Ambient Levels of Carbonyl Compounds and Ozone in a Golf Course in Ciudad Real, Spain: A ProtoPRED QSAR (Eco) Toxicity Evaluation
Abstract
:1. Introduction
1.1. VOCs Impact on Environment and Health
1.2. ProtoPRED QSAR Model
2. Materials and Methods
2.1. Sampling Site
2.2. Sampling Methods
2.3. Chemicals
2.4. Analytical Methods
2.4.1. Sample Preparation RAD165 and HPLC Analysis
2.4.2. Sample Preparation RAD172 and UV-Vis Analysis
2.5. ProtoPRED Computational Methodology
3. Results and Discussion
3.1. Carbonyl Concentrations
3.2. Diagnostic Ratios
3.3. Ozone Levels
3.4. ProtoPRED Predictions
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000; ISBN 978-0-12-257060-5. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-471-72018-8. [Google Scholar]
- Environmental Protection Agency. Report on the Environment. Air|US EPA. 2023. Available online: https://www.epa.gov/report-environment/air (accessed on 3 June 2024).
- World Health Organization. Ambient (Outdoor) Air Pollution. Ambient (Outdoor) Air Pollution (who.int). 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 20 May 2024).
- Singh, Y.; Singla, A.; Singh, N.K.; Sharma, A. Production and feasibility characterization of bio-oil from jojoba seed-based biomass through solar thermal energy pyrolysis process. Biomass Convers. Biorefin. 2024, 14, 5225–5237. [Google Scholar] [CrossRef]
- Rumchev, K.; Brown, H.; Spickett, J. Volatile organic compounds: Do they present a risk to our health? Rev. Environ. Health 2007, 22, 39–55. [Google Scholar] [CrossRef]
- Epping, R.; Koch, M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023, 28, 1598. [Google Scholar] [CrossRef]
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on human health. In Air Pollution and Control; Springer: Berlin, Germany, 2017; pp. 119–142. ISBN 879-981-10-7185-0. [Google Scholar]
- Xiong, Y.; Du, K.; Huang, Y. One-third of global population at cancer risk due to elevated volatile organic compounds levels. Clim. Atmos. Sci. 2024, 7, 54. [Google Scholar] [CrossRef]
- Sexton, K.; Adgate, J.L.; Church, T.R.; Ashley, D.L.; Needham, L.L.; Ramachandran, G.; Fredrickson, A.L.; Ryan, A.D. Children’s Exposure to Volatile Organic Compounds as Determined by Longitudinal Measurements in Blood. Environ. Health Perspect. 2005, 113, 342–349. [Google Scholar] [CrossRef]
- Adgate, J.L.; Church, T.R.; Ryan, A.D.; Ramachandran, G.; Fredrickson, A.L.; Stock, T.H.; Morandi, M.T.; Sexton, K. Outdoor, indoor, and personal exposure to VOCs in children. Environ. Health Perspect. 2004, 112, 1386–1392. [Google Scholar] [CrossRef]
- Zhong, L.; Su, F.-C.; Batterman, S. Volatile Organic Compounds (VOCs) in conventional and High Performance school buildings in the U.S. Int. J. Environ. Res. Public Health 2017, 14, 100. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, F.; Tapia, A.; Lara, S.; Amo-Salas, M. Indoor and outdoor air concentrations of volatile organic compounds and NO2 in schools of urban. industrial and rural areas in Central-Southern Spain. Sci. Total Environ. 2018, 622, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Sonne, C.; Xia, C.; Dadvand, P.; Targino, A.C.; Lam, S.S. Indoor volatile and semivolatile organic toxic compounds: Need for global action. J. Build. Eng. 2022, 62, 105344. [Google Scholar] [CrossRef]
- Bergomi, A.; Mangia, C.; Fermo, P.; Genga, A.; Comité, V.; Guadagnini, S.; Ielpo, P. Outdoor trends and indoor investigations of volatile organic compounds in two high schools of southern Italy. Air Qual. Atmos. Health 2024, 17, 1325–1340. [Google Scholar] [CrossRef]
- Mishra, N.; Bartsch, J.; Ayoko, G.A.; Salthammer, T.; Morawska, L. Volatile organic compounds: Characteristics, distribution and sources in urban schools. Atmos. Environ. 2015, 106, 485–491. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Huang, W.; Ling, Z.; Wang, Z.; Wang, X. Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation. Atmos. Res. 2022, 274, 106184. [Google Scholar] [CrossRef]
- Saiz-Lopez, A.; Borge, R.; Notario, A.; Adame, J.A.; de la Paz, D.; Querol, X.; Artíñano, B.; Gómez-Moreno, F.J.; Cuevas, C.A. Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain. Sci. Rep. 2017, 7, 45956. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.J.; Siraki, A.G.; Shangari, N. Aldehyde sources. metabolism. molecular toxicity mechanisms and possible effects on human health. Crit. Rev. Toxicol. 2005, 35, 609–662. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde. 2-Butoxyethanol and 1-Tert-Butoxypropan-2-ol; IARC Publications: Lyon, France, 2006; Volume 88. [Google Scholar]
- International Agency for Research on Cancer (IARC). Chemical Agents and Related Occupations. A Review of Human Carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Publications: Lyon, France, 2012; Volume 100F. [Google Scholar]
- Matsuda, T.; Yabushita, H.; Kanaly, R.A.; Shibutani, S.; Yokoyama, A. Increased DNA damage in ALDH2-deficient alcoholics. Chem. Res. Toxicol. 2006, 19, 1374–1378. [Google Scholar] [CrossRef]
- Chen, C.H.; Ferreira Batista, J.C.; Gross, E.R.; Mochly-Rosen, D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol. Rev. 2014, 94, 1–34. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Jiang, X.; Lee, M.; Tumipseed, A.; Guenther, A.; Kim, J.-C.; Lee, S.-J.; Kim, S. Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmos. Environ. 2013, 70, 447–453. [Google Scholar] [CrossRef]
- Villanueva, F.; Tapia, A.; Notario, A.; Albaladejo, J.; Martinez, E. Ambient levels and temporal trends of VOCs, including carbonyl compounds, and ozone at Cabañeros National Park border, Spain. Atmos. Environ. 2014, 85, 256–265. [Google Scholar] [CrossRef]
- Patokoski, J.; Ruuskanen, T.M.; Kajos, M.K.; Taipale, R.; Rantala, P.; Aalto, J.; Ryyppö, T.; Nieminen, T.; Hakola, H.; Rinne, J. Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II. Atmos. Chem. Phys. 2015, 15, 13413–13432. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Q.; Xu, C.; Lun, X.; Wang, L.; Gao, Y.; Huang, L.; Zhang, Q.; Li, L.; Liu, B.; et al. Biogenic volatile organic compounds in forest therapy base: A source of air pollutants or a healthcare function? Sci. Total Environ. 2024, 931, 172944. [Google Scholar] [CrossRef]
- Yong, J.; Guo, H.; Li, Y.; Sun, S. Unraveling the influence of biogenic volatile organic compounds and their constituents on ozone and SOA formation within the Yellow River Basin, China. Chemosphere 2024, 353, 141549. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.N.; Guenther, A.B.; Potosnak, M.J.; Apel, E.C. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation. Atmos. Chem. Phys. 2008, 8, 7367–7371. [Google Scholar] [CrossRef]
- Gozalbes, R.; de Julián-Ortiz, J.D. Applications of chemoinformatics in Predictive Toxicology for Regulatory Purposes, especially in the context of the EU REACH Legislation. Int. J. Quant. Struct. Prop. Rel. 2018, 3, 1–24. [Google Scholar] [CrossRef]
- Blázquez, M.; Andreu-Sáncez, O.; Ballesteros, A.M.; Fernández-Cruz, M.L.; Fito, C.; Gómez-Ganau, S.; Gozalbes, R.; Hernández-Moreno, D.; de Julián-Ortiz, J.V.; Lombardo, A.; et al. Computational Tools for the Assessment and Substitution of Biocidal Active Substances of Ecotoxicological Concern. In Chemometrics and Cheminformatics in Aquatic Toxicology; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Carpio, L.E.; Sanz, Y.; Gozalbes, R.; Barigye, S.J. Computational strategies for the discovery of biological functions of the health foods, nutraceuticals and cosmeceuticals: A review. Mol. Divers. 2021, 25, 1425–1438. [Google Scholar] [CrossRef]
- Fondazione Salvatore Maugeri. Instruction Manual for Radiello Sampler. Available online: http://www.radiello.com (accessed on 24 September 2024).
