Effect of Different Irrigation Programs on Structural Characteristics, Productivity and Water Use Efficiency of Opuntia and Nopalea Forage Cactus Clones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area
2.2. Experimental Design, Plant Material, and Irrigation Management
2.3. Structural Characteristics, Biomass Yield and Water Use Efficiency
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuncer, T.; Tuncer, B. The Effect of Geographical Factors on Agricultural Activities in Altınekin District. Çomü Ziraat Fakültesi Derg. 2023, 11, 401–416. [Google Scholar] [CrossRef]
- Sarkar, S.; Skalicky, M.; Hossain, A.; Brestic, M.; Saha, S.; Garai, S.; Ray, K.; Brahmachari, K. Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability 2020, 12, 9808. [Google Scholar] [CrossRef]
- Santos, J.P.A.d.S.; de Oliveira, A.C.; de Morais, J.E.F.; Jardim, A.M.d.R.F.; Alves, C.P.; Júnior, G.D.N.A.; de Souza, C.A.A.; da Silva, M.J.; de Souza, L.S.B.; Campos, F.S.; et al. Morphophysiological responses, water, and nutritional performance of the forage cactus submitted to different doses of nitrogen. Field Crops Res. 2024, 308, 109273. [Google Scholar] [CrossRef]
- Leddin, C.; Morse-McNabb, E.; Smith, K.; Ho, C.; Jacobs, J. How can improved farmer decisions and farm system impacts resulting from the use of digital forage measurement technologies on dairy farms be valued? Agric. Syst. 2023, 212, 103755. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environ. Dev. Sustain. 2021, 23, 23–43. [Google Scholar] [CrossRef]
- Girardin, L.O. Climate Change and Semi-arid Regions in Latin America Threats and Challenges. In Socioeconomic and Geopolitical Aspects of Global Climate Change: An Intersectorial Vision from the South of the South; Springer: Cham, Switzerland, 2024; pp. 31–99. [Google Scholar] [CrossRef]
- Santos, J.P.A.d.S.; Júnior, G.D.N.A.; Jardim, A.M.d.R.F.; de Souza, C.A.A.; da Silva, J.O.N.; Salvador, K.R.d.S.; de Souza, L.S.B.; da Silva, T.G.F. Técnicas de manejo sustentável para o aporte forrageiro da agricultura familiar no semiárido brasileiro: Palma forrageira, irrigação e fondren. Rev. Bras. Geogr. Física 2021, 14, 3910–3931. [Google Scholar] [CrossRef]
- Júnior, G.D.N.A.; da Silva, T.G.F.; de Souza, L.S.B.; Souza, M.d.S.; de Araújo, G.G.L.; de Moura, M.S.B.; Santos, J.P.A.d.S.; Jardim, A.M.d.R.F.; Alves, C.P.; Alves, H.K.M.N. Productivity, bromatological composition and economic benefits of using irrigation in the forage cactus under regulated deficit irrigation in a semiarid environment. Bragantia 2021, 80, e1221. [Google Scholar] [CrossRef]
- ONU—Organização das Nações Unidas. Transformando o Nosso Mundo: A Agenda 2030 para o Desenvolvimento Sustentável; ONU: New York, NY, USA, 2015; Available online: https://nacoesunidas.org/pos2015/agenda2030/ (accessed on 3 February 2024).
- Machado, R.; Sorrentino, M. ODS 1–Erradicação da pobreza. Objetivos do Desenvolvimento Sustentável. In Objetivos do Desenvolvimento Sustentável: Desafios Para o Planejamento e a Governança Ambiental na Macrometrópole Paulista, 1st ed.; Editora UFABC: Santo André, Brasil, 2020; p. 55. [Google Scholar]
- Amornkitvikai, Y.; Pholphirul, P. Business productivity and efficiency from aligning with sustainable development goals: Empirical evidence from ASEAN manufacturing firms. Bus. Strategy Dev. 2023, 6, 189–204. [Google Scholar] [CrossRef]
- PNUD—United Nations Development Programme. Objetivos de Desenvolvimentos Sustentáveis. Available online: https://www.undp.org/pt/brazil/objetivos-de-desenvolvimento-sustentavel (accessed on 16 April 2024).
