Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges, and Prospects
Abstract
:1. Introduction
1.1. Overview of Apple Scab (Venturia inaequalis)
1.2. Infection Mechanism
2. Management Strategies of Apple Scab
2.1. Sanitation Practices
2.2. Mixed Cultivars
2.3. Breeding for Resistance
Apple Cultivar | Reaction to Scab | R-Gene Type | References |
---|---|---|---|
Ahrista | R | Rvi6 | [33] |
Antonovka | R | Rvi10 | [25] |
Aychurok | S | - | [34] |
Batul | HR | Rvi4 | [23] |
Cox Orange pippin | MS | - | [35] |
Crimson Crisp | MR | Rvi6 | [33] |
Dayton | HR | Rvi6 | [27] |
Delicious | S | - | [27] |
Discovery | HS | - | [35] |
Elstar | S | - | [5] |
Empire | S | - | [27] |
Englischer Prinz | MR | Rvi14 | [33] |
Enterprise | HR | Rvi6 | [6,36] |
Florina | HR | Rvi6 | [37,38] |
Freedom | HR | Rvi6 | [32] |
Fuji | S | - | [6] |
Gala | HS | - | [39,40] |
Golab | S | - | [41] |
Gold Rush | HR | Rvi6, Rvi13 | [6,33] |
Golden Delicious | HS | Rvi1 | [27,37] |
Granny Smith | S | - | [42] |
Honeycrisp | R | Rvi19, Rvi20 | [43] |
Idared | S | - | [44] |
Jonagold | S | - | [39] |
Jonafree | R | Rvi6 | [27] |
Jonathan | S | - | [5] |
Judeline | MS | Rvi6 | [37] |
Liberty | MR | Rvi6 | [5,23] |
Macfree | R | Rvi6 | [5,24] |
Makali | R | Rvi6 | [32] |
Malus floribunda 821 | MR | Rvi6, Rvi7 | [37] |
Marshalll McIntosh | HS | None | [5] |
Mutsu | HS | - | [44] |
Nela | R | Rvi6 | [33] |
Nova Easygrow | HR | Rvi6 | [6,23] |
Pink lady | HS | - | [42] |
Pioneer | R | Rvi6 | [5] |
Prima | HR | Rvi1, Rvi6 | [37,44] |
Primula | MR | Rvi6 | [33] |
Priscilla | HR | Rvi6 | [37,45] |
Realka | R | Rvi2, Rvi4, Rvi6 | [33] |
Redfree | R | Rvi6 | [6,24] |
Remo | R | Rvi6 | [5] |
Remura | R | Rvi4 | [33] |
Topaz | R | Rvi6 | [33,38] |
Vilmos renet | R | Rvi2 | [23] |
William’s Pride | HR | Rvi6 | [6,46] |
2.4. Scab Forecasting Models
2.5. Chemical Fungicides
Fungicides Group | Chemical Name | Mode of Action | References |
---|---|---|---|
Anilinopyrimidine | Cyprodinil, Pyrimethanil | Inhibiting protein synthesis | [70] |
Demethylation inhibitors (DMIs) | Imidazoles: triflumizole Triazoles: bitertanol, difenoconazole, fenbuconazole, flusilazole, hexaconazole, myclobutanil, propiconazole, tebuconazole | Inhibit sterol biosynthesis of fungal membranes by binding Cyp51 gene | [6,71,72,73] |
Dithiocarbamates | Mancozeb, maneb, metiram, propineb, ziram, zineb, maneb | Multi-site inhibitors inhibit fungal growth by disrupting metabolic processes through the release of ethylene-bis-isothiocyanate sulphide (EBIS) | [6,71,74] |
Methyl benzimidazole carbamate (MBC) | Benomyl, carbendazim, thiophanate-methyl | Prevents mitosis and cell division in fungi via binding to the β-tubulin gene | [72] |
Phenylpyrrole | Fludioxonil | Interferes with the osmolarity glycerol pathway | [70] |
Multi-site contact activity: Chloronitriles Guanidines Phthalimides Quinones Inorganic | Chlorothalonil Dodine Captan Dithianon Copper salts and sulphur | Multi-site activity Cell membrane disruption Multi-site inhibitors with activity against thiol groups in proteins and peptides Active against thiol groups in proteins and peptides. Multi-site activity | [6,71] [70,71] [70,71] [70,71] [6,71] |
SDHIs | Boscalid, fluopyram, fluxapyroxad, inpyrfluxam and pydiflumetofen | Inhibit fungal respiration by binding to the succinate dehydrogenase (SDH) complex in the mitochondrial electron transport chain | [70,75] |
Quinone outside inhibitors (QoIs) | Methoxyacrylates: azoxystrobin Oximino acetates: trifloxystrobin, kresoxim-methyl Methoxycarbamates: pyraclostrobin | Inhibit mitochondrial respiration by binding to the quinone oxidizing site (QoI site) of the cytochrome bc1 enzyme complex | [71,72] |
2.6. Biological Control
3. Insight into Integration of Biocontrol in Apple Scab Management
4. BCAs as Sustainable Alternatives
5. Biological Control Using Fungi, Yeasts, and Bacteria against V. inaequalis
BCA | Targeted Structure | Application Type | Assay | Mode of Action | Application Time | Efficacy | Reference |
---|---|---|---|---|---|---|---|
Athelia bombacina | Ascospore | Mycelial suspension | In vivo; applied on shredded scabbed leaves | - | Autumn | Reduced ascospore production up to 82% | [117] |
Aureobasidium microstictum | Mycelim | - | In vitro—Cellophane membrane-based method | Antibiosis (VOC) | - | Suppressed V. inaequalis growth completely | [41] |
Bacillus sp. | Conidia | Cell-free supernatant | Detached leaf assay in vitro; Agar plate test | Antibiosis | - | Growth inhibition up to 81% | [17] |
Botrytis cinerea | Mycelia and conidia | Agar plugs and mycelial suspension | In vitro, agar plate | - | - | Inhibited mycelial growth up to 86%; | [109] |
Seedlings inoculation | Reduced disease severity | ||||||
Chaetomium globosum | Ascospore | Invert emulsion | In vivo; foliar spray on senescent leaves | - | Spring | Inhibited ascospore production up to 79% | [112] |
C. globosum | Mycelia | Mycelial suspension | In vitro; cellophane membrane-based method | Antibiosis | - | Completely inhibited V. inaequalis growth; | [41] |
In vivo; seedlings inoculation | Reduced disease severity | ||||||
Cladosporium sp. | Conidia | Conidial suspension | In vivo; foliar spray, field trial | - | Spring and summer | Reduced disease severity up to 74% | [105] |
Cladosporium sp. (I PK 14) | Mycelia | Agar plugs | In vitro; agar plate test, | - | Inhibited mycelial growth up to 93%; | [109] | |
Spore suspension | Seedlings inoculation | Reduced scab severity | |||||
Coniochaeta endophytica | Conidia | Conidial suspension | In vivo; seedlings inoculation | - | - | Complete control of apple scab disease | [41] |
Gliocladium sp. | Storage scab | Conidial suspension | In vivo; on orchards fruits | - | Late summer (harvest) | Controlled storage scab | [118] |
Microsphaeropsis ochracea | Ascospore | Mycelial suspension | In planta; leaf discs and whole infected leaf In vivo; foliar leaf sprayed on tree canopy and ground | - | Autumn | Reduced ascospore production by 84% | [108] |
Pantoea sp. | Mycelia | Cell suspension | In vivo, agar plate | - | - | Inhibited mycelial growth | [119] |
Pseudomonas spp. | Conidia | Cell-free supernatants | In vivo; agar plate test | Antibiosis | - | Percentage growth inhibition up to 96%; | [17] |
In planta; detached leaf assay | Reduced disease incidence and severity | ||||||
Sporidiobolus spp. | Mycelia | 1.5 × 107 yeasts suspension per ml | In planta; seedling inoculation | Lysis | Spring | Complete suppression in planta; | [82] |
In vivo; foliar sprayed on field | Scab reduction up to 81% | ||||||
Trichoderma harzianum | Conidia | Conidial suspension | In vivo; foliar and soil application | - | - | Reduced scab disease incidence; | [120] |
Conidia | Conidial suspension | In vivo; on orchards fruits | Late summer (harvest) | Effective up to 30 days against storage scab | [118] | ||