- Uchiyama, S.; Aoyagi, S.; Ando, M. Evaluation of a diffusive sampler for measurement of carbonyl compounds in air. Atmos. Environ. 2004, 38, 6319–6326. [Google Scholar] [CrossRef]
- ProtoPRED Online Server. ProtoPRED. Available online: https://protoqsar.com (accessed on 10 September 2024).
- Tabershaw, I.R.; Utidjian, H.M.D.; Kawahara, B.L. Occupational Diseases: A Guide to Their Recognition; Department of Health, Education, and Welfare: Washington, DC, USA, 1977; pp. 131–439. [Google Scholar]
- Ziemann, P.J.; Atkinson, R. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 2012, 41, 6582–6605. [Google Scholar] [CrossRef]
- Wayne, R.P.; Barnes, I.; Biggs, P.; Burrows, J.P.; Canosa-Mas, C.E.; Hjorth, J.; Le Bras, G.; Moortgat, G.K.; Perner, D.; Poulet, G.; et al. The nitrate radical: Physics, chemistry, and the atmosphere. Atmos. Environ. Part A Gen. Top. 1991, 25, 1–203. [Google Scholar] [CrossRef]
- Luttrell, W.E.; Tyler, J.W. Butyraldehyde. J. Chem. Health Saf. 2011, 18, 25–26. [Google Scholar] [CrossRef]
- König, G.; Brunda, M.; Puxbaum, H.; Hewitt, C.N.; Duckham, S.C.; Rudolph, J. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emission of selected mid-European agricultural and natural plant species. Atmos. Environ. 1995, 29, 861–874. [Google Scholar] [CrossRef]
- Notario, A.; Bravo, I.; Adame, J.A.; Díaz-de-Mera, Y.; Aranda, A.; Rodríguez, A.; Rodríguez, D. Variability of oxidants (OX = O3 + NO2), and preliminary study on ambient levels of ultrafine particles and VOCs, in an important ecological area in Spain. Atmos. Environ. 2013, 128, 35–45. [Google Scholar] [CrossRef]
- Huang, J.; Feng, Y.; Li, J.; Xiong, B.; Feng, J.; Wen, S.; Sheng, G.; Fu, J.; Wu, M. Characteristics of carbonyl compounds in ambient air of Shanghai, China. J. Atmos. Chem. 2008, 61, 1–20. [Google Scholar] [CrossRef]
- Custódio, D.; Guimaraes, C.S.; Varandas, L.; Arbilla, G. Pattern of volatile aldehydes and aromatic hydrocarbons in the largest urban rainforest in the Americas. Chemosphere 2010, 79, 1064–1069. [Google Scholar] [CrossRef]
- Possanzini, M.; Tagliacozzo, G.; Cecinato, A. Ambient Levels and Sources of Lower Carbonyls at Montelibretti, Rome (Italy). Water Air Soil Pollut. 2007, 183, 447–454. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Z.; Wang, Y. Bioaldehydes and beyond: Expanding the realm of bioderived chemicals using biogenic aldehydes as platforms. Curr. Opin. Chem. Biol. 2020, 59, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Cecinato, A.; Brachetti, A. Ubiquitous occurrence of semi-volatile carbonyl compounds in tropospheric samples and their possible source. Atmos. Environ. 1993, 27A, 1891–1901. [Google Scholar] [CrossRef]
- Owen, S.; Boissard, C.; Street, R.A.; Duckham, S.C. Screening of 18 Mediterranean plant species for volatile organic compounds emissions. Atmos. Environ. 1997, 31, 101–117. [Google Scholar] [CrossRef]
- Wildt, J.; Kobel, K.; Schuh-Thomas, G.; Heiden, A.C. Emissions of oxygenated volatile organic compounds from plants. Part II: Emissions of saturated aldehydes. J. Atmos. Chem. 2003, 45, 173–196. [Google Scholar] [CrossRef]
- Ho, S.S.H.; Ip, H.S.S.; Ho, K.F.; Ng, L.P.T.; Chan, C.S.; Dai, W.T.; Cao, J.J. Hazardous airborne carbonyls emissions in industrial workplaces in China. J. Air Waste Manag. Assoc. 2013, 63, 864–877. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of emissions from air pollution sources. 4. C1–C27 organic compounds from cooking with seed oils. Environ. Sci. Technol. 2000, 36, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.S.H.; Yu, J.Z.; Chu, K.W.; Yeung, L.L. Carbonyl emissions from commercial cooking sources in Hong Kong. J. Air Waste Manag. Assoc. 2006, 56, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- LoPachin, R.M.; Gavin, T. Molecular Mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol. 2014, 27, 1081–1091. [Google Scholar] [CrossRef]
- Agents Classified by the IARC Monographs, Volumes 1–136–IARC. Monographs on the Identification of Carcinogenic Hazards to Humans (who.int). Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 15 July 2024).
