Dicamba and 2,4-D in the Urine of Pregnant Women in the Midwest: Comparison of Two Cohorts (2010–2012 vs. 2020–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Lab Methods
2.4. Sample Size and Power
2.5. Statistical Methods
3. Results
3.1. Descriptive Information of Pregnant Participants
3.2. Dicamba and 2,4-D Measured in Urine
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Characteristic | Overall N = 152 | nuMoM2b N = 61 | Heartland N = 91 |
---|---|---|---|
Age, Mean ± SD | 29.3 ± 5.7 | 29.3 ± 6.6 | 29.3 ± 5.1 |
Gestational Age (Days), Mean ± SD | 76.6 ± 14.1 | 81.7 ± 10.2 | 73.1 ± 15.4 |
Maternal Race, N (%) | |||
- Black | 32 (23.4%) | 12 (19.7%) | 20 (26.3%) |
- White | 83 (60.6%) | 36 (59.0%) | 47 (61.8%) |
- Other | 22 (16.1%) | 13 (21.3%) | 9 (11.8%) |
- Missing, N | 15 | 15 | |
Maternal Ethnicity, N (%) | |||
- Hispanic | 27 (19.6%) | 10 (16.4%) | 17 (22.1%) |
- Non-Hispanic | 111 (80.4%) | 51 (83.6%) | 60 (77.9%) |
- Missing, N | 14 | 14 | |
Education, N (%) | |||
- Less than HS grad, HS grad, or GED | 34 (26.4%) | 12 (19.7%) | 22 (32.4%) |
- Some college or Assoc/Tech degree | 28 (21.7%) | 11 (18.0%) | 17 (25.0%) |
- Completed college | 25 (19.4%) | 14 (23.0%) | 11 (16.2%) |
- Degree work beyond college | 42 (32.6%) | 24 (39.3%) | 18 (26.5%) |
- Missing, N | 23 | 23 | |
Income, N (%) | |||
- USD 0–24,999 | 17 (15.0%) | 6 (10.9%) | 11 (19.0%) |
- USD 25,000–49,999 | 18 (15.9%) | 6 (10.9%) | 12 (20.7%) |
- USD 50,000–99,999 | 27 (23.9%) | 13 (23.6%) | 14 (24.1%) |
- USD 100,000–149,000 | 22 (19.5%) | 11 (20.0%) | 11 (19.0%) |
- USD 150,000–199,999 | 14 (12.4%) | 11 (20.0%) | 3 (5.2%) |
- USD 200,000 or more | 15 (13.3%) | 8 (14.5%) | 7 (12.1%) |
- Missing, N | 39 | 6 | 33 |
Spray Season, N (%) | |||
- Yes | 96 (63.2%) | 41 (67.2%) | 55 (60.4%) |
- No | 56 (36.8%) | 20 (32.8%) | 36 (39.6%) |
Cohort | N | 25th %ile | 50th %ile | 75th %ile | 95th %ile |
---|---|---|---|---|---|
Specific gravity (dicamba samples) | |||||
nuMoM2b | 57 | 1.011 | 1.017 | 1.020 | 1.028 |
Heartland | 86 | 1.012 | 1.020 | 1.025 | 1.030 |
Specific gravity (2,4-D samples) | |||||
nuMoM2b | 61 | 1.011 | 1.017 | 1.021 | 1.028 |
Heartland | 91 | 1.012 | 1.020 | 1.025 | 1.030 |
Cohort | N | 25th %ile | 50th %ile | 75th %ile | 95th %ile | Geometric Mean (95% CI) | p-value |
---|---|---|---|---|---|---|---|
SG-standardized dicamba (assuming lognormal, accounting for case–control status of nuMoM2b) | |||||||
nuMoM2b | 57 | 0.032 | 0.074 | 0.169 | 0.562 | 0.074 (0.048, 0.114) | <0.0001 |
Heartland | 86 | 0.118 | 0.271 | 0.624 | 2.071 | 0.271 (0.205, 0.358) | |
SG-standardized 2,4-D (assuming lognormal, accounting for case–control status of nuMoM2b) | |||||||
nuMoM2b | 61 | 0.228 | 0.368 | 0.593 | 1.181 | 0.368 (0.308, 0.440) | 0.118 |
Heartland | 91 | 0.274 | 0.442 | 0.713 | 1.419 | 0.442 (0.382, 0.511) |
Cohort | N | 25th %ile | 50th %ile | 75th %ile | 95th %ile |
---|---|---|---|---|---|
Not SG-standardized dicamba (values below LOD are substituted with LOD/√2) | |||||
nuMoM2b | 57 | 0.071 | 0.071 | 0.119 | 0.521 |
Heartland | 86 | 0.071 | 0.285 | 0.601 | 1.879 |
SG-standardized dicamba (values below LOD are substituted with LOD/√2) | |||||
nuMoM2b | 57 | 0.079 | 0.129 | 0.236 | 0.553 |
Heartland | 86 | 0.141 | 0.309 | 0.757 | 1.632 |
Not SG-standardized 2,4-D | |||||
nuMoM2b | 61 | 0.158 | 0.253 | 0.418 | 1.081 |
Heartland | 91 | 0.206 | 0.426 | 0.641 | 1.665 |
SG-standardized 2,4-D | |||||
nuMoM2b | 61 | 0.246 | 0.351 | 0.526 | 1.970 |
Heartland | 91 | 0.271 | 0.404 | 0.676 | 1.422 |
References
- Benbrook, C.M. Impacts of genetically engineered crops on pesticide use in the U.S.--The first sixteen years. Environ. Sci. Eur. 2012, 24, 24. [Google Scholar] [CrossRef]
