curifuta, M.; Pardenilla, J.V.; Sanchez, J.; Contreras, A.; Salazar, L.A.; Alvear, M. The in vitro antifungal evaluation of a commercial extract of Chilean propolis against six fungi of agricultural importance. Cienc. Investig. Agrar. 2012, 39, 347–359. [Google Scholar] [CrossRef]
- Pazin, W.M.; Santos, S.N.; Queiroz, S.C.; Bagatolli, L.; Soares, A.E.; Melo, I.S.; Ito, A.S. Bioactivity and action mechanism of green propolis against Pythium aphanidermatum. An. Acad. Bras. Cienc. 2019, 91, e20180598. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.; Coqueiro, D.S.; Di Piero, R.M. Propolis and Lentinula edodes extracts can control the angular leaf spot of strawberry by different mechanisms. J. Plant Pathol. 2021, 103, 799–808. [Google Scholar] [CrossRef]
- Pereira, D.S.; Nakasone, A.K.; de Oliveira, L.C.; de Oliveira, M.S.; Pereira, N.S.; Cruz, J.N.; Ports, P.D.S.; Souza Filho, A.P.D.S.; de Medeiros, A.C.; da Silva, R.A.; et al. Effect of extracts of amazonian bee propolis on Xanthomonas axonopodis pv. passiflorae in the State of Pará-Brazil. Res. Soc. Dev. 2020, 9, e3719119464. [Google Scholar]
- Cibanal, I.L.; Fernández, L.A.; Positano, G.G.; Chebataroff, L.B.; Garayalde, A.F.; Gallez, L.M.; Pérez, E.S. Chemical characterization and in vitro antimicrobial activity of honeybee propolis and Scaptotrigona jujuyensis geopropolis against tomato pathogenic bacteria. Semin. Cienc. Agrar. 2020, 41, 1799–1808. [Google Scholar] [CrossRef]
- de Andrade, S.R.M.; Faleiro, F.G.; Teixeira, J.B.; de Pinto, A.C.Q.; Radel, G.; Cordeiro, M.R.; Ramo, V.V. Uses of alternative antibiotics to control bacterium growth in mango explants. Acta Hortic. 2009, 820, 541–546. [Google Scholar] [CrossRef]
- Almasoudi, N.M. Bioactivity of some natural products on some bacterial plant pathogens. J. Plant Prot. Pathol. 2013, 4, 683–688. [Google Scholar]
- Ateş, M.; Özkurt, N.; Bektaş, Y. Comparative evaluation of two commercial propolis extracts as plant defense activator and antimicrobial agent against Pseudomonas syringae pv. tomato (Pst) strain DC3000. Türkiye Tarım Araşt. Derg. 2021, 8, 213–219. [Google Scholar] [CrossRef]
- Jaski, J.M.; Telaxka, F.J.; Moura, G.S.; Franzener, G. Green propolis ethanolic extract in bean plant protection against bacterial diseases. Ciênc. Rural 2019, 49, e20180597. [Google Scholar] [CrossRef]
- Sampietro, D.A.; Bertini Sampietro, M.S.; Vattuone, M.A. Efficacy of Argentinean propolis extracts on control of potato soft rot caused by Erwinia carotovora subsp. J. Sci. Food Agric. 2020, 100, 4575–4582. [Google Scholar] [CrossRef] [PubMed]
- Abo-Elyousr, K.A.; Seleim, M.E.; El-Sharkawy, R.M.; Khalil Bagy, H.M. Effectiveness of Egyptian propolis on control of tomato bacterial wilt caused by Ralstonia solanacearum. J. Plant Dis. Prot. 2017, 124, 467–472. [Google Scholar] [CrossRef]
- Basim, E.; Basim, H.; Özcan, M. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. J. Food Eng. 2006, 77, 992–996. [Google Scholar] [CrossRef]
- Kahramanoğlu, İ.; Okatan, V.; Wan, C. Biochemical composition of propolis and its efficacy in maintaining postharvest storability of fresh fruits and vegetables. J. Food Qual. 2020, 2020, 8869624. [Google Scholar] [CrossRef]
- Rahul, S.N.; Khilari, K.; Sagar, S.; Chaudhary, S.; Kumar, S.; Vihan, N.; Tomar, A. Challenges in postharvest management of fungal diseases in fruits and vegetables—A review. South Asian J. Food Technol. Environ. 2015, 1, 126–130. [Google Scholar] [CrossRef]
- da Silva, T.K.; Borges, B.G.; de Freitas, A.S.; Soares, M.D.O.; Freitas, E.J.; Alcantra, E.; Figueiredo, J.R.M. In vitro antifungal activity of propolis in Colletotrichum spp. of avocado. Rev. Univ. Val. Rio Verde 2018, 16 (Suppl. S3), 1–6. [Google Scholar]
- Yang, S.; Peng, L.; Cheng, Y.; Chen, F.; Pan, S. Control of citrus green and blue molds by Chinese propolis. Food Sci. Biotechnol. 2010, 19, 1303–1308. [Google Scholar] [CrossRef]