- Okada, Y.; Nakagoshi, A.; Tsurukawa, M.; Matsumura, C.; Eiho, J.; Nakano, T. Environmental risk assessment and concentration trend of atmospheric volatile organic compounds in Hyogo Prefecture, Japan. Environ. Sci. Pollut. Res. 2012, 19, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Su, T.; Wang, L.; Wang, N.; Xue, Y.; Dai, W.; Lee, S.C.; Cao, J.; Ho, S.S.H. Evaluation and characterization of volatile air toxics indoors in a heavy polluted city of northwestern China in wintertime. Sci. Total Environ. 2019, 662, 470–480. [Google Scholar] [CrossRef]
- Chemical Search|IRIS|US EPA. Available online: https://www.epa.gov/iris (accessed on 27 June 2024).
- Shepson, P.; Hastie, D.; Schiff, H.; Polizzi, M.; Bottenheim, J.; Anlauf, K.; Mackay, G.; Karecki, D. Atmospheric concentrations and temporal variations of C1–C3 carbonyl compounds at two rural sites in central Ontario. Atmos. Environ. 1991, 25, 2001–2015. [Google Scholar] [CrossRef]
- Feng, Y.; Wen, S.; Chen, Y.; Wang, X.; Lu, H.; Bi, X.; Sheng, G.; Fu, J. Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmos. Environ. 2005, 39, 1789–1800. [Google Scholar] [CrossRef]
- Ochs, S.d.M.; Albuquerque, F.C.; Pontes Massa, M.C.G.; Pereira Netto, A.D. Evaluation of C1–C13 carbonyl compounds by RRLC-UV in the atmosphere of Niterói City, Brazil. Atmos. Environ. 2011, 45, 5183–5190. [Google Scholar] [CrossRef]
- Ho, K.; Lee, S.; Louie, P.K.; Zou, S. Seasonal variation of carbonyl compound concentrations in Urban Area of Hong Kong. Atmos. Environ. 2002, 36, 1259–1265. [Google Scholar] [CrossRef]
- Evtyugina, M.G.; Nunes, T.; Pio, C.; Costa, C.S. Photochemical pollution under sea breeze conditions, during summer, at the Portuguese West Coast. Atmos. Environ. 2006, 40, 6277–6293. [Google Scholar] [CrossRef]
- Notario, A.; Diaz de Mera, Y.; Aranda, A.; Adame, J.A.; Parra, A.; Romero, E.; Parra, J.; Muñoz, F. Surface ozone comparison conducted in two rural areas in central-southern Spain. Environ. Sci. Pollut. Res. 2012, 19, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Toropov, A.A.; Benfenati, E. QSAR modelling of aldehyde toxicity by means of optimization of correlation weights of nearest neighbouring codes. J. Mol. Struct. 2004, 676, 165–169. [Google Scholar] [CrossRef]
- Toropov, A.A.; Benfenati, E. QSAR modelling of aldehyde toxicity against a protozoan, Tetrahymena pyriformis by optimization of correlation weights of nearest neighboring codes. J. Mol. Struct. 2004, 679, 225–228. [Google Scholar] [CrossRef]
- ECHA REACH Dossiers Registered Substances-ECHA. Available online: https://echa.europa.eu/information-on-chemicals/registered-substances (accessed on 4 December 2024).
