Biological Nitrification Inhibition by Australian Tussock Grass and Its Impact on the Rhizosphere Ammonia-Oxidizing Microbiome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubey, R.S.; Srivastava, R.K.; Pessarakli, M. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In Handbook of Plant and Crop Physiology; CRC Press: Boca Raton, FL, USA, 2021; pp. 579–616. [Google Scholar]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Kuypers, M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.; Ito, O.; Sahrawat, K.; Berry, W.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I.M. Scope and strategies for regulation of nitrification in agricultural systems—Challenges and opportunities. Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef]
- Subbarao, G.; Nakahara, K.; Hurtado, M.d.P.; Ono, H.; Moreta, D.; Salcedo, A.F.; Yoshihashi, A.; Ishikawa, T.; Ishitani, M.; Ohnishi-Kameyama, M. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc. Natl. Acad. Sci. USA 2009, 106, 17302–17307. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.; Nakahara, K.; Ishikawa, T.; Ono, H.; Yoshida, M.; Yoshihashi, T.; Zhu, Y.; Zakir, H.; Deshpande, S.; Hash, C. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 2013, 366, 243–259. [Google Scholar] [CrossRef]
- Sun, L.; Lu, Y.; Yu, F.; Kronzucker, H.J.; Shi, W. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol. 2016, 212, 646–656. [Google Scholar] [CrossRef]
- Otaka, J.; Subbarao, G.V.; Ono, H.; Yoshihashi, T. Biological nitrification inhibition in maize-isolation and identification of hydrophobic inhibitors from root exudates. Biol. Fertil. Soils 2022, 58, 251–264. [Google Scholar] [CrossRef]
- Subbarao, G.; Tomohiro, B.; Masahiro, K.; Osamu, I.; Samejima, H.; Wang, H.; Pearse, S.; Gopalakrishnan, S.; Nakahara, K.; Zakir Hossain, A. Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil 2007, 299, 55–64. [Google Scholar] [CrossRef]
- Zhou, Y.; Lambrides, C.J.; Li, J.; Xu, Q.; Toh, R.; Tian, S.; Yang, P.; Yang, H.; Ryder, M.; Denton, M.D. Nitrifying microbes in the rhizosphere of perennial grasses are modified by biological nitrification inhibition. Microorganisms 2020, 8, 1687. [Google Scholar] [CrossRef]
- Srikanthasamy, T.; Leloup, J.; N’Dri, A.B.; Barot, S.; Gervaix, J.; Koné, A.W.; Koffi, K.F.; Le Roux, X.; Raynaud, X.; Lata, J.-C. Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biol. Biochem. 2018, 117, 153–163. [Google Scholar] [CrossRef]
- McKenzie, N.N.; Jacquier, D.D.; Isbell, R.R.; Brown, K.K. Australian Soils and Landscapes: An Illustrated Compendium; CSIRO Publishing: Clayton, VIC, Australia, 2004. [Google Scholar]
- Still, C.J.; Berry, J.A.; Collatz, G.J.; DeFries, R.S. Global distribution of C3 and C4 vegetation: Carbon cycle implications. Glob. Bbiogeochemical Cycles 2003, 17, 6-1–6-14. [Google Scholar]
- Janke, C.K.; Wendling, L.A.; Fujinuma, R. Biological nitrification inhibition by root exudates of native species, Hibiscus splendens and Solanum echinatum. PeerJ 2018, 6, e4960. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Ryan, P.R.; Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 2001, 6, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Carvalhais, L.C.; Dennis, P.G.; Fedoseyenko, D.; Hajirezaei, M.R.; Borriss, R.; von Wirén, N. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 2011, 174, 3–11. [Google Scholar] [CrossRef]
- Nelson, M.B.; Martiny, A.C.; Martiny, J.B. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl. Acad. Sci. USA 2016, 113, 8033–8040. [Google Scholar] [CrossRef]
- Wessén, E.; Söderström, M.; Stenberg, M.; Bru, D.; Hellman, M.; Welsh, A.; Thomsen, F.; Klemedtson, L.; Philippot, L.; Hallin, S. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. ISME J. 2011, 5, 1213–1225. [Google Scholar] [CrossRef]
- Wu, T.; Sabula, M.; Milner, H.; Strickland, G.; Liu, G. Agricultural practice negatively affects soil bacterial diversity and nitrogen functional genes comparing to adjacent native forest soils. Appl. Soil Ecol. 2023, 186, 104856. [Google Scholar] [CrossRef]
- Orr, D. A review of Astrebla (Mitchell grass) pastures in Australia. Trop. Grassl. 1975, 9, 21–36. [Google Scholar]
- Jozwik, F. Some systematic aspects of Mitchell grasses (Astrebla F. Muell.). Aust. J. Bot. 1969, 17, 359–374. [Google Scholar] [CrossRef]
- Rotthauwe, J.-H.; Witzel, K.-P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef]
