Previous Issue
Volume 2, December
 
 

Air, Volume 3, Issue 1 (March 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 2292 KiB  
Article
Air Quality and Energy Use in a Museum
by Glykeria Loupa, Georgios Dabanlis, Evangelia Kostenidou and Spyridon Rapsomanikis
Air 2025, 3(1), 5; https://doi.org/10.3390/air3010005 (registering DOI) - 1 Feb 2025
Viewed by 218
Abstract
Museums play a vital role in preserving cultural heritage and for this reason, they require strict indoor environmental controls. Balancing indoor environmental quality with reduced energy consumption poses significant challenges. Over the course of a year (2023), indoor microclimate conditions, atmospheric pollutant concentrations [...] Read more.
Museums play a vital role in preserving cultural heritage and for this reason, they require strict indoor environmental controls. Balancing indoor environmental quality with reduced energy consumption poses significant challenges. Over the course of a year (2023), indoor microclimate conditions, atmospheric pollutant concentrations (O3, TVOC, CO, CO2, particulate matter), and energy use were monitored at the Archaeological Museum of Kavala. Maximum daily fluctuations in relative humidity were 15% in summertime, while air temperature variations reached 2.0 °C, highlighting unstable microclimatic conditions. Particulate matter was the primary threat to the preservation of artworks, followed by indoor O3 and NO2, whose concentrations exceeded recommended limits for cultural conservation. In 2023, the Energy Use Intensity (EUI) was 86.1 kWh m−2, a value that is significantly correlated with the number of visitors and the outdoor air temperature. Every person visiting the museum was assigned an average of 7.7 kWh of energy. During the hottest days and when the museum was crowded, the maximum amount of energy was consumed. Over the past decade (2013–2023), the lowest EUI was recorded during the COVID-19 pandemic at 53 kWh m−2. Energy consumption is linked to indoor environmental quality; thus, both must be continuously monitored. Full article
Show Figures

Figure 1

19 pages, 2615 KiB  
Article
Tracking Particulate Matter Accumulation on Green Roofs: A Study at Warsaw University Library
by Katarzyna Gładysz, Mariola Wrochna and Robert Popek
Air 2025, 3(1), 4; https://doi.org/10.3390/air3010004 - 1 Feb 2025
Viewed by 267
Abstract
Particulate matter (PM) is a critical component of urban air pollution, with severe implications for human health and environmental ecosystems. This study investigates the capacity of green roofs at the Warsaw University Library to mitigate air pollution by analyzing the retention of PM [...] Read more.
Particulate matter (PM) is a critical component of urban air pollution, with severe implications for human health and environmental ecosystems. This study investigates the capacity of green roofs at the Warsaw University Library to mitigate air pollution by analyzing the retention of PM and associated trace elements (TEs) across eight perennial plant species during spring, summer, and autumn. The results highlight significant interspecies variability and seasonal trends in PM retention, with peak levels observed in summer due to increased foliage density and ambient pollution. Sedum spectabile and Spiraea japonica emerged as the most effective species for PM capture, owing to their wax-rich surfaces and dense foliage, while Betula pendula demonstrated a high retention of TEs like manganese and zinc. Seasonal shifts from surface-bound PM (SPM) to wax-bound PM (WPM) in autumn underline the importance of adaptive plant traits for sustained pollutant capture. These findings underscore the critical role of green roofs in urban air quality management, emphasizing the need for species-specific strategies to maximize year-round phytoremediation efficacy. Expanding the implementation of diverse vegetation on green roofs can significantly enhance their environmental and public health benefits. Full article
Show Figures

Figure 1

22 pages, 3116 KiB  
Article
Verification and Usability of Indoor Air Quality Monitoring Tools in the Framework of Health-Related Studies
by Alicia Aguado, Sandra Rodríguez-Sufuentes, Francisco Verdugo, Alberto Rodríguez-López, María Figols, Johannes Dalheimer, Alba Gómez-López, Rubèn González-Colom, Artur Badyda and Jose Fermoso
Air 2025, 3(1), 3; https://doi.org/10.3390/air3010003 - 14 Jan 2025
Viewed by 754
Abstract
Indoor air quality (IAQ) significantly impacts human health, particularly in enclosed spaces where people spend most of their time. This study evaluates the performance of low-cost IAQ sensors, focusing on their ability to measure carbon dioxide (CO2) and particulate matter (PM) [...] Read more.
Indoor air quality (IAQ) significantly impacts human health, particularly in enclosed spaces where people spend most of their time. This study evaluates the performance of low-cost IAQ sensors, focusing on their ability to measure carbon dioxide (CO2) and particulate matter (PM) under real-world conditions. Measurements provided by these sensors were verified against calibrated reference equipment. The study utilized two commercial devices from inBiot and Kaiterra, comparing their outputs to a reference sensor across a range of CO2 concentrations (500–1200 ppm) and environmental conditions (21–25 °C, 27–92% RH). Data were analyzed for relative error, temporal stability, and reproducibility. Results indicate strong correlation between low-cost sensors (LCSs) and the reference sensor at lower CO2 concentrations, with minor deviations at higher levels. Environmental conditions had minimal impact on sensor performance, highlighting robustness to temperature and humidity within the tested ranges. For PM measurements, low-cost sensors effectively tracked trends, but inaccuracies increased with particle concentration. Overall, these findings support the feasibility of using low-cost sensors for non-critical IAQ monitoring, offering an affordable alternative for tracking CO2 and PM trends. Additionally, LCSs can assess long-term exposure to contaminants, providing insights into potential health risks and useful information for non-expert users. Full article
Show Figures