- Yang, S.Z.; Peng, L.T.; Su, X.J.; Chen, F.; Cheng, Y.J.; Fan, G.; Pan, S.Y. Bioassay-guided isolation and identification of antifungal components from propolis against Penicillium italicum. Food Chem. 2011, 127, 210–215. [Google Scholar] [CrossRef]
- Matny, O.N.; Al-Warshan, S.H.; Ali, A.M. Antifungal evaluation of Iraqi propolis against Penicillium expansum and mycotoxin production in apple. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 399–405. [Google Scholar]
- Abo-Elyousr, K.A.; Al-Qurashi, A.D.; Almasoudi, N.M. Evaluation of the synergy between Schwanniomyces vanrijiae and propolis in the control of Penicillium digitatum on lemons. Egypt. J. Biol. Pest Control 2021, 31, 66. [Google Scholar] [CrossRef]
- Özdemir, A.E.; Candir, E.E.; Kaplankiran, M.; Soylu, E.M.; Şahinler, N.; Gül, A. The effects of ethanol-dissolved propolis on the storage of grapefruit cv. Star Ruby. Turk. J. Agric. For. 2010, 34, 155–162. [Google Scholar] [CrossRef]
- Sánchez, C.; Duarte, P.; Vasilenko, P.; Santos, M.; Loebler, M.; Cruz, A.S.; Gonçalves, M. Potential application of Portuguese propolis to control blue mould disease in ‘Rocha’ pear. Acta Hortic. 2015, 1144, 359–364. [Google Scholar] [CrossRef]
- Kaarunya, A.; Meenatchi, R.; Vignesh, S. Effect of lactic acid bacteria and propolis extract on the control of post-harvest decay in tomato and its quality attribute changes. J. Pharm. Innov. 2022, 11, 521–529. [Google Scholar]
- Badawy, I.F. Effect of ethanol-extracted propolis on fruit quality and storability of balady oranges during cold storage. Assiut J. Agri. Sci. 2016, 47, 156–166. [Google Scholar]
- da Cunha, M.C.; Passos, F.R.; Mendes, F.Q.; Pigozzi, M.T.; de Carvalho, A.M.X. Propolis extract from different botanical sources in postharvest conservation of papaya. Acta Sci. Technol. 2018, 40, e31074. [Google Scholar] [CrossRef]
- Sripong, K.; Srinon, T.; Ketkaew, K.; Uthairatakij, A.; Jitareerat, P. Impacts of paraffin wax and propolis on controlling crown rot disease and maintaining postharvest quality of banana. IOP Conf. Ser. Earth Environ. Sci. 2020, 515, 012036. [Google Scholar] [CrossRef]
- Tumbarski, D.Y.; Todorova, M.M.; Topuzova, M.G.; Georgieva, P.I.; Petkova, N.T.; Ivanov, I.G. Postharvest biopreservation of fresh blueberries by propolis-containing edible coatings under refrigerated conditions. Curr. Res. Nutr. Food Sci. 2022, 10, 99–112. [Google Scholar] [CrossRef]
- Mattiuz, B.H.; Ducamp-Collin, M.N.; Mattiuz, C.F.M.; Vigneault, C.; Marques, K.M.; Sagoua, W.; Montet, D. Effect of propolis on postharvest control of anthracnose and quality parameters of ‘Kent’ mango. Sci. Horticult. 2015, 184, 160–168. [Google Scholar] [CrossRef]
- Passos, F.R.; Mendes, F.Q.; Cunha, M.C.D.; Pigozzi, M.T.; Carvalho, A.M.X.D. Propolis extract in postharvest conservation banana ‘Prata’. Rev. Bras. Fruticult. 2016, 38, e-931. [Google Scholar] [CrossRef]
- Urrea, I.; Arismendi, N.; Sepúlveda, X.; Gerding, M.; Vero, S.; Vargas, M. Antifungal activity of propolis extracts against postharvest pathogen Phlyctema vagabunda. Agronomy 2022, 13, 104. [Google Scholar] [CrossRef]
- Zahid, N.; Ali, A.; Siddiqui, Y.; Maqbool, M. Efficacy of ethanolic extract of propolis in maintaining postharvest quality of dragon fruit during storage. Postharvest Biol. Technol. 2013, 79, 69–72. [Google Scholar] [CrossRef]
- Barrera, E.; Gil, J.; Restrepo, A.; Mosquera, K.; Durango, D. A coating of chitosan and propolis extract for the postharvest treatment of papaya (Carica papaya L. cv. Hawaiiana). Rev. Fac. Nac. Agron. Medellin 2015, 68, 7667–7678. [Google Scholar] [CrossRef]
- Cortés-Higareda, M.; de Lorena Ramos-García, M.; Correa-Pacheco, Z.N.; Del Río-García, J.C.; Bautista-Baños, S. Nanostructured chitosan/propolis formulations: Characterization and effect on the growth of Aspergillus flavus and production of aflatoxins. Heliyon 2019, 5, e01776. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, S.; Nozari, J. Evaluation of propolis extract in preventing weed seed germination. Proc. Int. Acad. Ecol. Environ. Sci. 2020, 10, 125–130. [Google Scholar]
- Pimentel, D. Pests and their control. In CRC Handbook of Natural Pesticides: Methods: Theory, Practice and Detection; Bhushan Mandova, N., Ed.; CRC Press Inc.: Boca Eaton, FL, USA, 1985; Volume 1, pp. 3–19. [Google Scholar]
- King-Díaz, B.; Granados-Pineda, J.; Bah, M.; Rivero-Cruz, J.F.; Lotina-Hennsen, B. Mexican propolis flavonoids affect photosynthesis and seedling growth. J. Photochem. Photobiol. B Biol. 2015, 151, 213–220. [Google Scholar] [CrossRef]
- Sorkun, K.; Bozcuk, S.; Gömürgen, A.N.; Tekin, F. An inhibitory effect of propolis on germination and cell division in the root tips of wheat seedlings. In Bee Products: Properties, Applications, and Apitherapy; Mizrahi, A., Lensky, Y., Eds.; Springer: Boston, MA, USA, 1997; pp. 129–135. [Google Scholar]
- Sorkun, K.; Bozcuk, S. Investigation of the effect of propolis on seed germination of some culture plants. In Proceedings of the XIIth National Biology Conference, Edirne, Turkey, 6–8 July 1994; pp. 54–59. [Google Scholar]
- Vică, M.L.; Glevitzky, M.; Heghedűş-Mîndru, R.C.; Dumitrel, G.A.; Heghedűş-Mîndru, G.; Popa, M.; Faur, D.M.; Bâlici, Ș.; Teodoru, C.A. Phyto-Inhibitory and Antimicrobial Activity of Brown Propolis from Romania. Antibiotics 2023, 12, 1015. [Google Scholar] [CrossRef]
- Pereira, D.S.; Holand-Neto, J.P.D.; Oliveira, M.S.D.; Pereira, N.S.; Maracajá, P.B.; Souza, A.P.D.S. Phytotoxic potential of the geopropolis extracts of the jandaira stingless bee (Melipona subnitida) in weeds. Rev. Caatinga 2017, 30, 876–884. [Google Scholar] [CrossRef]
- Pereira, D.S.; Santana de Oliveira, M.; Cruz, J.N.; do Nascimento Bezerra, P.; Gomes da Silva, A.; Pereira, N.S.; Ports, P.S.; Souza Filho, A.P.d.S.; Maracajá, P.B.; Freitas, M.O.; et al. Herbicidal potential (phytotoxic) of honey bee propolis extracts of the Brazilian northeast on weeds of cultivated pastures. J. Apicult. Res. 2021. [Google Scholar] [CrossRef]
- Fernandes-Silva, C.C.; Lima, C.A.; Negri, G.; Salatino, M.; Salatino, A.; Mayworm, M.A. Composition of the volatile fraction of a sample of Brazilian green propolis and its phytotoxic activity. J. Sci. Food Agricult. 2015, 95, 3091–3095. [Google Scholar] [CrossRef]
- Pusceddu, M.; Annoscia, D.; Floris, I.; Frizzera, D.; Zanni, V.; Angioni, A.; Satta, A.; Nazzi, F. Honeybees use propolis as a natural pesticide against their major ectoparasite. Proc. R. Soc. B Biol. Sci. 2021, 288, 20212101. [Google Scholar] [CrossRef]
- Ararso, Z.; Legesse, G. Insecticidal action of honeybees propolis extract against larvae of lesser wax moth. Agric. Biol. J. N. Am. 2016, 7, 302–306. [Google Scholar]
- El-sayed, S.M.; Emam, H.M. Effect of propolis extract (bee glue) on Tetranychus urticae Koch (Acari: Tetranychidae) under greenhouse conditions. Persian J. Acarol. 2021, 10, 299–308. [Google Scholar]
- Osipitan, A.A.; Babayemi, I.S.; George-Onaho, J.A.; Ete, J.A. Evaluation of bee propolis and some plant products in the management of Larger Grain Borer, Prostephanus truncatus (Coleoptera: Bostrichidae) in stored maize. Int. J. Agricult. Biosci. 2018, 7, 135–138. [Google Scholar]
- Bigiotti, G.; Pastorelli, R.; Belcari, A.; Sacchetti, P. Symbiosis interruption in the olive fly: Effect of copper and propolis on Candidatus Erwinia dacicola. J. Appl. Entomol. 2019, 143, 357–364. [Google Scholar] [CrossRef]
- Adeyemi, W.A.; Osipitan, A. Evaluation of the effectiveness of propolis and garlic in the management of maize weevil (Sitophilus zeamais) in stored maize (Zea mays) grains. Mun. Ent. Zool. 2014, 9, 117–124. [Google Scholar]
- Salman, M.A.; Jaber, F.N.; Kalaf, J.M. Effect of ethanolic extract of two types of propolis on control fig moth Cadra cautella (Walker) (Lepedoptera: Pyralidae) on stored dates. Basrah J. Date Palm Res. 2020, 19, 86–99. [Google Scholar]