- Benbrook, C. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef]
- Borel, B. Weeds Are Winning the War against Herbicide Resistance: Herbicides Are under Evolutionary Threat. Can Modern Agriculture Find a New Way to Fight Back? Scientific American: New York, NY, USA, 2018; Available online: https://www.scientificamerican.com/article/weeds-are-winning-the-war-against-herbicide-resistance1/ (accessed on 22 January 2024).
- Heap, I.; Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018, 74, 1040–1049. [Google Scholar] [CrossRef]
- Green, J.M.; Owen, M.D.K. Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management. J. Agric. Food Chem. 2011, 59, 5819–5829. [Google Scholar] [CrossRef]
- Wechsler, S.J.; Smith, D.; McFadden, J.; Dodson, L.; Williamson, S. The Use of Genetically Engineered Dicamba-Tolerant Soybean Seeds Has Increased Quickly, Benefiting Adopters but Damaging Crops in Some Fields. In Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America; USDA, Economic Research Service: Washington, DC, USA, 2019. [Google Scholar]
- Hygeia Analytics. PUDS—The Pesticide Use Data System. Available online: https://hygeia-analytics.com/pesticides/usage/puds-the-pesticide-use-data-system/ (accessed on 5 May 2021).
- United States Department of Agriculture. National Agricultural Statistics Service Quick Stats. Available online: https://quickstats.nass.usda.gov/ (accessed on 22 January 2024).
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef]
- Balalian, A.A.; Liu, X.; Herbstman, J.B.; Daniel, S.; Whyatt, R.; Rauh, V.; Calafat, A.M.; Wapner, R.; Factor-Litvak, P. Prenatal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-dichlorophenoxyacetic acid and size at birth in urban pregnant women. Environ. Res. 2021, 201, 111539. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.K.; Shao, J.; Li, M.; Ji, C.; Chen, M.; Xia, Y.; Lozoff, B.; Meeker, J.D. Prenatal exposure to the herbicide 2,4-D is associated with deficits in auditory processing during infancy. Environ. Res. 2019, 172, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Dalsager, L.; Christensen, L.E.; Kongsholm, M.G.; Kyhl, H.B.; Nielsen, F.; Schoeters, G.; Jensen, T.K.; Andersen, H.R. Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense Child Cohort. Reprod. Toxicol. 2018, 76, 53–62. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, Y.; Cao, M.; Wang, A.; Mahai, G.; He, Z.; Xu, S.; Xia, W. Urinary 2,4-dichlorophenoxyacetic acid in Chinese pregnant women at three trimesters: Variability, exposure characteristics, and association with oxidative stress biomarkers. Chemosphere 2022, 304, 135266. [Google Scholar] [CrossRef] [PubMed]
- Lerro, C.C.; Beane Freeman, L.E.; Portengen, L.; Kang, D.; Lee, K.; Blair, A.; Lynch, C.F.; Bakke, B.; De Roos, A.J.; Vermeulen, R.C. A longitudinal study of atrazine and 2,4-D exposure and oxidative stress markers among iowa corn farmers. Environ. Mol. Mutagen. 2017, 58, 30–38. [Google Scholar] [CrossRef]
- Duhig, K.; Chappell, L.C.; Shennan, A.H. Oxidative stress in pregnancy and reproduction. Obstet. Med. 2016, 9, 113–116. [Google Scholar] [CrossRef]
- Kelley, K.B.; Riechers, D.E. Recent developments in auxin biology and new opportunities for auxinic herbicide research. Pestic. Biochem. Physiol. 2007, 89, 1–11. [Google Scholar] [CrossRef]
- Caux, P.Y.; Kent, R.A.; Taché, M.; Grande, C.; Fan, G.T.; MacDonald, D.D. Environmental fate and effects of dicamba: A Canadian perspective. Rev. Environ. Contam. Toxicol. 1993, 133, 1–58. [Google Scholar] [CrossRef]
- Bunch, T.R.; Gervais, J.A.; Buhl, K.; Stone, D. Dicamba Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services. Available online: http://npic.orst.edu/factsheets/archive/dicamba_tech.html/ (accessed on 22 January 2024).