- Iwamoto, H.M.; Leal, V.d.A.; Cançado, A.C. Mosaico do Jalapão: Perspectivas e desafios para a implementação dos Objetivos de Desenvolvimento Sustentável (ODS). Soc. Nat. 2024, 36, e70921. [Google Scholar] [CrossRef]
- Edward, A.; Yasin, R.M. The Sustainability of Agricultural Activities Meets the Welfare Indicators of Sustainable Development Goals 13 (Sdg 13): Systematic Literature Review. Int. J. Acad. Res. Progress. Educ. Dev. 2023, 12, 560–574. [Google Scholar] [CrossRef]
- Mubeen, I.; Mfarrej, M.F.B.; Razaq, Z.; Iqbal, S.; Naqvi, S.A.H.; Hakim, F.; Mosa, W.F.; Moustafa, M.; Fang, Y.; Li, B. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture. Plant Physiol. Biochem. 2023, 198, 107670. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Institute of Geography and Statistics (IBGE). Systematic Survey of Agricultural Production 2024. Available online: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/39306-com-alta-recorde-da-agropecuaria-pib-fecha-2023-em-2-9 (accessed on 21 May 2024).
- Pinheiro, A.G.; Alves, C.P.; de Souza, C.A.A.; Júnior, G.D.N.A.; Jardim, A.M.d.R.F.; de Morais, J.E.F.; de Souza, L.S.B.; Lopes, D.d.C.; Neto, A.J.S.; Montenegro, A.A.d.A.; et al. Calibration and validation of the AquaCrop model for production arrangements of forage cactus and grass in a semi-arid environment. Ecol. Model. 2024, 488, 110606. [Google Scholar] [CrossRef]
- Aguiar, S.C.; de Lima, V.L.A.; da Silva, P.F.; Neto, J.D.; de Farias, M.S.S. Sustentabilidade da pecuária leiteira do semiárido brasileiro com base em vulnerabilidade e resiliência socioecológica. Rev. Ibero-Am. Ciências Ambient. 2020, 11, 236–248. [Google Scholar] [CrossRef]
- Souza, M.d.S.; Júnior, G.D.N.A.; de Souza, L.S.B.; Jardim, A.M.d.R.F.; da Silva, G.I.N.; de Araújo, G.G.L.; Campos, F.S.; Leite, M.L.d.M.V.; Tabosa, J.N.; da Silva, T.G.F. Forage yield, competition and economic benefit of intercropping cactus and millet with mulch in a semi-arid environment. Afr. J. Range Forage Sci. 2023, 40, 219–230. [Google Scholar] [CrossRef]
- Da Silva, T.G.F.; Jardim, A.M.d.R.F.; Diniz, W.J.d.S.; de Souza, L.S.B.; Júnior, G.D.N.A.; da Silva, G.N.; Alves, C.P.; de Souza, C.A.A.; de Morais, J.E.F. Profitability of using irrigation in forage cactus-sorghum intercropping for farmers in semi-arid environment. Rev. Bras. Eng. Agrícola Ambient. 2023, 27, 132–139. [Google Scholar] [CrossRef]
- Alves, H.K.M.N.; Jardim, A.M.d.R.F.; de Souza, L.S.B.; da Silva, T.G.F. The application of agrometeorological techniques contributes to the agricultural resilience of forage cactus: A review. Amaz. J. Plant Res. 2018, 2, 207–220. [Google Scholar] [CrossRef]
- Lima, L.R.; da Silva, T.G.F.; Pereira, P.D.C.; de Morais, J.E.F.; Assis, M.C.D.S. Productive-economic benefit of forage cactus-sorghum intercropping systems irrigated with saline water. Rev. Caatinga 2018, 31, 191–201. [Google Scholar] [CrossRef]
- Nunes, J.D.S.L.; Silva, T.G.F.; de Souza, L.S.B.; Jardim, A.M.d.R.F.; Alves, H.K.M.N.; Neto, J.F.d.C.; Leite, R.M.C.; Pinheiro, A.G. Morphogenesis of forage cactus clones under modification of the growth environment. Agrometeoros 2020, 27, 367–375. [Google Scholar] [CrossRef]
- Júnior, G.D.N.A.; da Silva, T.G.F.; de Souza, L.S.B.; de Araújo, G.G.L.; de Moura, M.S.B.; Alves, C.P.; Salvador, K.R.d.S.; de Souza, C.A.A.; Montenegro, A.A.d.A.; da Silva, M.J. Phenophases, morphophysiological indices and cutting time in clones of the forage cacti under controlled water regimes in a semiarid environment. J. Arid Environ. 2021, 190, 104510. [Google Scholar] [CrossRef]
- Jardim, A.M.d.R.F.; de Morais, J.E.F.; de Souza, L.S.B.; Marin, F.R.; de Moura, M.S.B.; Morellato, L.P.C.; Montenegro, A.A.d.A.; Ometto, J.P.H.B.; de Lima, J.L.; Júnior, J.C.B.D.; et al. Sink or carbon source? How the Opuntia cactus agroecosystem interacts in the use of carbon, nutrients and radiation in the Brazilian semi-arid region. J. Hydrol. 2023, 625, 130121. [Google Scholar] [CrossRef]
- Silva, T.D.; Primo, J.A.; Morais, J.D.; Diniz, W.D.S.; Souza, C.D.; Silva, M.D.C. Growth and productivity of cactus forage clones in semiarid and relationship with meteorological variables. Rev. Caatinga 2015, 28, 10–18. [Google Scholar]
- De Queiroz, M.G.; da Silva, T.G.F.; Zolnier, S.; Silva, S.M.S.; Lima, L.R.; Alves, J.d.O. Morphophysiological characteristic and yield of forage cactus under different irrigation depths. Rev. Bras. Eng. Agrícola Ambient. 2015, 19, 931–938. [Google Scholar] [CrossRef]
- Alves, C.P.; Silva, T.G.F.; Alves, H.K.M.N.; Jardim, A.M.d.R.F.; de Souza, L.S.B.; Neto, J.F.d.C.; Santos, J.P.A.d.S. Consórcio palma-sorgo sob lâminas de irrigação: Balanço de água no solo e coeficientes da cultura. Agrometeoros 2019, 27, 347–356. [Google Scholar] [CrossRef]
- Arba, M.; Falisse, A.; Choukr-Allah, R.; Sindic, M. Effect of irrigation at critical stages on the phenology of flowering and fruiting of the cactus Opuntia spp. Braz. J. Biol. 2018, 78, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Abbott, C.; Koon, P. Contrasting soil moisture environments beneath sugar cane drip irrigated during the day, and at night. Agric. Water Manag. 1992, 22, 271–279. [Google Scholar] [CrossRef]
- Giri, A.; Heckathorn, S.; Mishra, S.; Krause, C. Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots. Plantas 2017, 6, 6. [Google Scholar] [CrossRef]
- Dong, X.; Xu, W.; Zhang, Y.; Leskovar, D.I. Effect of irrigation timing on root zone soil temperature, root growth and grain yield and chemical composition in corn. Agronomy 2016, 6, 34. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Souza, M.d.S.; Júnior, G.D.N.A.; Jardim, A.M.d.R.F.; de Souza, C.A.A.; Pinheiro, A.G.; de Souza, L.S.B.; Salvador, K.R.d.S.; Leite, R.M.C.; Alves, C.P.; da Silva, T.G.F. Improving productivity and water use efficiency by intercropping cactus and millet. Irrig. Drain. 2023, 72, 982–998. [Google Scholar] [CrossRef]
- Jardim, A.M.d.R.F.; da Silva, T.G.F.; de Souza, L.S.B.; Júnior, G.D.N.A.; Alves, H.K.M.N.; Souza, M.d.S.; de Araújo, G.G.L.; de Moura, M.S.B. Intercropping forage cactus and sorghum in a semi-arid environment improves biological efficiency and competitive ability through interspecific complementarity. J. Arid Environ. 2021, 188, 104464. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrig. Drain. Pap. 1998, 56, 60–64. Available online: https://www.fao.org/4/X0490E/X0490E00.htm (accessed on 15 February 2024).