- Amer, R.A.; Nafea, E. Toxicity of honeybee propolis against Pectinophora gossypiella (SAUND.), Spodoptera littoralis (BOISD) and Aphis craccivora (KOCH). J. Plant Prot. Pathol. 2011, 2, 347–359. [Google Scholar] [CrossRef]
- Marouf, A.E.; Abd-Allah, G.E.; Shalaby, M.M. Effect of propolis extracts and Bacillus thuringiensis on leafminer fly Liriomyza sativae (Diptera: Agromyzidae). Egypt. J. Plant Prot. Res. Inst. 2021, 4, 222–229. [Google Scholar]
- Omar, S.; Elsayed, I.; Marouf, A.; Dawood, D. Effects of Bacillus thuringiensis cry toxin, propolis extracts and silver nanoparticles synthesized by soil fungus (Fusarium oxysporum) against two species of Tetranychus spp. (Acari: Tetranychidae). J. Agricult. Chem. Biotechnol. 2016, 7, 283–289. [Google Scholar] [CrossRef]
- Hamouda, S.E.S.; Elattif, N.S.A.; Abd-Alla, H.I. Nematicidal efficiency of 10% emulsifiable concentrate formulation of propolis on root-knot nematode Meloidogyne Spp. Int. J. Res. Agric. Food Sci. 2019, 5, 24–34. [Google Scholar]
- Saadoon, S.M.; Sergany, M.I.; Mona, H.E.; Reham, A.M.; Gad, S.B. The efficiency of using some natural compounds for management of citrus nematode Tylenchulus semipenetrans. Arab. J. Plant Prot. 2022, 40, 346–350. [Google Scholar] [CrossRef]
- Ali, M.A.; Abou El Atta, D.A.; Ayyad, M.A. Propolis, bee venom and Beauveria bassiana toxicity with field application; Controlling the terrestrial gastropod Monacha cartusiana. J. Entomol. Zool. Stud. 2023, 11, 43–46. [Google Scholar] [CrossRef]
- Vučurović, A.; Stanković, I.; Nikolić, D.; Milojević, K.; Bulajić, A.; Krstić, B. Effect of propolis extract on Zucchini yellow mosaic virus inhibition in oilseed pumpkin. Acta Hortic. 2017, 1164, 431–438. [Google Scholar] [CrossRef]
- Terry, F.A.J.; Vergara, Y.R.; Jiménez, E.A.; Peñalver, D.A.; Rodríguez, R.B.; López, R.C.; Peralta, M.P.; Martínez, O.G.; Daymí Ramírez Aguilar, D.R.; Martínez, R.S.; et al. Efecto de una formulación de propóleo en los medios de cultivo para la micropropagación de la papa var Desirée. Biot. Veg. 2004, 4, 91–96. [Google Scholar]
- El-Hady, N.A.A.A.; ElSayed, A.I.; El-saadany, S.S.; Deligios, P.A.; Ledda, L. Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants. Plants 2021, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- El-Yazal, M.A.S. Impact of propolis extract as foliar spray on growth, yield and some chemical composition of spinach (Spinacia oleracea L.) plants grown under calcareous saline soil. Int. J. Empir. Educ. Res. 2019, 3, 1–14. [Google Scholar] [CrossRef]
- El-Yazal, M.A.S.; Ali, I.H.H. Ameliorative impact of propolis extract presoaking treatment combined with foliar spray on performances of salt-stressed spinach (Spinacia oleracea L.) plants. J. Agricult. Res. Pestic. Biofertil. 2021, 1, 1–19. [Google Scholar]
- Pereira, C.S.; de Assis, R.P.; Zanato, I.B.; Ribeiro, C.B.; Zambiazzi, E.V. Application of ethanolic extract of propolis typified in nutrition and vegetative growth of beans. Afr. J. Agric. Res. 2018, 13, 21–26. [Google Scholar]
- Abou El-Nour, H.H. Impact of propolis as a bio-product on pepper plants productivity and their fruits at shelf-life period. GSC Adv. Res. Rev. 2022, 10, 32–46. [Google Scholar] [CrossRef]
- Wang, C.M.; Jhan, Y.L.; Yen, L.S.; Su, Y.H.; Chang, C.C.; Wu, Y.Y.; Chang, C.I.; Tsai, S.Y.; Chou, C.H. The allelochemicals of litchi leaf and its potential as natural herbicide in weed control. Allelopathy J. 2013, 32, 157–174. [Google Scholar]
- Loiseleur, O. Natural products in the discovery of agrochemicals. Chimia 2017, 71, 810. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, S.; Birah, A.; Kumar, R.; Yadav, M.S.; Chattopadhyay, C. Plant Disease Management: Prospects of Pesticides of Plant Origin. In Advances in Plant Biopesticides; Singh, D., Ed.; Springer: New Delhi, India, 2014. [Google Scholar] [CrossRef]
- Ogunnupebi, T.A.; Oluyori, A.P.; Dada, A.O.; Oladeji, O.S.; Inyinbor, A.A.; Egharevba, G.O. Promising natural products in crop protection and food preservation: Basis, advances, and future prospects. Int. J. Agron. 2020, 2020, 8840046. [Google Scholar] [CrossRef]
- Vurro, M.; Miguel-Rojas, C.; Pérez-de-Luque, A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag. Sci. 2019, 75, 2403–2412. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.H. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control Release 2019, 294, 131–153. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Technical Report on the Outcome of the Consultation with Member States and EFSA on the Basic Substance Application for Propolis Extract (Admissibility Accepted when Named Water-Soluble Extract of Propolis) for Use in Plant Protection as Fungicide and Bactericide; EFSA Supporting Publication EN-1494; EFSA: Parma, Italy, 2018; 56p. [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; Falcão, S.I.; Isla, M.I.; Moreno, M.I.N.; et al. Standard methods for Apis mellifera propolis research. J. Apicult. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef]
Propolis Geographic Origin | Propolis Type | Major Active Compounds | Microorganisms | Type of Experiment | Reference |
---|---|---|---|---|---|
Antifungal activity | |||||
Brazil | Green Brazilian | Not identified Not measured | Penicillium spp. | In vitro (20% of solution of propolis extract of the commercial product Propomax®) In vivo: cauliflower seeds | [19] |
Iran | Unknown | Not identified Not measured | Rhizoctonai solani | In vitro (6% of ethanol propolis extract) In vivo: broad bean (6% of ethanol propolis extract) | [20] |
Italy | Unknown | Not identified Not measured | Botrytis cinerea | In vitro In vivo: strowberry (4000 ppm propolis solution) | [21] |
Venezuela | Unknown | Flavonoids (UV) Not measured | Colletotrichum gloeosporioides | In vitro (10% of ethanol propolis extract) | [22] |
Brazil | Unknown | Not identified Not measured | Colletotrichum gloeosporioides | In vitro (32 mL/L of propolis extract) | [23] |
Iran | Unknown | Not identified Not measured | Fusarium spp. | In vitro (propolis ethanol extract of 1000 µg/L) | [24] |
Argentina | Unknown | Not identified Not measured | Sclerotinia sclerotiorum | In vitro (5 μL/mL propolis ethanol extract) In vivo: lima bean seeds (20% propolis ethanol extract + 6% oregano essential oil + 74% sterile distilled water) | [25] |
Turkey (Northeast) | Unknown | Not identified Not measured | Phytophthora infestans, P. capsica, P. parasitica | In vitro (propolis methanol extract at 10, 7, 5 and 3 µg/mL) | [26] |
Turkey | Poplar type | Flavonoids, phenolic acids | Verticillium dahliae | In vitro (1 ppm 80% ethanol propolis extarct/mL in sterilized PDA medium) In vivo: cotton (1 ppm 80% ethanol propolis extarct/mL in sterilized PDA medium) | [27] |
Brazil | Unknown | Not measured | Pythium aphanidermatum | In vitro (1 μg/mL of ethanolic propolis extract) | [28] |
Brazil | Green Brazilian | Phenolic acids, flavonoids | Fusarium proliferatum | In vitro (2% of 70% ethanol propolis extract) | [29] |
Egypt | Unknown | Not identified Not measured | Fusarium solani, Phythium ultimum, Sclerotinia sclerotiorum | In vitro (5 g/L propolis ethanol extract) In vivo: cucumber (5 g/L propolis ethanol extract) | [30] |
Brazil | Unknown * | Not identified Not measured | Sclerotinia sclerotiorum, Colletotrichum gloeosporioides, C. acutatum | In vitro: S. sclerotiorum (400–500 μL/mL propolis etanol extract) C. gloeosporioides and C. acutatum (200 μL/mL propolis etanol extract) | [31] |
Turkey | Unknown | Not identified Not measured | Fusarium solani | In vitro (5% of 70% ethanol propolis extract) | [32] |
Turkey | Unknown | Not identified Not measured | Verticillium dahliae, Fulvia fulva, Penicillium digitatum | In vitro (1 ppm of 70% propolis ethanol extract) | [33] |
Slovenia | Poplar | Quercetin, apigenin, pinobanksin, chrysin, pinocembrin, galangin | Alternaria solani, Phytophthora infestans | In vivo: potatoes plants (5 mL propolis glycolic extract/L H2O) | [34] |
Brazil | Unknown | Not identified Not measured | Botrytis cinerea | In vitro | [35] |
Brazil | Unknown | Not identified Not measured | Podosphaera fuliginea | In vivo: cucumber (8% of 70% ethanol propolis extract in distilled water) | [36] |
Argentina | Poplar type | Not identified Not measured | Didymella bryoniae, Rhizotocnia solani | In vitro (1.5 mL of ethanol propolis extract/Petri dish) | [37] |
Colombia | Unknown | Not identified Not measured | Aspergillus niger, Penicillium sp., Rhizopus oryzae Botrytis cinerea | In vitro: A. niger—propolis ethanol extract 0.09% w/v, Penicillium sp.—0.42% w/v, R. oryzae—0.53% w/v, B. cinerea—1.09% w/v. | [38] |
Thailand | Unknown | Not identified Not measured | Pestalotiopsis sp | In vitro (50 mL of natural bio-extract composed of 80–85% wood vinegar, 5–10% propolis, 1–5% tar, and 0.5–1% zinc oxide) In vivo: Hevea braziliensis (50 mL of the natural bio-extract) | [39] |
Argentina | Unknown | Pinocembrin, galangin | Aspergillus niger, Fusarium sp., Macrophomina sp., Penicillium notatum, Phomopsis sp., Thichoderma spp. | In vitro (MIC pinocembrin: 20–50 μg/mL; MIC galangin: 14–40 μg/mL) | [40] |
Argentina | Unknown | Apigenin, chrysin, pinocembrin, galangin | Penicillium allii | In vitro [MIC and MFC 12.5 μL/mL (8.6 mg/mL of 70% dry propolis) and 50 μL/mL (34.4 mg/mL of dry propolis), respectively] | [41] |
Brazil | Unknown | Not identified Not measured | Alternaria brassicicola | In vivo: kale seeds germination and vigor (1.0% of propolis, commercial product Apis Flora) | [42] |
Chile | Unknown | Pinocembrin, galangin, caffeic acid phenethyl ester (CAPE) | Alternaria alternata, Fusarium sp., Ulocladium sp., Botrytis cinerea, Penicillium expansum, Trichoderma reesei | In vitro [5% (v/v) of commercial ethanolic extracts in 70% ethanol] | [43] |
Brazil | Green Brazilian | Artepillin C | Pythium aphanidermatum | In vitro, mechanism (70% ethanol propolis extract 750 µg/mL) | [44] |
Antibacterial Activity | |||||
Brazil | Green Brazilian, Red Brazilian, Brown Brazilian | Total phenolics, total flavonoids | Xanthomonas fragariae | In vitro (green propolis—1 mg/mL 70% ethanol propolis extract in distilled water) In vivo: strawberry (all propolis types—5 mg/mL 70% ethanol propolis extract in distilled water) | [45] |
Brazil | Unknown | 3,4-Dihydroxybenzoic acid, kaempferol, gallic acid | Xanthomonas axonopodis pv. passiflorae | In vitro (0.5% of 80% ethanol propolis extract) | [46] |
Brazil | Unknown | Caffeic acid, quercetin, apigenin, pinobanksin, chrysin, pinocembrin, galangin | Clavibacter michiganensis subsp. michiganensis, Xanthomonas gardneri, X. vesicatoria, Pseudomonas corrugata, P. mediterranea | In vitro (15.0 mg/mL of geopropolis ** and 78.7 mg/mL of 70% propolis dry extract) | [47] |
Brazil | Unknown | Not identified Not measured | Bacterial growth | In vivo: Mango explants (0.5 and 1% propolis extract v/v) | [48] |
Saudi Arabia | Unknown | Not identified Not measured | Pectobacterium carotovorum, Agrobacterium tumefaciens | In vitro (4000 μg/mL methanol propolis extract) | [49] |
Turkey | Unknown | Not identified Not measured | Pseudomonas syringae pv. tomato | In vitro (0.1, 1, and 2% of water-based propolis extracts, with 14.4 and 90% concentrations) | [50] |
Brazil | Green Brazilian | Not identified Not measured | Xanthomonas axonopodis pv. phaseoli Pseudomonas syringae pv. tabaci | In vitro [2.5% and 5.0% of ethanol propolis extract, containing 11% dry extract (w/v)] In vivo: common bean [5% of ethanol propolis extract, containing 11% dry extract (w/v)] | [51] |