- Larose, J.; Bienvenu, J.-F.; Bélanger, P.; Gaudreau, É.; Yu, Y.; Guise, D.M. New sensitive LC-MS/MS method for the simultaneous determination of 13 phenolic and carboxylic acid pesticide biomarkers in human urine, including dicamba. Chemosphere 2023, 344, 140349. [Google Scholar] [CrossRef]
- Kutz, F.W.; Cook, B.T.; Carter-Pokras, O.D.; Brody, D.; Murphy, R.S. Selected pesticide residues and metabolites in urine from a survey of the U.S. general population. J. Toxicol. Environ. Health 1992, 37, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Weselak, M.; Arbuckle, T.E.; Wigle, D.T.; Walker, M.C.; Krewski, D. Pre- and post-conception pesticide exposure and the risk of birth defects in an Ontario farm population. Reprod. Toxicol. 2008, 25, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Lerro, C.C.; Hofmann, J.N.; Andreotti, G.; Koutros, S.; Parks, C.G.; Blair, A.; Albert, P.S.; Lubin, J.H.; Sandler, D.P.; Beane Freeman, L.E. Dicamba use and cancer incidence in the agricultural health study: An updated analysis. Int. J. Epidemiol. 2020, 49, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Freisthler, M.; Winchester, P.D.; Young, H.A.; Haas, D.M. Perinatal health effects of herbicides exposures in the United States: The Heartland Study, a Midwestern Birth Cohort Study. BMC Public Health 2023, 23, 2308. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.M.; Parker, C.B.; Wing, D.A.; Parry, S.; Grobman, W.A.; Mercer, B.M.; Simhan, H.N.; Hoffman, M.K.; Silver, R.M.; Wadhwa, P.; et al. A description of the methods of the Nulliparous Pregnancy Outcomes Study: Monitoring mothers-to-be (nuMoM2b). Am. J. Obstet. Gynecol. 2015, 212, 539.e1–539.e24. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- DeBord, D.G.; Shoemaker, D.; B’Hymer, C.; Snawder, J.; DABT; NIOSH. Application of Biological Monitoring Methods for Chemical Exposures in Occupational Health. In NIOSH Manual of Analytical Methods (NMAM), 5th ed.; CDC-National Institute for Occupational Safety and Health (NIOSH): Washington, DC, USA, 2022; pp. BI-1–BI-48. [Google Scholar]
- Cone, E.J.; Caplan, Y.H.; Moser, F.; Robert, T.; Shelby, M.K.; Black, D.L. Normalization of Urinary Drug Concentrations with Specific Gravity and Creatinine. J. Anal. Toxicol. 2009, 33, 1–7. [Google Scholar] [CrossRef]
- Goldberger, B.A.; Loewenthal, B.; Darwin, W.D.; Cone, E.J. Intrasubject variation of creatinine and specific gravity measurements in consecutive urine specimens of heroin users. Clin. Chem. 1995, 41, 116–117. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Hein, M.; Deddens, J.; Hines, C. Analysis of Lognormally Distributed Exposure Data with Repeated Measures and Values below the Limit of Detection Using SAS. Ann. Occup. Hyg. 2011, 55, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Irwin, W.; Gavelek, A.; Lowe, K.M.; Savoia, P.; Kamel, A.; Nguyen, J.; Evironmental Protection Agency. Dicamba and Dicamba BAPMA Salt: Human-Health Risk Assessment for Proposed Section 3 New Uses on Dicamba-Tolerant Cotton and Soybean; United States Environmental Protection Agency: Washington, DC, USA, 2016; pp. 1–105. Available online: https://www.regulations.gov/document/EPA-HQ-OPP-2016-0223-0002 (accessed on 22 January 2024).