Trichodrma longibrachiatum | Ascospore | Invert emulsion | In vivo; foliar sprayed on senescent leaves | - | Spring | Inhibited ascospore production by 66% | [112] |
Trichoderma viride | Conidia | Mycelial suspension | In planta; seedling inoculation In vivo; foliar spray | Mycopar-asitism | Spring | Prevented disease progression from 80–95%. | [34] |
6. Modes of Action of BCAs against V. inaequalis
6.1. Indirect Biocontrol Activities against V. inaequalis
6.2. Direct Biocontrol Activities against V. inaequalis
6.2.1. Competition
6.2.2. Mycoparasitism
6.2.3. Antibiosis
7. Biological Control of Apple Scab Using Botanicals
8. Risks and Challenges of Utilizing BCAs in Apple Scab Management
9. Future Trends and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carisse, O.; Bernier, J. Effect of Environmental Factors on Growth, Pycnidial Production and Spore Germination of Microsphaeropsis Isolates with Biocontrol Potential against Apple Scab. Mycol. Res. 2002, 106, 1455–1462. [Google Scholar] [CrossRef]
- MacHardy, W.E.; Gadoury, D.M.; Gessler, C. Parasitic and Biological Fitness of Venturia inaequalis: Relationship to Disease Management Strategies. Plant Dis. 2001, 85, 1036–1051. [Google Scholar] [CrossRef] [PubMed]
- Philion, V. The Screening of Potential Fungal Antagonists of Pseudothecial Formation by the Apple Scab Pathogen Venturia inaequalis; National Library of Canada = Bibliothèque Nationale du Canada: Ottawa, ON, Canada, 1996; ISBN 978-0-612-05615-2. [Google Scholar]
- Majeed, M.; Bhat, N.A.; Badri, Z.A.; Yousuf, V.; Wani, T.A.; Hassan, M.; Saleem, M.; Dorjey, S.; Paswal, S. Non-Chemical Management of Apple Scab-A Global Perspective. Int. J. Environ. Agric. Biotechnol. 2017, 2, 912–921. [Google Scholar] [CrossRef]
- Nu, A.; Rani, R.; Sharma, J.R. Studies on Biology and Management of Apple Scab Incited by Venturia inaequalis. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 162–182. [Google Scholar] [CrossRef]
- Belete, T.; Boyraz, N. Critical Review on Apple Scab (Venturia inaequalis) Biology, Epidemiology, Economic Importance, Management and Defense Mechanisms to the Causal Agent. J. Plant Physiol. Pathol. 2017, 5, 2. [Google Scholar] [CrossRef]
- Carisse, O.; Dewdney, M. A Review of Non-Fungicidal Approaches for the Control of Apple Scab. Phytoprotection 2005, 83, 1–29. [Google Scholar] [CrossRef]
- Xu, X.; Harvey, N.; Roberts, A.; Barbara, D. Population Variation of Apple Scab (Venturia inaequalis) within Mixed Orchards in the UK. Eur. J. Plant Pathol. 2013, 135, 97–104. [Google Scholar] [CrossRef]
- Bowen, J.K.; Mesarich, C.H.; Bus, V.G.M.; Beresford, R.M.; Plummer, K.M.; Templeton, M.D. Venturia inaequalis: The Causal Agent of Apple Scab. Mol. Plant Pathol. 2011, 12, 105–122. [Google Scholar] [CrossRef]
- Shiller, J.; Van De Wouw, A.P.; Taranto, A.P.; Bowen, J.K.; Dubois, D.; Robinson, A.; Deng, C.H.; Plummer, K.M. A Large Family of AvrLm6-like Genes in the Apple and Pear Scab Pathogens, Venturia inaequalis and Venturia pirina. Front. Plant Sci. 2015, 6, 165188. [Google Scholar] [CrossRef] [PubMed]
- Khajuria, Y.P.; Akhoon, B.A.; Kaul, S.; Dhar, M.K. Avirulence (Avr) Genes in Fungal Pathogen Venturia inaequalis, a Causal Agent of Scab Disease on Apple Trees. Physiol. Mol. Plant Pathol. 2023, 127, 102101. [Google Scholar] [CrossRef]
- Thakur, K.; Chawla, V.; Bhatti, S.; Swarnkar, M.K.; Kaur, J.; Shankar, R.; Jha, G. De Novo Transcriptome Sequencing and Analysis for Venturia inaequalis, the Devastating Apple Scab Pathogen. PLoS ONE 2013, 8, e53937. [Google Scholar] [CrossRef]
- Gauthier, N. Apple Scab. In The Plant Health Instructor; University of Kentucky: Lexington, UK, 2018. [Google Scholar] [CrossRef]
- Kollar, A. Evidence for Loss of Ontogenetic Resistance of Apple Leaves against Venturia inaequalis. Eur. J. Plant Pathol. 1996, 102, 773–778. [Google Scholar] [CrossRef]
- Zajicova, I.; Tihlarikova, E.; Cifrova, P.; Kyjakova, P.; Nedela, V.; Sechet, J.; Havelkova, L.; Kloutvorova, J.; Schwarzerova, K. Analysis of Apple Epidermis in Respect to Ontogenic Resistance against Venturia inaequalis. Biol. Plant. 2019, 63, 662–670. [Google Scholar] [CrossRef]
- Porsche, F.M.; Pfeiffer, B.; Kollar, A. A New Phytosanitary Method to Reduce the Ascospore Potential of Venturia inaequalis. Plant Dis. 2017, 101, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Padder, S.A.; Mansoor, S.; Bhat, S.A.; Baba, T.R.; Rather, R.A.; Wani, S.M.; Popescu, S.M.; Sofi, S.; Aziz, M.A.; Hefft, D.I.; et al. Bacterial Endophyte Community Dynamics in Apple (Malus domestica) Germplasm and Their Evaluation for Scab Management Strategies. J. Fungi 2021, 7, 923. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, W.F.S. Wetting and Temperature Requirements for Infection of Mature Apples by Venturia inaequalis in South Africa. Ann. Appl. Biol. 1982, 100, 415–423. [Google Scholar] [CrossRef]
- Blaise, P.; Gessler, C. Cultivar Mixtures in Apple Orchards as a Means to Control Apple Scab? Nor. J. Agric. Sci. 1994, 17, 105–122. [Google Scholar]
- Stewart, K.; Passey, T.; Verheecke-Vaessen, C.; Kevei, Z.; Xu, X. Is It Feasible to Use Mixed Orchards to Manage Apple Scab? Fruit Res. 2023, 3, 28. [Google Scholar] [CrossRef]
- Chizzali, C.; Gusberti, M.; Schouten, H.J.; Gessler, C.; Broggini, G.A.L. Cisgenic Rvi6 Scab-Resistant Apple Lines Show No Differences in Rvi6 Transcription When Compared with Conventionally Bred Cultivars. Planta 2016, 243, 635–644. [Google Scholar] [CrossRef]
- Kaymak, S.; Kaçal, E.; Öztürk, Y. Screening Breeding Apple Progenies with vf Apple Scab (Venturia inaequalis (Cke.) Wint.) Disease Resistance Gene Specific Molecular Markers. Integr. Prot. Fruit Crops IOBC-WPRS Bull. 2013, 91, 361–365. [Google Scholar]
- Papp, D.; Király, I.; Tóth, M. Suitability of Old Apple Varieties in Organic Farming, Based on Their Resistance against Apple Scab and Powdery mildew. Org. Agric. 2016, 6, 183–189. [Google Scholar] [CrossRef]
- Papp, D.; Singh, J.; Gadoury, D.; Khan, A. New North American Isolates of Venturia inaequalis Can Overcome Apple Scab Resistance of Malus floribunda. 821. Plant Dis. 2020, 104, 649–655. [Google Scholar] [CrossRef]
- Jha, G.; Thakur, K.; Thakur, P. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses. J. Biomed. Biotechnol. 2009, 2009, 680160. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, O.; Moročko-Bičevska, I. Evaluation of Apple Scab and Occurrence of Venturia inaequalis Races on Differential Malus Genotypes in Latvia. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2022, 76, 488–494. [Google Scholar] [CrossRef]
- Papp, D.; Gao, L.; Thapa, R.; Olmstead, D.; Khan, A. Field Apple Scab Susceptibility of a Diverse Malus Germplasm Collection Identifies Potential Sources of Resistance for Apple Breeding. CABI Agric. Biosci. 2020, 1, 16. [Google Scholar] [CrossRef]