- Silva, T.D.; Araújo, G.D.; Moura, M.D.; Souza, L.D. Agrometeorological research on forage cactus and its advances in Brazil. Amaz. J. Plant Res. 2017, 1, 45–68. [Google Scholar] [CrossRef]
- Richards, L. Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture: Washington, DC, USA, 1954; p. 160. [Google Scholar]
- Silva, T.; Miranda, K.; Santos, D.; Queiroz, M.; Silva, M.; Neto, J.C.; Araújo, J. Cladode area of cactus forage clones: Modeling, analysis and applicability. Rev. Bras. Ciências Agrárias 2014, 9, 633–641. [Google Scholar] [CrossRef]
- Pinheiro, K.M.; da Silva, T.G.F.; Carvalho, H.F.d.S.; Santos, J.E.O.; de Morais, J.E.F.; Zolnier, S.; dos Santos, D.C. Correlations of the cladode area index with morphogenetic and yield traits of cactus forage. Pesqui. Agropecuária Bras. 2014, 49, 939–947. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org (accessed on 15 February 2024).
- Neto, J.F.D.C.; de Morais, J.E.F.; de Souza, C.A.A.; Carvalho, H.F.D.S.; Rodrigues, C.T.A.; da Silva, T.G.F. Applicability of agrometeorologics indicators for analysis of water increment for irrigation in production systems of cactus forage, cv. Miúda. J. Environ. Anal. Prog. 2017, 2, 98–106. [Google Scholar] [CrossRef]
- Pereira, P.D.C.; da Silva, T.G.F.; Zolnier, S.; DE Morais, J.E.F.; dos Santos, D.C. Morfogênese da palma forrageira irrigada por gotejamento. Rev. Caatinga 2015, 28, 184–195. [Google Scholar] [CrossRef]
- Rocha, R.; Voltolini, T.; Gava, C. Productive and structural characteristics of genotypes of irrigated forage cactus in different cutting intervals. Arch. Zootec. 2017, 66, 365–373. [Google Scholar] [CrossRef]
- Sales, A.T.; de Andrade, A.P.; da Silva, D.S.; Leite, M.d.M.V.; Viana, B.L.; de León, M.; Solís, A. Adaptation potential of cactus pear to soil and climatic conditions of the semi-arid in Paraíba State, Brazil. Acta Hortic. 2009, 811, 395–400. [Google Scholar] [CrossRef]
- Silva, N.G.d.M.e.; Lira, M.d.A.; dos Santos, M.V.F.; Júnior, J.C.B.D.; de Mello, A.C.L.; Silva, M.d.C. Relationship between morphological characteristics and productivity of cactus forage clones. Rev. Bras. Zootec. 2010, 39, 2389–2397. [Google Scholar] [CrossRef]
- Da Silva, E.C.B.; Lima, J.R.d.S.; Antonino, A.C.D.; de Melo, A.A.S.; de Souza, E.S.; Souza, R.M.S.; da Silva, V.P.; de Oliveira, C.L. Effect of the supplemental irrigation on yield and water use efficiency of cactus pear. Rev. Bras. Geogr. Física 2020, 13, 2744–2759. [Google Scholar] [CrossRef]
- Silva, T.G.F.; Primo, J.T.A.; e Silva, S.M.S.; de Moura, M.S.B.; dos Santos, D.C.; Silva, M.d.C.; Araújo, J.E.M. Water and nutrient use efficiency indicators of cactus pear clones in rainfed conditions in the Brazilian Semi-arid region. Bragantia 2014, 73, 184–191. [Google Scholar] [CrossRef]