- Pesticide Data Program Annual Summary Reports, Calendar Year 2018. Available online: https://www.ams.usda.gov/sites/default/files/media/2018PDPAnnualSummary.pdf/ (accessed on 22 January 2024).
- Boone, M.D.; Bishop, C.A.; Boswell, L.A.; Brodman, R.D.; Burger, J.; Davidson, C.; Gochfeld, M.; Hoverman, J.T.; Neuman-Lee, L.A.; Relyea, R.A.; et al. Pesticide Regulation amid the Influence of Industry. BioScience 2014, 64, 917–922. [Google Scholar] [CrossRef]
- Troudi, A.; Soudani, N.; Mahjoubi Samet, A.; Ben Amara, I.; Zeghal, N. 2,4-Dichlorophenoxyacetic acid effects on nephrotoxicity in rats during late pregnancy and early postnatal periods. Ecotoxicol. Environ. Saf. 2011, 74, 2316–2323. [Google Scholar] [CrossRef]
Characteristic | Overall N = 143 | nuMoM2b N = 57 | Heartland N = 86 |
---|---|---|---|
Age, Mean ± SD | 29.5 ± 5.6 | 29.3 ± 6.3 | 29.5 ± 5.1 |
Gestational Age (Days), Mean ± SD | 76.6 ± 14.2 | 81.7 ± 10.4 | 73.3 ± 15.5 |
Maternal Race, N (%) | |||
- Black | 29 (22.5%) | 10 (17.5%) | 19 (26.4%) |
- White | 80 (62.0%) | 36 (63.2%) | 44 (61.1%) |
- Other | 20 (15.5%) | 11 (19.3%) | 9 (12.5%) |
- Missing, N | 14 | 14 | |
Maternal Ethnicity, N (%) | |||
- Hispanic | 26 (20.2%) | 10 (17.5%) | 16 (22.2%) |
- Non-Hispanic | 103 (79.8%) | 47 (82.5%) | 56 (77.8%) |
- Missing, N | 14 | 14 | |
Education, N (%) | |||
- Less than HS grad, HS grad, or GED | 32 (26.7%) | 11 (19.3%) | 21 (33.3%) |
- Some college or Assoc/Tech degree | 25 (20.8%) | 10 (17.5%) | 15 (23.8%) |
- Completed college | 23 (19.2%) | 12 (21.1%) | 11 (17.5%) |
- Degree work beyond college | 40 (33.3%) | 24 (42.1%) | 16 (25.4%) |
- Missing, N | 23 | 23 | |
Income, N (%) | |||
- USD 0–24,999 | 17 (16.0%) | 6 (11.3%) | 11 (20.8%) |
- USD 25,000–49,999 | 16 (15.1%) | 6 (11.3%) | 10 (18.9%) |
- USD 50,000–99,999 | 25 (23.6%) | 12 (22.6%) | 13 (24.5%) |
- USD 100,000–149,000 | 21 (19.8%) | 11 (20.8%) | 10 (18.9%) |
- USD 150,000–199,999 | 13 (12.3%) | 10 (18.9%) | 3 (5.7%) |
- USD 200,000 or more | 14 (13.2%) | 8 (15.1%) | 6 (11.3%) |
- Missing, N | 37 | 4 | 33 |
Spray Season, N (%) | |||
- Yes | 91 (63.6%) | 39 (68.4%) | 52 (60.5%) |
- No | 52 (36.4%) | 18 (31.6%) | 34 (39.5%) |
Above LOD Values | Above LOQ Values | ||||
---|---|---|---|---|---|
Dicamba | N | N > LOD (0.1 µg/L) | Proportion (95% CI) | N > LOQ (0.33 µg/L) | Proportion (95% CI) |
nuMoM2b | 57 | 16 | 0.28 (0.16, 0.40) | 3 | 0.05 (0.00, 0.11) |
Heartland | 86 | 60 | 0.70 (0.60, 0.79) | 39 | 0.45 (0.35, 0.56) |
2,4-D | N | N > LOD (0.01 µg/L) | Proportion (95% CI) | N > LOQ (0.034 µg/L) | 0.05 (0.00, 0.11) |
Heartland | 61 | 61 | 1 | 61 | 1 |
nuMoM2b | 91 | 91 | 1 | 90 | 0.99 (0.97, 1) |
Cohort | N | 25th %ile (95% CI) | Geometric Mean (95% CI) | 75th %ile (95% CI) | 95th %ile (95% CI) | p-Value |
---|---|---|---|---|---|---|
Not SG-standardized (assuming lognormal) | ||||||
nuMoM2b | 57 | 0.020 (0.012, 0.034) | 0.047 (0.030, 0.075) | 0.113 (0.074, 0.172) | 0.394 (0.250, 0.621) | |