- Patocchi, A.; Wehrli, A.; Dubuis, P.-H.; Auwerkerken, A.; Leida, C.; Cipriani, G.; Passey, T.; Staples, M.; Didelot, F.; Philion, V.; et al. Ten Years of VINQUEST: First Insight for Breeding New Apple Cultivars With Durable Apple Scab Resistance. Plant Dis. 2020, 104, 2074–2081. [Google Scholar] [CrossRef]
- Soriano, J.M.; Madduri, M.; Schaart, J.G.; Van Der Burgh, A.; Van Kaauwen, M.P.W.; Tomic, L.; Groenwold, R.; Velasco, R.; Van De Weg, E.; Schouten, H.J. Fine Mapping of the Gene Rvi18(V25) for Broad-Spectrum Resistance to Apple Scab, and Development of a Linked SSR Marker Suitable for Marker-Assisted Breeding. Mol. Breed. 2014, 34, 2021–2032. [Google Scholar] [CrossRef]
- Kellerhals, M.; Baumgartner, I.O.; Schütz, S.; Lussi, L.; Andreoli, R.; Gassmann, J.; Patocchi, A. Approaches in Breeding High-Quality Apples with Durable Disease Resistance. In Proceedings of the Ecofruit, 17th International Conference on Organic-Fruit Growing, Hohenheim, Germany, 15–17 February 2016; pp. 15–17. [Google Scholar]
- Papp, D.; Gangadharappa Harigondra, S.; Paredes, C.; Karacs-Végh, A.; Penksza, K.; T.-Járdi, I.; Papp, V. Strong Genetic Differentiation between Generalist Populations of Venturia inaequalis and Populations from Partially Resistant Apple Cultivars Carrying Rvi3 or Rvi5. Diversity 2022, 14, 1050. [Google Scholar] [CrossRef]
- Švara, A.; Ilnikar, K.; Carpentier, S.; De Storme, N.; De Coninck, B.; Keulemans, W. Polyploidy Affects the Development of Venturia inaequalis in Scab-Resistant and -Susceptible Apple Cultivars. Sci. Hortic. 2021, 290, 110436. [Google Scholar] [CrossRef]
- Höfer, M.; Flachowsky, H.; Schröpfer, S.; Peil, A. Evaluation of Scab and Mildew Resistance in the Gene Bank Collection of Apples in Dresden-Pillnitz. Plants 2021, 10, 1227. [Google Scholar] [CrossRef]
- Doolotkeldieva, T.; Bobusheva, S. Scab Disease Caused by Venturia inaequalis; on Apple Trees in Kyrgyzstan and Biological Agents to Control This Disease. Adv. Microbiol. 2017, 7, 450–466. [Google Scholar] [CrossRef]
- Wenneker, M.; Goedhart, P.W.; Van Der Steeg, P.; Van De Weg, W.E.; Schouten, H.J. Methods for the Quantification of Resistance of Apple Genotypes to European Fruit Tree Canker Caused by Neonectria ditissima. Plant Dis. 2017, 101, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Crosby, J.A.; Janick, J.; Pecknold, P.C.; Goffreda, J.C.; Korban, S.S. ‘Enterprise’ Apple. HortScience 1994, 29, 825–826. [Google Scholar] [CrossRef]
- Caffier, V.; Patocchi, A.; Expert, P.; Bellanger, M.-N.; Durel, C.-E.; Hilber-Bodmer, M.; Broggini, G.A.L.; Groenwold, R.; Bus, V.G.M. Virulence Characterization of Venturia inaequalis Reference Isolates on the Differential Set of Malus Hosts. Plant Dis. 2015, 99, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Svara, A.; Tarkowski, Ł.P.; van Rensburg, H.C.J.; Deleye, E.; Vaerten, J.; De Storme, N.; Keulemans, W.; Van den Ende, W. Sweet Immunity: The Effect of Exogenous Fructans on the Susceptibility of Apple (Malus x domestica Borkh.) to Venturia inaequalis. Int. J. Mol. Sci. 2020, 21, 5885. [Google Scholar] [CrossRef] [PubMed]
- Petkovsek, M.M.; Stampar, F.; Veberic, R. Parameters of Inner Quality of the Apple Scab Resistant and Susceptible Apple Cultivars (Malus domestica Borkh.). Sci. Hortic. 2007, 114, 37–44. [Google Scholar] [CrossRef]
- Bus, V.G.M.; Rikkerink, E.H.A.; Caffier, V.; Durel, C.-E.; Plummer, K.M. Revision of the Nomenclature of the Differential Host-Pathogen Interactions of Venturia inaequalis and Malus. Annu. Rev. Phytopathol. 2011, 49, 391–413. [Google Scholar] [CrossRef]
- Ebrahimi, L.; Hatami Rad, S.; Etebarian, H.R. Apple Endophytic Fungi and Their Antagonism against Apple Scab Disease. Front. Microbiol. 2022, 13, 1024001. [Google Scholar] [CrossRef]
- Marolleau, B.; Gaucher, M.; Heintz, C.; Degrave, A.; Warneys, R.; Orain, G.; Lemarquand, A.; Brisset, M.-N. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices. Front. Plant Sci. 2017, 8, 1938. [Google Scholar] [CrossRef]
- McLaughlin, M.S.; Roy, M.; Abbasi, P.A.; Carisse, O.; Yurgel, S.N.; Ali, S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? Plants 2023, 12, 3822. [Google Scholar] [CrossRef]
- Holb, I.J. Apple Scab Management in Organic Fruit Orchards: Epidemiology, Forecasting and Disease Control Strategies. Acta Hortic. 2013, 1001, 223–234. [Google Scholar] [CrossRef]
- Bénaouf, G.; Parisi, L. Genetics of Host-Pathogen Relationships Between Venturia inaequalis Races 6 and 7 and Malus Species. Phytopathology 2000, 90, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Sandskär, B.; Gustafsson, M. Classification of Apple Scab Resistance in Two Assortment Orchards. Genet. Resour. Crop Evol. 2004, 51, 197–203. [Google Scholar] [CrossRef]
- Garofalo, E.W.; Tuttle, A.F.; Clements, J.M.; Cooley, D.R. Discrepancies Between Direct Observation of Apple Scab Ascospore Maturation and Disease Model Forecasts in the 2014 and 2015 Growing Seasons. Fruit Notes 2016, 8, 17–21. [Google Scholar]
- Shuttleworth, L.A. Alternative Disease Management Strategies for Organic Apple Production in the United Kingdom. CABI Agric. Biosci. 2021, 2, 34. [Google Scholar] [CrossRef]
- Mills, W.D.; LaPlante, A.A. Diseases and Insects in the Orchard. Cornell Univ. Ext. Bull. 1951, 711, 21–27. [Google Scholar]
- MacHardy, W.E.; Gadoury, D.M. A Revision of Mill’s Criteria for Predicting Apple Scab Infection Periods. Phytopathology 1989, 79, 304–310. [Google Scholar] [CrossRef]
- Schwabe, W.F.S. Wetting and Temperature Requirements for Infection by Venturia inaequalis in South Africa. Phytophylactica 1980, 12, 69–80. [Google Scholar]
- Sys, S.; Seonen, A. Investigation on the Infection Criteria of Scab (Venturia inaequalis) on Apples with Respect to Mills &Laplante. Agric. Louvain 1970, 18, 3–8. [Google Scholar]
- Gadoury, D.M.; Seem, R.C.; MacHardy, W.E.; Wilcox, W.F.; Rosenberger, D.A.; Stensvand, A. A Comparison of Methods Used to Estimate the Maturity and Release of Ascospores of Venturia inaequalis. Plant Dis. 2004, 88, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Rusevski, R.; Kuzmanovska, B.; Petkovski, E.; Bandzo, K. Biological Control of Venturia inaequalis—The Cause of Apple Scab in Apple. J. Agric. Food Environ. Sci. 2018, 72, 16–18. [Google Scholar] [CrossRef]
- Rusevski, R.; Kuzmanovska, B.; Petkovski, E.; Bandzo Oreskovic, K. New Opportunities for Chemical Control of Venturia inaequalis and Podosphaera leucotricha in Apple Orchards in Macedonia. J. Agric. Food Environ. Sci. 2018, 72, 12–15. [Google Scholar] [CrossRef]
- FRAC Pathogen at Risk 2019. Available online: https://www.frac.info/docs/default-source/publications/pathogen-risk/frac-pathogen-list-2019.pdf (accessed on 12 December 2023).
- Hoffmeister, M.; Scheu, P.; Glaab, A.; Zito, R.; Stammler, G. Sensitivity Evolution in Venturia inaequalis towards SDHIs in Comparison to Other Modes of Action. Eur. J. Plant Pathol. 2023. [Google Scholar] [CrossRef]
- Benyagoub, M.; Benhamou, N.; Carisse, O. Cytochemical Investigation of the Antagonistic Interaction between a Microsphaeropsis Sp. (Isolate P130A) and Venturia inaequalis. Phytopathology 1998, 88, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.S.; Sundin, G.W.; Beckerman, J.L. Identification of Resistance to Multiple Fungicides in Field Populations of Venturia inaequalis. Plant Dis. 2011, 95, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Mondino, P.; Casanova, L.; Celio, A.; Bentancur, O.; Leoni, C.; Alaniz, S. Sensitivity of Venturia inaequalis to Trifloxystrobin and Difenoconazole in Uruguay. J. Phytopathol. 2015, 163, 1–10. [Google Scholar] [CrossRef]
- Ayer, K.M.; Villani, S.M.; Choi, M.-W.; Cox, K.D. Characterization of the VisdhC and VisdhD Genes in Venturia inaequalis, and Sensitivity to Fluxapyroxad, Pydiflumetofen, Inpyrfluxam, and Benzovindiflupyr. Plant Dis. 2019, 103, 1092–1100. [Google Scholar] [CrossRef]
- Jobin, T.; Carisse, O. Incidence of Myclobutanil- and Kresoxim-Methyl-Insensitive Isolates of Venturia inaequalis in Quebec Orchards. Plant Dis. 2007, 91, 1351–1358. [Google Scholar] [CrossRef]
- Pfeufer, E.E.; Ngugi, H.K. Orchard Factors Associated with Resistance and Cross Resistance to Sterol Demethylation Inhibitor Fungicides in Populations of Venturia inaequalis from Pennsylvania. Phytopathology 2012, 102, 272–282. [Google Scholar] [CrossRef]
- Cordero-Limon, L.; Shaw, M.W.; Passey, T.A.; Robinson, J.D.; Xu, X. Cross-resistance between Myclobutanil and Tebuconazole and the Genetic Basis of Tebuconazole Resistance in Venturia inaequalis. Pest Manag. Sci. 2021, 77, 844–850. [Google Scholar] [CrossRef]
- Villani, S.M.; Biggs, A.R.; Cooley, D.R.; Raes, J.J.; Cox, K.D. Prevalence of Myclobutanil Resistance and Difenoconazole Insensitivity in Populations of Venturia inaequalis. Plant Dis. 2015, 99, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Villani, S.M.; Hulvey, J.; Hily, J.-M.; Cox, K.D. Overexpression of the CYP51A1 Gene and Repeated Elements Are Associated with Differential Sensitivity to DMI Fungicides in Venturia inaequalis. Phytopathology 2016, 106, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, S.; Remuson, F.; Fraissinet-Tachet, L.; Micoud, A.; Marmeisse, R.; Melayah, D. Monitoring of Venturia inaequalis harbouring the QoI Resistance G143A Mutation in French Orchards as Revealed by PCR Assays. Pest Manag. Sci. 2009, 65, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Frederick, Z.A.; Villani, S.M.; Cooley, D.R.; Biggs, A.R.; Raes, J.J.; Cox, K.D. Prevalence and Stability of Qualitative QoI Resistance in Populations of Venturia inaequalis in the Northeastern United States. Plant Dis. 2014, 98, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Lesniak, K.E.; Proffer, T.J.; Beckerman, J.L.; Sundin, G.W. Occurrence of QoI Resistance and Detection of the G143A Mutation in Michigan Populations of Venturia inaequalis. Plant Dis. 2011, 95, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Chatzidimopoulos, M.; Zambounis, A.; Lioliopoulou, F.; Vellios, E. Detection of Venturia inaequalis Isolates with Multiple Resistance in Greece. Microorganisms 2022, 10, 2354. [Google Scholar] [CrossRef]
- FRAC Code List 1: Fungicides Sorted by FRAC Code 2005. Available online: https://ipm.ifas.ufl.edu/resources/success_stories/t&pguide/pdfs/appendices/appendix6-frac.pdf (accessed on 12 December 2023).