Argentina | Unknown | 2′,4′-Dihydroxychalcone, 2′,4′-dihydroxy-3′-methoxychalcone, galangin, pinocembrin | Erwinia carotovora | In vitro In vivo: Potato tubers (500 mL of ethanol propolis extract, containing 87.5 μg GAE/mL) | [52] |
Egypt | Green Brazilian | Not identified Not measured | Ralstonia solanacearum | In vitro [water extract of propolis (1, 10 and 100 mg/mL water)] In vivo: tomato [water extract of propolis (1, 10 and 100 mg/mL water)] | [53] |
Turkey | Unknown | Not identified Not measured | Agrobacterium tumefaciens, A. vitis, Clavibacter michiganensis subsp. michiganensis, Erwinia amylovora, E. carotovora pv. carotovora, Pseudomonas corrugata, P. savastanoi pv. savastanoi, P. syringae pv. phaseolicola, P. syringae pv. syringae, P. syringae pv. tomato, Ralstonia solanacearum, Xanthomonas campestris pv. Campestris, X. axonopodis pv. vesicatoria | In vitro (1/10 concentration of methanol propolis extract) | [54] |
Propolis Geographic Origin | Propolis Type | Major Active Compounds | Microorganisms | Type of Experiment | Reference |
---|---|---|---|---|---|
Brazil | Unknown | Not identified Not measured | Colletotrichum spp. | In vitro (2 mL/L) | [57] |
China | Unknown | Not identified Not measured | Penicillium digitatum, Penicillium italicum | In vitro: Penicillium digitatum (200 mg/L), Penicillium italicum (150 mg/L) On fruits: mandarins | [58] |
China | Unknown | Pinobanksin, pinocembrin, chrysin, galangin | Penicillium italicum | In vitro (EC50 144.8 mg/L) | [59] |
Iraq | Unknown | Not identified Not measured | Penicillium spp. | On fruits: apples (1% propolis in water) | [60] |
Egypt | Unknown | Not identified Not measured | Penicillium digitatum | In vitro (3% ethanolic extract) On fruits: lemons | [61] |
Turkey | Unknown | Not identified Not measured | Not indicated | On fruits: grapefruit (5% ethanolic extract) | [62] |
Portugal | Unknown | Chrysin, tectochrysin, pinocembrin, chrysophanol [9.8 g/L phenolic compounds (GAE)] | Penicillium expansum | On fruits: “Rocha” pear (propolis extract 1:20) | [63] |
India | Unknown | Not identified Not measured | Escherichia coli, Aspergilus spp. | On fruits: tomatoes (40 μL 1:1 w/v EtOH extract per fruit) | [64] |
Egypt | Unknown | Not identified Not measured | Not indicated | On fruits: Balady Oranges (5% ethanol extract) | [65] |
Brazil | Green Brazilian Other Brazilian | Not identified Not measured | Not indicated | On fruits: Papaya (2.5% (w/v)) | [66] |
Thailand | Unknown | Not identified Not measured | Causative agents of Crown Rot Disease | On fruits: Banana (50% propolis, 100% paraffin and 50% propolis) | [67] |
Bulgaria | Poplar type | Not identified Not measured | Unidentified yeasts and/or fungi | On fruits: * Blueberries (1% propolis in edible coating) | [68] |
Brazil | Green Brazilian | Flavonoids, artepillin-C, ρ-coumaric acid (ethanolic extract, 30% dried matter with 50% total soluble solids; flavonoids 20 mg/L; artepillin-C: 10.5 mg/L; ρ-coumaric acid 2.5 mg/L) | Colletotrichum gloeosporioides | In vitro On fruits: ‘Kent’ mango (2.5% propolis) | [69] |
Brazil | Green Brazilian, Red Brazilian, Other Brazilian | Not identified Not measured | Not indicated | On fruits: banana ‘Prata’ [2.5% (w/v) propolis extract] | [70] |
Chile | Unknown | Rutin, myricetin, querecetin, kaempferol, galangin, CAPE, pinocembrin | Phlyctema vagabunda | On fruits: apples (0.05 and 0.1% propolis extract) | [71] |
China | Unknown | Not identified Not measured | Not indicated | On fruits: dragon fruit (1% ethanol extract) | [72] |
Colombia | Unknown | Pentacyclic triterpenes, cycloartane-type triterpenes, aromatic acids and esters | Colletotrichum gloeosporioides | In vitro On fruits: papaya (coating of chitosan, 1%; containing propolis ethanolic extract, 5%) | [73] |
Mexico | Unknown | Not identified Not measured | Aspergilus flavus | In vitro (nanoparticles of chitosan and 40% propolis) | [74] |
Propolis Geographic Origin | Propolis Type | Major Active Compounds | Affected Plant | Type of Activity | Reference |
---|---|---|---|---|---|
Iran | Unknown | Not identified Not measured | Broadleaf (Silybum marianum) and narrow-leaf (Hordeum spontaneum, Avena sativa) weeds | Prevention or postponement of weed seed germination (1:2 propolis ethanol extract/water) | [75] |
Mexico | Unknown | Acacetin, chrysin, 4′,7-dimethylnarangenin | Lolium perenne, Echinochloa crus-galli and Physalis ixocarpa | Growth of the plants (300 μM of every individual compound) | [77] |
Romania | Brown European | Total phenolics and total flavonoids | Triticum aestivum, Zea mays, Avena sativa and Hordeum vulgare L. | Phyto-inhibitory activity (10% aqueous propolis extract) | [80] |
Brazil | Geopropolis * | Not identified Not measured | Pasture weeds Mimosa pudica and Senna obtusifolia (1% w/v alcohol extract) | Inhibition of seed germination, radicle elongation and hypocotyl growth (1% w/v alcohol extract) | [81] |
Brazil | Not determined | Gallic acid, 3,4-dihydroxybenzoic acid, catechin and kaempferol. | Pasture weeds Mimosa pudica and Senna obtusifolia | Inhibition of seed germination, radicle elongation and hypocotyl growth (0.75% and 1.0%) | [82] |
Brazil | Green Brazilian propolis | Volatile fraction (3-prenylcinnamic acid allyl ester, spathulenol, 7-phenyl-5-oxo-heptanol) | Lettuce | Inhibition of seed germination and the growth of its seedlings (1% solution of volatile fraction) | [83] |
Propolis Geographic Origin | Propolis Type | Major Active Compounds | Affected Organism | Type of Activity | Reference |
---|---|---|---|---|---|
Egypt | Unknown | Total phenolics, total flavonoids | Two-spotted spider mite Tetranychus urticae | High mortality in all stages (egg, larva, nymph and adult) (2000 ppm concentration of extract) | [86] |
Nigeria | Unknown | Not identified Not measured | Larger grain borer Prostephanus truncatus | Low effect on mortality (5 mg propolis powder for 250 mL maiz grains) | [87] |
Italy | Unknown | Total flavonoids | Olive fly Bactrocera oleae and its endosymbiont Candidatus Erwinia dacicola | Interruption of symbiosis (solution 20 mg/mL flavonoids, applied as 200–250 mL/100 L) | [88] |
Nigeria | Unknown | Not identified Not measured | Sitophilus zeamais | Minimizing weight loss in infected maize grains (15% propolis extract added to the grains) | [89] |
Iraq | Unknown | Not identified Not measured | Fig moth larvae Cadra cautella | Repellant effect (2.5% extract) | [90] |
China, Egypt | Unknown | Phenolic acid and flavonoids identified by HPLC with standard compounds | Pink bollworm Pectinophora gossypiella; cotton leafworm Spodoptera littoralis and cowpea aphid Aphis craccivora | Toxicity to larvae (LC50 and LC90—0.282 and 5.987%) | [91] |
Egypt | Unknown | Chlorogenic acid, acacetin | Tomato leafminer Liriomyza sativae | Toxicity to larvae (LC50 of 4628.002 ppm water extract) | [92] |
Egypt | Unknown | Phenolic acid and flavonoids identified by HPLC with standard compounds | Tetranychus urticae and Tetranychus cinnabarinus | Moderate toxicity (LC50 13,579 ppm water extract; LC50 15,881 ppm ethanol extract) | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bankova, V.; Popova, M. Propolis: Harnessing Nature’s Hidden Treasure for Sustainable Agriculture. Agrochemicals 2023, 2, 581-597. https://doi.org/10.3390/agrochemicals2040033
Bankova V, Popova M. Propolis: Harnessing Nature’s Hidden Treasure for Sustainable Agriculture. Agrochemicals. 2023; 2(4):581-597. https://doi.org/10.3390/agrochemicals2040033
Chicago/Turabian StyleBankova, Vassya, and Milena Popova. 2023. "Propolis: Harnessing Nature’s Hidden Treasure for Sustainable Agriculture" Agrochemicals 2, no. 4: 581-597. https://doi.org/10.3390/agrochemicals2040033
APA StyleBankova, V., & Popova, M. (2023). Propolis: Harnessing Nature’s Hidden Treasure for Sustainable Agriculture. Agrochemicals, 2(4), 581-597. https://doi.org/10.3390/agrochemicals2040033