- Hussain, Q.; Liu, Y.; Jin, Z.; Zhang, A.; Pan, G.; Li, L.; Crowley, D.; Zhang, X.; Song, X.; Cui, L. Temporal dynamics of ammonia oxidizer (amoA) and denitrifier (nirK) communities in the rhizosphere of a rice ecosystem from Tai Lake region, China. Appl. Soil Ecol. 2011, 48, 210–218. [Google Scholar] [CrossRef]
- Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Tao, R.; Li, J.; Hu, B.; Chu, G. Ammonia-oxidizing bacteria are sensitive and not resilient to organic amendment and nitrapyrin disturbances, but ammonia-oxidizing archaea are resistant. Geoderma 2021, 384, 114814. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘vegan’. Community Ecol. Package Version 2013, 2, 1–295. [Google Scholar]
- Nuñez, J.; Arevalo, A.; Karwat, H.; Egenolf, K.; Miles, J.; Chirinda, N.; Cadisch, G.; Rasche, F.; Rao, I.; Subbarao, G. Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, Brachiaria humidicola. Plant Soil 2018, 426, 401–411. [Google Scholar] [CrossRef]
- Subbarao, G.; Rondon, M.; Ito, O.; Ishikawa, T.; Rao, I.M.; Nakahara, K.; Lascano, C.; Berry, W. Biological nitrification inhibition (BNI)-is it a widespread phenomenon? Plant Soil 2007, 294, 5–18. [Google Scholar] [CrossRef]
- Vranova, V.; Rejsek, K.; Skene, K.R.; Janous, D.; Formanek, P. Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review. J. Plant Nutr. Soil Sci. USA 2013, 176, 175–199. [Google Scholar] [CrossRef]
- Pinton, R.; Varanini, Z.; Nannipieri, P. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Maurer, D.; Malique, F.; Alfarraj, S.; Albasher, G.; Horn, M.A.; Butterbach-Bahl, K.; Dannenmann, M.; Rennenberg, H. Interactive regulation of root exudation and rhizosphere denitrification by plant metabolite content and soil properties. Plant Soil 2021, 467, 107–127. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Jiang, J.; Kronzucker, H.J.; Shen, W.; Shi, W. Effects of the biological nitrification inhibitor 1, 9-decanediol on nitrification and ammonia oxidizers in three agricultural soils. Soil Biol. Biochem. 2019, 129, 48–59. [Google Scholar] [CrossRef]
- McLay, T.G.; Murphy, D.J.; Holmes, G.D.; Mathews, S.; Brown, G.K.; Cantrill, D.J.; Udovicic, F.; Allnutt, T.R.; Jackson, C.J. A genome resource for Acacia, Australia’s largest plant genus. PLoS ONE 2022, 17, e0274267. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, N.K.; Kennedy, I.R. Indigenous actinorhizal plants of Australia. J. Biosci. 2013, 38, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Garner, W.; Steinberger, Y. A proposed mechanism for the formation of ‘fertile islands’ in the desert ecosystem. J. Arid Environ. 1989, 16, 257–262. [Google Scholar] [CrossRef]
- Northup, B.; Brown, J.; Holt, J. Grazing impacts on the spatial distribution of soil microbial biomass around tussock grasses in a tropical grassland. Appl. Soil Ecol. 1999, 13, 259–270. [Google Scholar] [CrossRef]
- Prosser, J.I.; Nicol, G.W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 2012, 20, 523–531. [Google Scholar] [CrossRef]
- Taylor, A.E.; Zeglin, L.H.; Wanzek, T.A.; Myrold, D.D.; Bottomley, P.J. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J. 2012, 6, 2024–2032. [Google Scholar] [CrossRef]
pH (H2O) | EC (dS/m) | Organic C (%) | Total N (%) | Colwell P (mg/kg) | Clay (%) | Sand (%) | |
---|---|---|---|---|---|---|---|
Agricultural soil | 7.54 | 0.081 | 1.67 | 0.089 | 72.2 | 32.5 | 49.2 |
Native soil | 8.20 | 0.180 | 0.61 | 0.021 | 12.4 | 7.1 | 89.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Toh, R.; Iqbal, N.; Ryder, M.; Li, J.; Denton, M.D. Biological Nitrification Inhibition by Australian Tussock Grass and Its Impact on the Rhizosphere Ammonia-Oxidizing Microbiome. Grasses 2024, 3, 297-306. https://doi.org/10.3390/grasses3040022
Zhou Y, Toh R, Iqbal N, Ryder M, Li J, Denton MD. Biological Nitrification Inhibition by Australian Tussock Grass and Its Impact on the Rhizosphere Ammonia-Oxidizing Microbiome. Grasses. 2024; 3(4):297-306. https://doi.org/10.3390/grasses3040022
Chicago/Turabian StyleZhou, Yi, Ruey Toh, Nasir Iqbal, Maarten Ryder, Jishun Li, and Matthew D. Denton. 2024. "Biological Nitrification Inhibition by Australian Tussock Grass and Its Impact on the Rhizosphere Ammonia-Oxidizing Microbiome" Grasses 3, no. 4: 297-306. https://doi.org/10.3390/grasses3040022
APA StyleZhou, Y., Toh, R., Iqbal, N., Ryder, M., Li, J., & Denton, M. D. (2024). Biological Nitrification Inhibition by Australian Tussock Grass and Its Impact on the Rhizosphere Ammonia-Oxidizing Microbiome. Grasses, 3(4), 297-306. https://doi.org/10.3390/grasses3040022