- Polat, Z.; Bayraktar, H. Resistance of Venturia inaequalis to Multiple Fungicides in Turkish Apple Orchards. J. Phytopathol. 2021, 169, 360–368. [Google Scholar] [CrossRef]
- Xu, X.-M.; Gao, L.-Q.; Yang, J.-R. Are Insensitivities of Venturia inaequalis to Myclobutanil and Fenbuconazole Correlated? Crop Prot. 2010, 29, 183–189. [Google Scholar] [CrossRef]
- Thind, T.S.; Hollomon, D.W. Thiocarbamate Fungicides: Reliable Tools in Resistance Management and Future Outlook. Pest Manag. Sci. 2018, 74, 1547–1551. [Google Scholar] [CrossRef]
- Hirayama, K. Curative Effects of Fungicides against Venturia inaequalis Causing Apple Scab. J. Gen. Plant Pathol. 2022, 88, 264–269. [Google Scholar] [CrossRef]
- Collinge, D.B.; Jensen, D.F.; Rabiey, M.; Sarrocco, S.; Shaw, M.W.; Shaw, R.H. Biological Control of Plant Diseases—What Has Been Achieved and What Is the Direction? Plant Pathol. 2022, 71, 1024–1047. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Ouimet, A.; Carisse, O.; Neumann, P. Evaluation of Fungal Isolates for the Inhibition of Vegetative Growth of Venturia inaequalis. Can. J. Bot. 1997, 75, 626–631. [Google Scholar] [CrossRef]
- NIAB EMR, UK. Integrated Management of Diseases and Insect Pests of Tree Fruit; Xu, X., Fountain, M., Eds.; Burleigh Dodds Series in Agricultural Science; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; ISBN 978-1-78676-256-6. [Google Scholar]
- O’Brien, P.A. Biological Control of Plant Diseases. Australas. Plant Pathol. 2017, 46, 293–304. [Google Scholar] [CrossRef]
- Ouimet, A.; Carisse, O.; Neumann, P. Environmental and Nutritional Factors Affecting the in Vitro Inhibition of the Vegetative Growth of Venturia inaequalis by Five Antagonistic Fungi. Can. J. Bot. 1997, 75, 632–639. [Google Scholar] [CrossRef]
- Fiss, M.; Barckhausen, O.; Gherbawy, Y.; Kollar, A.; Hamamoto, M.; Auling, G. Characterization of Epiphytic Yeasts of Apple as Potential Biocontrol Agents against Apple Scab (Venturia inaequalis). Z. Pflanzenkrankh. Pflanzenschutz 2003, 110, 513–523. [Google Scholar]
- Fiaccadori, R. In Vitro, in Vivo and in Field Sensitivity of Venturia inaequalis to Anilinopyrimidine Fungicides with Different Types of Scab Management and Degree of Control. OALib 2018, 5, 1–13. [Google Scholar] [CrossRef]
- Heye, C.C. Biological Control of the Perfect Stage of the Apple Scab Pathogen, Venturia inaequalis (Cke.) Wint. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 1982. [Google Scholar]
- Ross, R.G.; Burchill, R.T. Experiments Using Sterilized Apple-Leaf Discs to Study the Mode of Action of Urea in Suppressing Perithecia of Venturia inaequalis (Cke.) Wint. Ann. Appl. Biol. 1968, 62, 289–296. [Google Scholar] [CrossRef]
- Philion, V.; Carisse, O.; Paulitz, T. In Vitro Evaluation of Fungal Isolates for Their Ability to Influence Leaf Rheology, Production of Pseudothecia, and Ascospores of Venturia inaequalis. Eur. J. Plant Pathol. 1997, 103, 441–452. [Google Scholar] [CrossRef]
- Thakur, V.S.; Sharma, R.D. Effect of Urea on Microbial Degradation of Apple Leaf Litter and Its Relationship to the Inhibition of Pseudothecial Development of Venturia inaequalis. Indian J. Agric. Sci. 1999, 69, 147–151. [Google Scholar]
- Arseneault, T.; Filion, M. Biocontrol through Antibiosis: Exploring the Role Played by Subinhibitory Concentrations of Antibiotics in Soil and Their Impact on Plant Pathogens. Can. J. Plant Pathol. 2017, 39, 267–274. [Google Scholar] [CrossRef]
- Palmieri, D.; Ianiri, G.; Del Grosso, C.; Barone, G.; De Curtis, F.; Castoria, R.; Lima, G. Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae 2022, 8, 577. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Vlami, M.; de Souza, J.T. Antibiotic Production by Bacterial Biocontrol Agents. Antonie Leeuwenhoek 2002, 81, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Bosshard, E.; Schüepp, H.; Siegfried, W. Concepts and Methods in Biological Control of Diseases in Apple Orchards. EPPO Bull. 1987, 17, 655–663. [Google Scholar] [CrossRef]
- Burchill, R.T.; Hutton, K.E.; Crosse, J.E.; Garrett, C.M.E. Inhibition of the Perfect Stage of Venturia inaequalis (Cooke) Wint., by Urea [37]. Nature 1965, 205, 520–521. [Google Scholar] [CrossRef]
- Cinq-Mars, L. Interactions between Venturia inaequalis (Cke) Wint. And Saprophytic Fungi and Bacteria Inhabiting Apple Leaves. Master’s Thesis, McGill University, Montréal, QC, Canada, 1949. [Google Scholar]
- Ross, R.G. The Microflora of Apple Leaves and ilS Relationship to Venturia inaequalis(Cke.) Wint. Master’s Thesis, McGiIl University, Montréal, QC, Canada, 1953. [Google Scholar]
- Heye, C.C.; Andrews:, J.H. Antagonism of Athelia bombacina and Chaetomium globosum to the Apple Scab Pathogen Venturia inaequalis. Phytopathology 1983, 73, 650–665. [Google Scholar] [CrossRef]
- Burchill, R.T.; Cook, R.T.A. The Interaction of Urea and Micro-Organisms in Suppressing the Development of Perithecia of Venturia inaequalis (Cke.) Wint; Ecology of Leaf Surface Micro-Organisms; Preece, T.F., Dickinson, C.H., Eds.; Academic Press: New York, NY, USA, 1970; pp. 471–483. [Google Scholar]
- Alaphilippe, A.; Elad, Y.; David, D.R.; Derridj, S.; Gessler, C. Effects of a Biocontrol Agent of Apple Powdery Mildew (Podosphaera leucotricha) on the Host Plant and on Non-Target Organisms: An Insect Pest (Cydia pomonella) and a Pathogen (Venturia inaequalis). Biocontrol. Sci. Technol. 2008, 18, 121–138. [Google Scholar] [CrossRef]
- Raymaekers, K.; Ponet, L.; Holtappels, D.; Berckmans, B.; Cammue, B.P.A. Screening for Novel Biocontrol Agents Applicable in Plant Disease Management—A Review. Biol. Control 2020, 144, 104240. [Google Scholar] [CrossRef]
- Fravel, D.R. Commercialization and Implementation of Biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef]
- Rosenberger, D.A. Factors Limiting IPM-Compatibility of New Disease Control Tactics for Apples in Eastern United States. Plant Health Prog. 2003, 4, 22. [Google Scholar] [CrossRef]
- Poleatewich, A.M.; Ngugi, H.K.; Backman, P.A. Assessment of Application Timing of Bacillus Spp. to Suppress Pre- and Postharvest Diseases of Apple. Plant Dis. 2012, 96, 211–220. [Google Scholar] [CrossRef]
- Heydari, A.; Pessarakli, M. A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. J. Biol. Sci. 2010, 10, 273–290. [Google Scholar] [CrossRef]
- Köhl, J.J.; Molhoek, W.W.M.L.; Groenenboom-De Haas, B.B.H.; Goossen-Van De Geijn, H.H.M. Selection and Orchard Testing of Antagonists Suppressing Conidial Production by the Apple Scab Pathogen Venturia inaequalis. Eur. J. Plant Pathol. 2009, 123, 401–414. [Google Scholar] [CrossRef]
- Köhl, J. Screening of Biocontrol Agents for Control of Foliar Diseases. In Recent Developments in Management of Plant Diseases; Gisi, U., Chet, I., Gullino, M.L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 107–119. ISBN 978-1-4020-8803-2. [Google Scholar]
- Köhl, J.; Scheer, C.; Holb, I.J.; Masny, S.; Molhoek, W. Toward an Integrated Use of Biological Control by Cladosporium cladosporioides H39 in Apple Scab Venturia inaequalis Management. Plant Dis. 2015, 99, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Pertot, I.; Puopolo, G.; Giovannini, O.; Angeli, D.; Sicher, C. Advantages and Limitations Involved in the Use of Microbial Biofungicides for the Control of Root and Foliar Phytopathogens of Fruit Crops. Italus Hortus 2016, 23, 3–12. [Google Scholar]
- Andrews, J.H.; Berbee, F.M.; Nordheim, E.V. Microbial Antagonism to the Imperfect Stage of the Apple Scab Pathogen Venturia inaequalis. Phytopathology 1983, 73, 228. [Google Scholar] [CrossRef]
- Carisse, O.; Philion, V.; Rolland, D.; Bernier, J. Effect of Fall Application of Fungal Antagonists on Spring Ascospore Production of Apple Scab Pathogen, Venturia inaequalis. Phytopathology 2000, 90, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Fiss, M.; Kucheryava, N.; Schönherr, J.; Kollar, A.; Arnold, G.; Auling, G. Isolation and Characterization of Epiphytic Fungi from the Phyllosphere of Apple as Potential Biocontrol Agents against Apple Scab Venturia inaequalis. Z. Pflanzenkrankh. Pflanzenschutz 2000, 107, 1–11. [Google Scholar]
- Leconte, A.; Tournant, L.; Muchembled, J.; Paucellier, J.; Héquet, A.; Deracinois, B.; Deweer, C.; Krier, F.; Deleu, M.; Oste, S.; et al. Assessment of Lipopeptide Mixtures Produced by Bacillus subtilis as Biocontrol Products against Apple Scab Venturia inaequalis. Microorganisms 2022, 10, 1810. [Google Scholar] [CrossRef] [PubMed]
- Burr, T.J.; Matteson, M.C.; Smith, C.A.; Corral-Garcia, M.R.; Huang, T.-C. Effectiveness of Bacteria and Yeasts from Apple Orchards as Biological Control Agents of Apple Scab. Biol. Control 1996, 6, 151–157. [Google Scholar] [CrossRef]
- Bensaci, O.A.; Aliat, T.; Berdja, R.; Popkova, A.V.; Kucher, D.E.; Gurina, R.R.; Rebouh, N.Y. The Use of Mycoendophyte-Based Bioformulations to Control Apple Diseases: Toward an Organic Apple Production System in the Aurès (Algeria). Plants 2022, 11, 3405. [Google Scholar] [CrossRef]
- Miedtke, U.; Kennel, W. Athelia Bombacina and Chaetomium globosum as Antagonists of the Perfect Stage of the Apple Scab Pathogen (Venturia inaequalis) under Field Conditions. Z. Pflanzenkrankh. Pflanzenschutz 1990, 97, 24–32. [Google Scholar]
- Young, C.S.; Andrews, J.H. Inhibition of Pseudothecial Development of Venturia inaequalis by the Basidiomycete Athelia bombacina in Apple Leaf Litter. Phytopathology 1990, 80, 536–542. [Google Scholar] [CrossRef]
- Caffier, V.; Shiller, J.; Bellanger, M.-N.; Collemare, J.; Expert, P.; Gladieux, P.; Pascouau, C.; Sannier, M.; Le Cam, B. Hybridizations Between Formae Speciales of Venturia inaequalis Pave the Way for a New Biocontrol Strategy to Manage Fungal Plant Pathogens. Phytopathology 2022, 112, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Gladieux, P.; Caffier, V.; Devaux, M.; Le Cam, B. Host-Specific Differentiation among Populations of Venturia inaequalis Causing Scab on Apple, Pyracantha and Loquat. Fungal Genet. Biol. 2010, 47, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Rancourt, B.; Carisse, O. Apple Leaf Shredding as a Non-Chemical Tool to Manage Apple Scab and Spotted Tentiform Leafminer. Agric. Ecosyst. Environ. 2004, 104, 595–604. [Google Scholar] [CrossRef]
- Singh, K.P.; Singh, A.; Prasad, R.K.; Kumar, J. Postharvest Applicaton of Fungicides, Antagonists and Plant Products for Controlling Storage Scab and Rots of Apple Fruits. Indian Phytopathol. 2017, 70, 315–321. [Google Scholar]
- Miliute, I.; Buzaite, O.; Gelvonauskiene, D.; Sasnauskas, A.; Stanys, V.; Baniulis, D. Plant Growth Promoting and Antagonistic Properties of Endophytic Bacteria Isolated from Domestic Apple. Zemdirbyste 2016, 103, 77–82. [Google Scholar] [CrossRef]
- Çaltili, O.; Arici, Ş.E. The Determination of the Efficacy of Some Microbial Preparations against Apple Scab Disease (Venturia inaequalis (CKE) Wint.) in Isparta. Black Sea J. Agric. 2018, 1, 6–10. [Google Scholar]
- Elad, Y. Biological Control of Foliar Pathogens by Means of Trichoderma harzianum and Potential Modes of Action. Crop Prot. 2000, 19, 709–714. [Google Scholar] [CrossRef]
- Ons, L.; Bylemans, D.; Thevissen, K.; Cammue, B.P.A. Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms 2020, 8, 1930. [Google Scholar] [CrossRef] [PubMed]
- Bolar, J.P.; Norelli, J.L.; Wong, K.-W.; Hayes, C.K.; Harman, G.E.; Aldwinckle, H.S. Expression of Endochitinase from Trichoderma harzianum in Transgenic Apple Increases Resistance to Apple Scab and Reduces Vigor. Phytopathology 2000, 90, 72–77. [Google Scholar] [CrossRef] [PubMed]
- DeGenring, L.; Peter, K.; Poleatewich, A. Integration of Chitosan and Biopesticides to Suppress Pre-Harvest Diseases of Apple. Horticulturae 2023, 9, 707. [Google Scholar] [CrossRef]
- Percival, G.; Graham, S. Evaluation of Inducing Agents and Synthetic Fungicide Combinations for Management of Foliar Pathogens of Urban Trees. Arboric. Urban For. 2021, 47, 85–95. [Google Scholar] [CrossRef]
- Reglinski, T.; Havis, N.; Rees, H.J.; De Jong, H. The Practical Role of Induced Resistance for Crop Protection. Phytopathology 2023, 113, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Jamalizadeh, M.; Etebarian, H.R.; Aminian, H.; Alizadeh, A. A Review of Mechanisms of Action of Biological Control Organisms against Post-harvest Fruit Spoilage. EPPO Bull. 2011, 41, 65–71. [Google Scholar] [CrossRef]
- Fenta, L.; Mekonnen, H.; Kabtimer, N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms 2023, 11, 1044. [Google Scholar] [CrossRef]
- Simard, J.; Pelletier, R.I.; Coulson, J.G. Screening Ofmicroorganisms Inhubiting Apple Leaf for Their Antibiotic Propenies against Venturia inaequalis(Cke.) Wint. Annu. Rep. Qué. Soc. Prot. Plants 1957, 39, 59–67. [Google Scholar]
- Cullen, D.; Andrews, J.H. Evidence for the Role of Antibiosis in the Antagonism of Chaetomium globosum to the Apple Scab Pathogen, Venturia inaequalis. Can. J. Bot. 1984, 62, 1819–1823. [Google Scholar] [CrossRef]
- Desmyttere, H.; Deweer, C.; Muchembled, J.; Sahmer, K.; Jacquin, J.; Coutte, F.; Jacques, P. Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity. Front. Microbiol. 2019, 10, 487665. [Google Scholar] [CrossRef]