Mobile phase A | H2O MilliQ:ACN (60:40) | ||
Mobile phase B | H2O MilliQ:ACN (25:75) | ||
Injection volume | 10 μL | ||
Flow rate | 1 mL min−1 | ||
Column temperature | 30 °C | ||
Detector wavelength | 360 nm (bandwidth 4 nm) | ||
Postrun time | 5 min | ||
Gradient | |||
Time (min) | %A | %B | |
0 | 100 | 0 | |
5 | 100 | 0 | |
25 | 40 | 60 | |
40 | 0 | 100 | |
45 | 100 | 0 |
Carbonyl Compound | RT (min) | Concentration (ppm) * | Qk (mL min−1) | Concentration (μg m−3) * |
---|---|---|---|---|
Formaldehyde | 12.30 | 1.18 ± 0.13 | 99 | 2.37 ± 0.25 |
Acetaldehyde | 16.05 | 1.31 ± 0.06 | 84 | 3.11 ± 0.15 |
Acetone | 19.49 | 1.06 ± 0.14 | 77 | 2.73 ± 0.36 |
Acrolein | <LOD | <LOD | 33 | <LOD |
Propionaldehyde | 21.68 | 0.27 ± 0.004 | 39 | 1.36 ± 0.02 |
Crotonaldehyde | <LOD | <LOD | 65 | <LOD |
Butanal a | 26.40 | 0.43 ± 0.05 | 11 | 7.84 ± 0.90 |
Benzaldehyde | <LOD | <LOD | 92 | <LOD |
Isovaleraldehyde | <LOD | <LOD | 61 | <LOD |
Valeraldehyde | 30.93 | 0.11 ± 0.006 | 27 | 0.78 ± 0.05 |
o-tolualdehyde | <LOD | <LOD | 49 | <LOD |
m,p-tolualdehyde b | 33.11 | 0.06 ± 0.04 | 49 | 0.23 ± 0.17 |
Hexanal | 35.36 | 0.11 ± 0.02 | 18 | 1.16 ± 0.22 |
2,5-dimethylbenzaldehyde | <LOD | <LOD | 47 | <LOD |
Location | Sampling Period | Formaldehyde | Acetaldehyde | Propionaldehyde | C1/C2 | C2/C3 | Reference |
---|---|---|---|---|---|---|---|
Forest and rural sites | |||||||
Golf Ciudad Real (Spain) | September–October 2023 | 2.13–2.63 (2.37) | 3.01–3.28 (3.11) | 1.34–1.37 (1.36) | 0.76 | 2.29 | This work |
Cabañeros National Park (Spain) | August–November 2010 February–August 2011 | ND-2.56 (0.96) | 0.13–1.89 (0.79) | ND-1.04 (0.52) | 1.51 | 1.65 | Villanueva et al., 2014 [26] |
Tijuca Forest (Brazil) | January–August 2008 | ND-29.1 (4.68) | ND-8.42 (1.96) | 0.74–4.83 (2.73) | 2.39 | 0.72 | Custódio et al., 2010 [44] |
Montelibretti (Italy) | July–September 2005 February 2006 | 2.9–11.8 (4.89) | 0.9–4.1 (1.87) | 0.20–1.27 (0.55) | 2.61 | 3.4 | Possanzini et al., 2007 [45] |
Lota (Portugal) | June–July 2001, 2002 | 0.04–1.16 (0.43) | 0.06–3.05 (0.52) | 0.02–0.21 (0.09) | 0.83 | 5.78 | Evtyugina et al., 2006 [63] |
Covelo (Portugal) | June–July 2001, 2002 | 0.22–2.51 (1.13) | 0.35–1.31 (0.70) | 0.03–0.40 (0.17) | 1.61 | 4.12 | Evtyugina et al., 2006 [63] |
Sangalhos (Portugal) | June–July 2001, 2002 | 0.13–1.54 (0.58) | 0.08–1.01 (0.44) | ND-1.97 (0.15) | 1.32 | 2.93 | Evtyugina et al., 2006 [63] |
Urban sites | |||||||
Hyogo Prefecture (Japan) | 2005–2009 | 2.3–4.3 (3.08) | 2.8–4.5 (3.5) | N/A | 0.88 | - | Okada et al., 2012 [56] |
Hong Kong (China) | April–April 1999–2000 | 0.98–5.92 (4.64) | 0.69–2.67 (2.09) | 0.28–0.63 (0.33) | 2.22 | 6.33 | Ho et al., 2002 [62] |
Shanghai (China) | January–October 2007 | 2.64–49.54 (19.84) | 4.39–100.49 (16.31) | ND–14.19 (2.07) | 1.22 | 7.88 | Huang et al., 2008 [43] |
Period (Days of the Month) | ||||||
---|---|---|---|---|---|---|
Ozone Sampling Locations | July (3–11) | July (11–18) | July (18–25) | September/October (25–02) | July (Average) | September/October (Average) |
C1-P1 | 56.17 ± 2.05 | 74.27 ± 2.64 | 81.94 ± 2.82 | 53.16 ± 1.99 | 70.63 ± 2.52 | 51.09 ± 1.91 |
C2-P2 | N/A | N/A | N/A | 49.40 ± 1.85 | ||
C3-P3 | N/A | N/A | N/A | 50.69 ± 1.88 | ||
C4-P4 | N/A | N/A | 70.13 ± 2.55 | 51.12 ± 1.90 |
ProtoECO | ProtoTOX | GenoITS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Carbonyl Compound | Persistence in Water (Days) | Persistence in Soil (Days) | Persistence in Sediment (Days) | Adsorption/Desorption (L kg−1) | Bioconcentration Factor (L kg−1) | In Vivo Skin Irritation | In Vivo Eye Irritation | Developmental Toxicity | Carcinogenicity | Neurotoxicity (mg kg−1) (LD50) | In Vitro Gene Mutation Study in Mammalian Cells (Hprt Assay) |
Formaldehyde | 3.6 | 6.5 ** | 25.7 | 7.4 | 2.9 | Irritant | Irritant | Non-toxic * | N/A a | 300.7 ** | Genotoxic |
Acetaldehyde | 3.5 | 6.7 | 21.6 | 7.4 | 3.5 | Irritant | Irritant | Non-toxic * | Non-carcinogen | 382.3 | Non-genotoxic |
Acetone | 4.3 | 7.7 | 22.2 | 5.8 | 3.7 | Irritant * | Irritant * | Non-toxic | Carcinogen | 389.5 | Non-genotoxic |
Propionaldehyde | 2.3 * | 2.3 * | 7.1 * | 7.6 | 4.1 | Irritant | Irritant * | Non-toxic | Non-carcinogen | 353.4 ** | Non-genotoxic |
Butanal | 5.0 | 4.2 | 22.9 | 17.4 | 4.4 | Irritant | Irritant * | Non-toxic | Non-carcinogen | 341.8 | Non-genotoxic |
Valeraldehyde | 5.2 | 4.8 | 24.4 | 21.1 | 3.3 | Irritant | Irritant * | Toxic | Non-carcinogen | 308.8 | Non-genotoxic |
m-tolualdehyde | 6.8 | 5.7 | 21.8 | 84.7 | 9.3 | Irritant | Irritant | Non-toxic | Non-carcinogen | 395.6 | Non-genotoxic |
p-tolualdehyde | 6.7 | 5.6 | 23.1 | 95.7 | 9.7 | Irritant | Irritant | Toxic | Non-carcinogen | 394.9 | Non-genotoxic |
Hexanal | 6.5 | 5.3 | 24.4 | 32.9 | 6.8 | Irritant | Irritant * | Non-toxic | Non-carcinogen | 290.0 | Non-genotoxic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, A.; Rabanal-Ruiz, Y.; Moreno-Cabañas, A.; Sánchez Jiménez, C.; Cabañas, B. Ambient Levels of Carbonyl Compounds and Ozone in a Golf Course in Ciudad Real, Spain: A ProtoPRED QSAR (Eco) Toxicity Evaluation. Air 2025, 3, 2. https://doi.org/10.3390/air3010002
Moreno A, Rabanal-Ruiz Y, Moreno-Cabañas A, Sánchez Jiménez C, Cabañas B. Ambient Levels of Carbonyl Compounds and Ozone in a Golf Course in Ciudad Real, Spain: A ProtoPRED QSAR (Eco) Toxicity Evaluation. Air. 2025; 3(1):2. https://doi.org/10.3390/air3010002
Chicago/Turabian StyleMoreno, Alberto, Yoana Rabanal-Ruiz, Andrés Moreno-Cabañas, Carlos Sánchez Jiménez, and Beatriz Cabañas. 2025. "Ambient Levels of Carbonyl Compounds and Ozone in a Golf Course in Ciudad Real, Spain: A ProtoPRED QSAR (Eco) Toxicity Evaluation" Air 3, no. 1: 2. https://doi.org/10.3390/air3010002
APA StyleMoreno, A., Rabanal-Ruiz, Y., Moreno-Cabañas, A., Sánchez Jiménez, C., & Cabañas, B. (2025). Ambient Levels of Carbonyl Compounds and Ozone in a Golf Course in Ciudad Real, Spain: A ProtoPRED QSAR (Eco) Toxicity Evaluation. Air, 3(1), 2. https://doi.org/10.3390/air3010002