- Alves, C.P.; Jardim, A.M.d.R.F.; Júnior, G.D.N.A.; de Souza, L.S.B.; de Araújo, G.G.L.; de Souza, C.A.A.; Salvador, K.R.d.S.; Leite, R.M.C.; Pinheiro, A.G.; da Silva, T.G.F. How to enhance the agronomic performance of cactus-sorghum intercropped system: Planting configurations, density and orientation. Ind. Crops Prod. 2022, 184, 115059. [Google Scholar] [CrossRef]
- De Oliveira, F.T.; Souto, J.S.; da Silva, R.P.; Filho, F.C.d.A.; Júnior, E.B.P. Cactus pear: Adaptation and importance for ecosystem arid or semiarid. Rev. Verde Agroecol. Desenvolv. Sustentável 2010, 5, 27–37. [Google Scholar] [CrossRef]
- De Queiroz, M.G.; da Silva, T.G.F.; Zolnier, S.; e Silva, S.M.S.; de Souza, C.A.A.; Carvalho, H.F.d.S. Hydro-economic relations of forage cactus cultivated in semiarid environment. Rev. Irrig. 2016, 1, 141–154. [Google Scholar] [CrossRef]
- Consoli, S.; Inglese, G.P.H.D.; Inglese, P. Determination of evapotranspiration and annual biomass productivity of a cactus pear (Opuntia ficus-indica L. (Mill.)) orchard in a Semi-arid. J. Irrig. Drain. Eng. 2013, 139, 680–690. [Google Scholar] [CrossRef]
- Bandeira, G.R.L.; de Queiroz, S.O.P.; Aragão, C.A.; Costa, N.D.; Santos, C.A.F. Crop performance of onion cultivars under different irrigation managements in the lower São Francisco basin. Irriga 2013, 18, 73–84. [Google Scholar] [CrossRef]
- Dubeux, J.; dos Santos, M.F.; Lira, M.d.A.; dos Santos, D.C.; Farias, I.; Lima, L.; Ferreira, R. Productivity of Opuntia ficus-indica (L.) Miller under different N and P fertilization and plant population in north-east Brazil. J. Arid Environ. 2006, 67, 357–372. [Google Scholar] [CrossRef]
- Pessoa, R.M.d.S.; Pessoa, A.M.d.S.; Costa, D.C.d.C.C.; Azevêdo, P.C.d.S.; Gois, G.C.; Campos, F.S.; Vicente, S.L.A.; Ferreira, J.M.d.S.; Araújo, C.d.A.; Lima, D.O. Palma forrageira: Adubação orgânica e mineral. Res. Soc. Dev. 2022, 11, e12111334257. [Google Scholar] [CrossRef]
Source of Variation | PH | PW | TNC | CN1 | CN2 | CN3 | CA1 | CA2 | CA3 | CAI | PFM | PDM | WUEFM | WUEDM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clone | 0.270 | 0.008 | <0.001 | 0.401 | <0.001 | 0.075 | <0.001 | <0.001 | 0.131 | 0.042 | <0.001 | 0.001 | <0.001 | 0.005 |
Irrigation schedule (IS) | 0.986 | 0.707 | 0.323 | 0.267 | 0.056 | 0.237 | 0.264 | 0.567 | 0.297 | 0.147 | 0.929 | 0.788 | 0.922 | 0.856 |
Clone × IS | 0.421 | 0.282 | 0.026 | 0.900 | 0.014 | 0.249 | 0.696 | 0.356 | 0.337 | 0.049 | 0.085 | 0.153 | 0.0769 | 0.159 |
Clone | PH | PW | CN1 | CN3 | CA1 | CA2 | CA3 |
---|---|---|---|---|---|---|---|
----------cm---------- | ------unit------- | -------------cm2---------- | |||||
OEM | 41.9 a | 33.0 b | 3.7 a | 0.0 a | 293.1 a | 15.0 b | 0.0 a |
IPA | 44.0 a | 38.3 ab | 4.3 a | 0.0 a | 212.8 b | 0.0 b | 0.0 a |
MIU | 45.8 a | 43.4 a | 3.7 a | 0.7 a | 120.9 c | 106.0 a | 15.3 a |
Mean | 43.9 | 38.2 | 3.9 | 0.23 | 208.9 | 40.3 | 5.1 |
CV% | 11.8 | 17.6 | 28.9 | 322.6 | 25.02 | 81.1 | 368.5 |
Irrigation schedule | PH | PW | CN1 | CN3 | CA1 | CA2 | CA3 |
Daytime | 43.8 | 37.7 | 4.1 | 0.06 | 198.0 | 44.0 | 1.4 |
Nighttime | 43.9 | 38.7 | 3.6 | 0.4 | 219.8 | 37.1 | 8.7 |