- Bolar, J.P.; Norelli, J.L.; Harman, G.E.; Brown, S.K.; Aldwinckle, H.S. Synergistic Activity of Endochitinase and Exochitinase from Trichoderma atroviride (T. harzianum) against the Pathogenic Fungus (Venturia inaequalis) in Transgenic Apple Plants. Transgenic Res. 2001, 10, 533–543. [Google Scholar] [CrossRef]
- Schäfer, T.; Buscot, F.; Kaldorf, M.; Flachowsky, H.; Hanke, M.-V.; König, S. First Results on the Effect of Increased Chitinase Expression in Transgenic Apple Trees on Mycorrhization with Glomus intraradices and G. mosseae. Acta Hortic. 2009, 839, 719–724. [Google Scholar] [CrossRef]
- Kobayashi, D.Y.; Reedy, R.M.; Bick, J.; Oudemans, P.V. Characterization of a Chitinase Gene from Stenotrophomonas maltophilia Strain 34S1 and Its Involvement in Biological Control. Appl. Environ. Microbiol. 2002, 68, 1047–1054. [Google Scholar] [CrossRef]
- Pan, H.; Wei, Y.; Xin, F.; Zhou, M.; Zhang, S. Characterization and Biocontrol Ability of Fusion Chitinase in Escherichia coli Carrying Chitinase cDNA from Trichothecium roseum. Z. Naturforschung-Sect. C J. Biosci. 2006, 61, 397–404. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Hernández-Lauzardo, A.N.; Velázquez-del Valle, M.G.; Hernández-López, M.; Ait Barka, E.; Bosquez-Molina, E.; Wilson, C.L. Chitosan as a Potential Natural Compound to Control Pre and Postharvest Diseases of Horticultural Commodities. Crop Prot. 2006, 25, 108–118. [Google Scholar] [CrossRef]
- Yu, T.; Yu, C.; Chen, F.; Sheng, K.; Zhou, T.; Zunun, M.; Abudu, O.; Yang, S.; Zheng, X. Integrated Control of Blue Mold in Pear Fruit by Combined Application of Chitosan, a Biocontrol Yeast and Calcium Chloride. Postharvest Biol. Technol. 2012, 69, 49–53. [Google Scholar] [CrossRef]
- Hossain, M.B.; Piotrowski, M.; Lensing, J.; Gau, A.E. Inhibition of Conidial Growth of Venturia inaequalis by the Extracellular Protein Fraction from the Antagonistic Bacterium Pseudomonas fluorescens Bk3. Biol. Control 2009, 48, 133–139. [Google Scholar] [CrossRef]
- Bálint, J.; Nagy, S.; Thiesz, R.; Nyárádi, I.-I.; Balog, A. Using Plant Extracts to Reduce Asexual Reproduction of Apple Scab (Venturia inaequalis). Turk. J. Agric. For. 2014, 38, 91–98. [Google Scholar] [CrossRef]
- Bengtsson, M.; Wulff, E.; Lyngs Jørgensen, H.J.; Pham, A.; Lübeck, M.; Hockenhull, J. Comparative Studies on the Effects of a Yucca Extract and Acibenzolar-S-Methyl (ASM) on Inhibition of Venturia inaequalis in Apple Leaves. Eur. J. Plant Pathol. 2009, 124, 187–198. [Google Scholar] [CrossRef]
- Ganchev, D. In Vitro Antifungal Activity of Ethanol Plant Extracts against Conidiospores of Apple Scab (Venturia inaequalis). Moroc. J. Agric. Sci. 2023, 4, 61–67. [Google Scholar]
- Rollinger, J.M.; Spitaler, R.; Menz, M.; Marschall, K.; Zelger, R.; Ellmerer, E.P.; Schneider, P.; Stuppner, H. Venturia inaequalis -Inhibiting Diels−Alder Adducts from Morus Root Bark. J. Agric. Food Chem. 2006, 54, 8432–8436. [Google Scholar] [CrossRef] [PubMed]
- Hochbaum, T.; Petróczy, M.; Ladányi, M.; Nagy, G. The Efficacy of Essential Oils against Venturia inaequalis(Cooke) G. Winter and Podosphaera leucotricha (Ellis & Everh.) E. S. Salmon in Vivo. Acta Univ. Sapientiae Agric. Environ. 2018, 10, 5–19. [Google Scholar] [CrossRef]
- Nagy, G.; Hochbaum, T.; Sárosi, S.; Ladányi, M. In Vitro and in Planta Activity of Some Essential Oils against Venturia inaequalis (Cooke) G. Winter. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 109–114. [Google Scholar] [CrossRef]
- Thuerig, B.; Ramseyer, J.; Hamburger, M.; Oberhänsli, T.; Potterat, O.; Schärer, H.; Tamm, L. Efficacy of a Juncus effusus Extract on Grapevine and Apple Plants against Plasmopara viticola and Venturia inaequalis, and Identification of the Major Active Constituent. Pest Manag. Sci. 2016, 72, 1718–1726. [Google Scholar] [CrossRef]
- Thiesz, R.; Balog, A.; Ferencz, L.; Albert, J. The Effects of Plant Extracts on Apple Scab (Venturia inaequalis Cooke) under Laboratory Conditions. Rom. Biotechnol. Lett. 2007, 12, 3295–3302. [Google Scholar]
- Moureu, S.; Jacquin, J.; Samaillie, J.; Deweer, C.; Rivière, C.; Muchembled, J. Antifungal Activity of Hop Leaf Extracts and Xanthohumol on Two Strains of Venturia inaequalis with Different Sensitivities to Triazoles. Microorganisms 2023, 11, 1605. [Google Scholar] [CrossRef]
- Thuerig, B.; Ramseyer, J.; Hamburger, M.; Ludwig, M.; Oberhänsli, T.; Potterat, O.; Schärer, H.-J.; Tamm, L. Efficacy of a Magnolia officinalis Bark Extract against Grapevine Downy Mildew and Apple Scab under Controlled and Field Conditions. Crop Prot. 2018, 114, 97–105. [Google Scholar] [CrossRef]
- Linares, C.; Cid, G.A.; Capdesuner, Y.; Buchelle, M.; Martinez-Montero, M.E.; Scheer, C.; Quiñones-Galvez, J. Optimization of the Process for Obtaining Morinda royoc Crude Extract Bioactive against Phythopathogens. Vegetos 2023. [CrossRef]
- Porsche, F.M.; Molitor, D.; Beyer, M.; Charton, S.; André, C.; Kollar, A. Antifungal Activity of Saponins from the Fruit Pericarp of Sapindus mukorossi against Venturia inaequalis and Botrytis cinerea. Plant Dis. 2018, 102, 991–1000. [Google Scholar] [CrossRef]
- He, D.-C.; He, M.-H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef]
- Teem, J.L.; Alphey, L.; Descamps, S.; Edgington, M.P.; Edwards, O.; Gemmell, N.; Harvey-Samuel, T.; Melnick, R.L.; Oh, K.P.; Piaggio, A.J.; et al. Genetic Biocontrol for Invasive Species. Front. Bioeng. Biotechnol. 2020, 8, 452. [Google Scholar] [CrossRef]
- Boudreau, M.A.; Andrews, J.H. Factors Influencing Antagonism of Chaetomium globosum to Venturia inaequalis: A Case Study in Failed Biocontrol. Phytopathol. 1987, 77, 1470–1475. [Google Scholar] [CrossRef]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.; Kannangara, S.D.; Promputtha, I. Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef] [PubMed]
- Carisse, O.; Rolland, D. Effect of Timing of Application of the Biological Control Agent Microsphaeropsis ochracea on the Production and Ejection Pattern of Ascospores by Venturia inaequalis. Phytopathology 2004, 94, 1305–1314. [Google Scholar] [CrossRef]
- Odile, C.; David-Mathieu, T. Disease Decision Support Systems: Their Impact on Disease Management and Durability of Fungicide Effectiveness. In Fungicides; Carisse, O., Ed.; InTech: London, UK, 2010; ISBN 978-953-307-266-1. [Google Scholar]
- Passey, T.A.J.; Robinson, J.D.; Shaw, M.W.; Xu, X.-M. The Relative Importance of Conidia and Ascospores as Primary Inoculum of Venturia inaequalis in a Southeast England Orchard. Plant Pathol. 2017, 66, 1445–1451. [Google Scholar] [CrossRef]