Heartland | 86 | 0.098 (0.069, 0.139) | 0.234 (0.175, 0.312) | 0.556 (0.413, 0.750) | 1.939 (1.271, 2.959) | |
SG-standardized (assuming lognormal) | ||||||
nuMoM2b | 57 | 0.029 (0.017, 0.048) | 0.066 (0.042, 0.104) | 0.153 (0.101, 0.231) | 0.509 (0.326, 0.796) | <0.0001 |
Heartland | 86 | 0.117 (0.084, 0.164) | 0.271 (0.205, 0.358) | 0.625 (0.468, 0.833) | 2.081 (1.390, 3.116) |
Cohort | N | 25th %ile (95% CI) | Geometric Mean (95% CI) | 75th %ile (95% CI) | 95th %ile (95% CI) | p-Value |
---|---|---|---|---|---|---|
Not SG-standardized (assuming lognormal) | ||||||
nuMoM2b | 61 | 0.150 (0.119, 0.188) | 0.270 (0.217, 0.336) | 0.487 (0.387, 0.612) | 1.136 (0.865, 1.491) | |
Heartland | 91 | 0.213 (0.176, 0.257) | 0.383 (0.320, 0.458) | 0.690 (0.570, 0.836) | 1.611 (1.265, 2.050) | |
SG-standardized (assuming lognormal) | ||||||
nuMoM2b | 61 | 0.238 (0.197, 0.286) | 0.383 (0.321, 0.458) | 0.619 (0.514, 0.745) | 1.232 (0.988, 1.537) | 0.226 |
Heartland | 91 | 0.274 (0.234, 0.320) | 0.442 (0.382, 0.511) | 0.713 (0.611, 0.833) | 1.421 (1.168, 1.729) |
Cohort | Spray Season | N | Concentration Levels (µg/L) Geometric Mean (95% CI) |
---|---|---|---|
SG-standardized dicamba (assuming lognormal) | |||
nuMoM2b | Yes | 39 | 0.070 (0.044, 0.111) |
No | 18 | 0.059 (0.033, 0.104) | |
Heartland | Yes | 52 | 0.290 (0.207, 0.406) |
No | 34 | 0.244 (0.164, 0.365) | |
SG-standardized 2,4-D (assuming lognormal) | |||
nuMoM2b | Yes | 41 | 0.383 (0.316, 0.465) |
No | 20 | 0.383 (0.302, 0.486) | |
Heartland | Yes | 55 | 0.442 (0.372, 0.525) |
No | 36 | 0.442 (0.361, 0.542) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daggy, J.K.; Haas, D.M.; Yu, Y.; Monahan, P.O.; Guise, D.; Gaudreau, É.; Larose, J.; Benbrook, C.M. Dicamba and 2,4-D in the Urine of Pregnant Women in the Midwest: Comparison of Two Cohorts (2010–2012 vs. 2020–2022). Agrochemicals 2024, 3, 42-56. https://doi.org/10.3390/agrochemicals3010005
Daggy JK, Haas DM, Yu Y, Monahan PO, Guise D, Gaudreau É, Larose J, Benbrook CM. Dicamba and 2,4-D in the Urine of Pregnant Women in the Midwest: Comparison of Two Cohorts (2010–2012 vs. 2020–2022). Agrochemicals. 2024; 3(1):42-56. https://doi.org/10.3390/agrochemicals3010005
Chicago/Turabian StyleDaggy, Joanne K., David M. Haas, Yunpeng Yu, Patrick O. Monahan, David Guise, Éric Gaudreau, Jessica Larose, and Charles M. Benbrook. 2024. "Dicamba and 2,4-D in the Urine of Pregnant Women in the Midwest: Comparison of Two Cohorts (2010–2012 vs. 2020–2022)" Agrochemicals 3, no. 1: 42-56. https://doi.org/10.3390/agrochemicals3010005
APA StyleDaggy, J. K., Haas, D. M., Yu, Y., Monahan, P. O., Guise, D., Gaudreau, É., Larose, J., & Benbrook, C. M. (2024). Dicamba and 2,4-D in the Urine of Pregnant Women in the Midwest: Comparison of Two Cohorts (2010–2012 vs. 2020–2022). Agrochemicals, 3(1), 42-56. https://doi.org/10.3390/agrochemicals3010005