Mean | 43.85 | 38.2 | 3.85 | 0.2 | 208.9 | 40.55 | 5.05 |
CV% | 11.8 | 17.6 | 28.9 | 322.6 | 25.02 | 81.1 | 368.5 |
Variable | Irrigation | Clone | ||
---|---|---|---|---|
OEM | IPA | MIU | ||
TNC (Unit) | Daytime | 5.2 Ba | 5.6 Ba | 9.8 Ab |
Nighttime | 4.4 Ba | 5.0 Ba | 13.2 Aa | |
CN2 (Unit) | Daytime | 0.2 Ba | 0.0 Ba | 4.8 Ab |
Nighttime | 0.0 Ba | 0.0 Ba | 7.4 Aa | |
CAI (m2 m−2) | Daytime | 1.45 Aa | 1.20 Ba | 1.11 Bb |
Nighttime | 1.46 ABa | 1.13 Ba | 1.58 Aa |
Irrigation Schedule | Production (kg planta−1) | |
---|---|---|
Fresh Mass | Dry Mass | |
Daytime | 2.61 | 0.23 |
Nighttime | 2.63 | 0.24 |
Mean | 2.62 | 0.235 |
CV% | 19.5 | 25.7 |
Clone | WUE (kg plant−1 mm−1) | |
---|---|---|
Fresh Mass | Dry Mass | |
OEM | 0.0048 a | 0.0004 a |
MIU | 0.0026 c | 0.0002 b |
IPA | 0.0039 b | 0.0003 ab |
Mean | 0.0038 | 0.0003 |
CV% | 19.5 | 29.7 |
Irrigation Schedule | WUE (kg plant−1 mm−1) | |
---|---|---|
Fresh Mass | Dry Mass | |
Daytime | 0.0037 | 0.00033 |
Nighttime | 0.0038 | 0.00034 |
Mean | 0.0038 | 0.0003 |
CV% | 19.5 | 29.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, J.F.N.d.; Santos, J.P.A.d.S.; Souza, L.S.B.d.; Souza, C.A.A.d.; Alves, C.P.; Jardim, A.M.d.R.F.; Eugênio, D.d.S.; Souza, L.F.d.; Morais, J.E.F.d.; Santos, W.R.d.; et al. Effect of Different Irrigation Programs on Structural Characteristics, Productivity and Water Use Efficiency of Opuntia and Nopalea Forage Cactus Clones. Grasses 2024, 3, 307-319. https://doi.org/10.3390/grasses3040023
Araujo JFNd, Santos JPAdS, Souza LSBd, Souza CAAd, Alves CP, Jardim AMdRF, Eugênio DdS, Souza LFd, Morais JEFd, Santos WRd, et al. Effect of Different Irrigation Programs on Structural Characteristics, Productivity and Water Use Efficiency of Opuntia and Nopalea Forage Cactus Clones. Grasses. 2024; 3(4):307-319. https://doi.org/10.3390/grasses3040023
Chicago/Turabian StyleAraujo, Jandis Ferreira Nunes de, João Pedro Alves de Souza Santos, Luciana Sandra Bastos de Souza, Carlos André Alves de Souza, Cléber Pereira Alves, Alexandre Maniçoba da Rosa Ferraz Jardim, Danielle da Silva Eugênio, Leonardo Francelino de Souza, José Edson Florentino de Morais, Wilma Roberta dos Santos, and et al. 2024. "Effect of Different Irrigation Programs on Structural Characteristics, Productivity and Water Use Efficiency of Opuntia and Nopalea Forage Cactus Clones" Grasses 3, no. 4: 307-319. https://doi.org/10.3390/grasses3040023
APA StyleAraujo, J. F. N. d., Santos, J. P. A. d. S., Souza, L. S. B. d., Souza, C. A. A. d., Alves, C. P., Jardim, A. M. d. R. F., Eugênio, D. d. S., Souza, L. F. d., Morais, J. E. F. d., Santos, W. R. d., Gois, G. C., Campos, F. S., Silva, M. V. d., Montenegro, A. A. d. A., & Silva, T. G. F. d. (2024). Effect of Different Irrigation Programs on Structural Characteristics, Productivity and Water Use Efficiency of Opuntia and Nopalea Forage Cactus Clones. Grasses, 3(4), 307-319. https://doi.org/10.3390/grasses3040023