- Köhl, J.; Molhoek, W.; Haas, L.G.; de Geijn, H.G. New Approaches in Biological Control of Apple Scab. In Proceedings of the 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 24 July 2008. [Google Scholar]
- Rancāne, R.; Valiuškaitė, A.; Zagorska, V.; Komašilovs, V.; Rasiukevičiūtė, N. The Overall Environmental Load and Resistance Risk Caused by Long-Term Fungicide Use to Control Venturia inaequalis in Apple Orchards in Latvia. Plants 2023, 12, 450. [Google Scholar] [CrossRef] [PubMed]
- Mahyar Mirmajlessi, S.; Ahari Mostafavi, H.; Loit, E.; Najdabbasi, N.; Mänd, M. Application of Radiation and Genetic Engineering Techniques to Improve Biocontrol Agent Performance: A Short Review. In Use of Gamma Radiation Techniques in Peaceful Applications; Almayah, B.A., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-83962-259-5. [Google Scholar]
- Martinez, Y.; Ribera, J.; Schwarze, F.W.M.R.; De France, K. Biotechnological Development of Trichoderma-Based Formulations for Biological Control. Appl. Microbiol. Biotechnol. 2023, 107, 5595–5612. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Li, C.-H.; Ali, Q.; Zhao, W.; Chi, Y.-K.; Shafiq, M.; Ali, F.; Yu, X.-Y.; Yu, Q.; Zhao, J.-T.; et al. Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives. Molecules 2023, 28, 6735. [Google Scholar] [CrossRef]
- Carisse, O.; Holloway, G.; Leggett, M. Potential and Limitations of M. ochraceaan Agent for Biosanitation of Apple Scab. In Biological Control: A Global Perspective: Case Studies from around the World; Vincent, C., Goettel, M.S., Lazaovits, G., Eds.; CABI Publishing: Wallingford, UK, 2007; pp. 234–240. [Google Scholar]
- Vincent, C.; Goettel, M.S.; Lazarovits, G. (Eds.) Biological Control: A Global Perspective: Case Studies from around the World; CABI Publishing: Wallingford, UK, 2007; 440p. [Google Scholar]
- Maciag, T.; Kozieł, E.; Rusin, P.; Otulak-Kozieł, K.; Jafra, S.; Czajkowski, R. Microbial Consortia for Plant Protection against Diseases: More than the Sum of Its Parts. Int. J. Mol. Sci. 2023, 24, 12227. [Google Scholar] [CrossRef]
Biopesticide | Commercial Name | Group/a.i. * | Efficacy | Defence Inducer | Targeted Propagule | Application Type | Country | Ref. |
---|---|---|---|---|---|---|---|---|
Chitosan | ARMOUR-Zen 15 | Polysaccharide | Low efficacy | - | Ascospore | Foliar spray | Botry-Zen Ltd. (Dunedin, New Zealand) | [124] |
Chitosan | - | Polysaccharide | Active on leaf scab | Inducer | Conidia | Foliar spray | Viresco Ltd., (Thirsk, UK) | [125] |
Fructans (Levans) | - | Fructose-based oligo- and polysaccharide | Active | Inducer | Mycelial growth | Foliar spray | - | [38] |
Harpin protein | Messenger® | Harpin αβ protein | Active on leaf and fruit scab | Inducer | Conidia | Foliar spray | Plant Health Care, (Manchester, England | [125] |
Laminarin | Vacciplant® | oligosaccharide | Active | Inducer | Conidia | Foliar spray | - | [54] |
Salicylic acid | Rigel-G | Salicylic acid | Active on leaf and fruit scab | Inducer | Conidia | Foliar spray | Orion, Future Tech., (Colchester, England) | [125] |
Serenade ASO | - | B. subtilis QST 713 | Active on scab | - | Conidia and ascospore | Foliar spray | Bayer AG (Leverkusen, Germany) | [124] |
SERENADE Garden | B. subtilis QST 713 | Active on scab | - | Scab | Foliar spray | AgraQuest, Inc., (British Columbia, Canada) | [6] |
Plant Extracts | Source | Solvent | Targeted Propagule | Assay Type | Efficacy | Active Components | Ref. | |
---|---|---|---|---|---|---|---|---|
Artemisia, Mentha and Thyme extracts | Artemisia annua | Hexane | Ascospore | In vitro; ascospore infected floral buds in petri dishes | Reduced the ascosporic inocula between 85 and 90% at 6% conc. | Artemisinin | [146] | |
Mentha piperita | Menthol | |||||||
Thymus vulgaris | Thymol | |||||||
Essential oils of Thyme and Cinnamon | T. vulgaris | - | Conidia | In vivo; field trial | Reduced disease severity | Thymol | [143] | |
Cinnamonum verum | - | |||||||
Hop cone and leaf extract | Hop plant | Hydro- ethanolic dichloromethane | Conidia | In vitro; laboratory study, liquid medium | Significant activity against two strains with IC50 of 1.6 and 5.1 mg L−1 | Xanthohumol | [147] | |
Juncus effusus extract | Medulla of J. effusus | Ethyl acetate | Conidia | In planta; greenhouse and growth chambers | 95% disease control at 500 μg mL−1 | Dihydrophena-nthrene dehydroeffuso | [145] | |
Magnolia officinalis bark extract | M. officinalis | Ethyl acetate | Conidia | Seedling assay | 97% efficacy at 1 mg extract mL−1 | Honokiol and Magnolol | [148] | |
Morinda royoc crude extract | Morinda royoc roots | Ethanol | Conidia | In vitro; Agar plate test | Complete inhibition of conidial growth at 4.8 to 0.3 mg mL−1 | - | [149] | |
Morus root bark | Morus sp. | Methanol | Conidia | In vitro; glass slide and microscopy detached leaf assay | 100% germination inhibition at 300 µg/mL. Antifungal efficacy of 98% at 10.0 mg/mL | Diels-Alder adducts | [142] | |
Populin | Black popular buds | Hexane | Conidia | In vitro; agar plate test | Slow down conidia growth | Populin | [139] | |
In vivo; foliar spray | Reduced scab severity | |||||||
Saponin | Fruit pericarp of Sapindus mukorosis | Aqueous extract and chloroform-methanol | Conidia | In vitro; greenhouse and field trials | Reduced sporulation by 43% seedlings symptom reduction up to 99% | Sapindoside B | [150] | |
Yucca schidigera extract | Y. schidigera (Norponin® BS Liquid) | - | Conidia | In vitro; glass slide and microscopy | No conidia germinated | Saponin | [140] | |
In planta; seedling assay | significantly reduced apple scab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoro, C.A.; El-Hasan, A.; Voegele, R.T. Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges, and Prospects. Agrochemicals 2024, 3, 118-146. https://doi.org/10.3390/agrochemicals3020010
Okoro CA, El-Hasan A, Voegele RT. Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges, and Prospects. Agrochemicals. 2024; 3(2):118-146. https://doi.org/10.3390/agrochemicals3020010
Chicago/Turabian StyleOkoro, Chisom Augusta, Abbas El-Hasan, and Ralf T. Voegele. 2024. "Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges, and Prospects" Agrochemicals 3, no. 2: 118-146. https://doi.org/10.3390/agrochemicals3020010
APA StyleOkoro, C. A., El-Hasan, A., & Voegele, R. T. (2024). Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges, and Prospects. Agrochemicals, 3(2), 118-146. https://doi.org/10.3390/agrochemicals3020010