Figure 1

20 pages, 1512 KiB  
Article
Ambient Levels of Carbonyl Compounds and Ozone in a Golf Course in Ciudad Real, Spain: A ProtoPRED QSAR (Eco) Toxicity Evaluation
by Alberto Moreno, Yoana Rabanal-Ruiz, Andrés Moreno-Cabañas, Carlos Sánchez Jiménez and Beatriz Cabañas
Air 2025, 3(1), 2; https://doi.org/10.3390/air3010002 - 6 Jan 2025
Viewed by 624
Abstract
It is well known that carbonyl compounds play an important role in air pollution and the formation of secondary pollutants, such as peroxyacetyl nitrates (PAN). Additionally, airborne carbonyls have been described as cytotoxic, mutagenic and carcinogenic. In this research, several carbonyl compounds, including [...] Read more.
It is well known that carbonyl compounds play an important role in air pollution and the formation of secondary pollutants, such as peroxyacetyl nitrates (PAN). Additionally, airborne carbonyls have been described as cytotoxic, mutagenic and carcinogenic. In this research, several carbonyl compounds, including aldehydes and ketones, as well as ozone, were monitored during a campaign conducted in July and September-October 2023 at Golf Ciudad Real, a golf course located in a non-industrial area of a south-central province in Spain. Extraction and analysis were carried out following procedures outlined by Radiello®. Analyses were performed using HPLC-DAD and UV-Visible spectrophotometry. Ozone shows seasonal variation (temperature-dependent) concentrations displaying lower values in September/October. Among all the identified carbonyls, butanal was the most abundant, accounting for 40% of the total concentration. The C1/C2 and C2/C3 ratios were also calculated to provide information about the main emissions sources of the analyzed carbonyl compounds, indicating that mainly anthropogenic sources contribute to air quality in the area. The data were further supported by Quantitative Structure-Activity Relationship (QSAR) models using the ProtoPRED online server, which employs in silico methods based on European Chemicals Agency (ECHA) regulations to assess the (eco)toxicity of the measured carbonyl compounds. Full article
Show Figures

Figure 1

12 pages, 2744 KiB  
Article
Impact of Meteorological Factors on Seasonal and Diurnal Variation of PM2.5 at a Site in Mbarara, Uganda
by Shilindion Basemera, Silver Onyango, Jonan Tumwesigyire, Martin Mukama, Data Santorino, Crystal M. North and Beth Parks
Air 2025, 3(1), 1; https://doi.org/10.3390/air3010001 - 2 Jan 2025
Viewed by 614
Abstract
Because PM2.5 concentrations are not regularly monitored in Mbarara, Uganda, this study was implemented to test whether correlations exist between weather parameters and PM2.5 concentration, which could then be used to estimate PM2.5 concentrations. PM2.5 was monitored for 24 [...] Read more.
Because PM2.5 concentrations are not regularly monitored in Mbarara, Uganda, this study was implemented to test whether correlations exist between weather parameters and PM2.5 concentration, which could then be used to estimate PM2.5 concentrations. PM2.5 was monitored for 24 h periods once every week for eight months, while weather parameters were monitored every day. The mean dry and wet season PM2.5 concentrations were 70.1 and 39.4 µg/m3, respectively. Diurnal trends for PM2.5 levels show bimodal peaks in the morning and evening. The univariate regression analysis between PM2.5 and meteorological factors for the 24 h averages yields a significant correlation with air pressure when all data are considered, and when the data are separated by season, there is a significant correlation between PM2.5 concentration and wind speed in the dry season. A strong correlation is seen between diurnal variations in PM2.5 concentration and most weather parameters, but our analysis suggests that in modeling PM2.5 concentrations, the importance of these meteorological factors is mainly due to their correlation with underlying causes including diurnal changes in the atmospheric boundary layer height and changes in sources both hourly and seasonally. While additional measurements are needed to confirm the results, this study contributes to the knowledge of short-term and seasonal variation in PM2.5 concentration in Mbarara and forms a basis for modeling short-term variation in PM2.5 concentration and determining the effect of seasonal and diurnal sources on PM2.5 concentration. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop