Air Quality and Energy Use in a Museum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Monitoring
3. Results
3.1. Indoor Microclimate, Outdoor Meteorological Conditions and Energy Use Intensity
3.2. Indoor Atmospheric Pollutants
3.2.1. Air Change Rate (ACH)
3.2.2. IAQ Comparison Between Two Locations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, A.B.; Arora, T.; Singh, S.; Singh, R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Sci. Total Environ. 2023, 872, 162163. [Google Scholar] [CrossRef] [PubMed]
- Centorrino, P.; Corbetta, A.; Cristiani, E.; Onofri, E. Managing crowded museums: Visitors flow measurement, analysis, modeling, and optimization. J. Comput. Sci. 2021, 53, 101357. [Google Scholar] [CrossRef]
- Goulding, C. The museum environment and the visitor experience. Eur. J. Mark. 2000, 34, 261–278. [Google Scholar] [CrossRef]
- Canosa, E.; Norrehed, S. Strategies for Pollutant Monitoring in Museum Environments; Riksantikvarieämbetet: Stockholm, Sweden, 2019. [Google Scholar]
- Baer, N.S.; Banks, P.N. Indoor air pollution: Effects on cultural and historic materials. Mus. Manag. Curatorship 1985, 4, 9–20. [Google Scholar] [CrossRef]
- Loupa, G.; Dabanlis, G.; Resta, G.; Kostenidou, E.; Rapsomanikis, S. Indoor Microclimatic Conditions and Air Pollutant Concentrations in the Archaeological Museum of Abdera, Greece. Aerobiology 2024, 2, 29–43. [Google Scholar] [CrossRef]
- Kraševec, I.; Markelj, J.; Elnaggar, A.; Cigić, I.K. Indoor air pollutants and their seasonal monitoring in European museums. Herit. Sci. 2024, 12, 50. [Google Scholar] [CrossRef]
- Vergelli, L.; Frasca, F.; Bertolin, C.; Favero, G.; Siani, A.M. A review on inorganic gaseous pollutants in conservation spaces: Monitoring instrumentation and indoor concentrations. Environ. Monit. Assess. 2023, 196, 85. [Google Scholar] [CrossRef]
- Adams, S.J.; Ford, D. Monitoring of deposited particles in cultural properties: The influence of visitors. Atmos. Environ. 2001, 35, 4073–4080. [Google Scholar] [CrossRef]
- Pagonis, D.; Price, D.J.; Algrim, L.B.; Day, D.A.; Handschy, A.V.; Stark, H.; Miller, S.L.; de Gouw, J.; Jimenez, J.L.; Ziemann, P.J. Time-Resolved Measurements of Indoor Chemical Emissions, Deposition, and Reactions in a University Art Museum. Environ. Sci. Technol. 2019, 53, 4794–4802. [Google Scholar] [CrossRef]
- Schieweck, A.; Lohrengel, B.; Siwinski, N.; Genning, C.; Salthammer, T. Organic and inorganic pollutants in storage rooms of the Lower Saxony State Museum Hanover, Germany. Atmos. Environ. 2005, 39, 6098–6108. [Google Scholar] [CrossRef]
- Alvarez-Martin, A.; McHugh, K.; Martin, C.; Kavich, G.; Kaczkowski, R. Understanding air-tight case environments at the National Museum of the American Indian (Smithsonian Institution) by SPME-GC-MS analysis. J. Cult. Herit. 2020, 44, 38–46. [Google Scholar] [CrossRef]
- Saridaki, A.; Glytsos, T.; Raisi, L.; Katsivela, E.; Tsiamis, G.; Kalogerakis, N.; Lazaridis, M. Airborne particles, bacterial and fungal communities insights of two museum exhibition halls with diverse air quality characteristics. Aerobiologia 2023, 39, 69–86. [Google Scholar] [CrossRef]
- Grau-Bové, J.; Strlič, M. Fine particulate matter in indoor cultural heritage: A literature review. Herit. Sci. 2013, 1, 8. [Google Scholar] [CrossRef]
- Hu, T.; Lee, S.; Cao, J.; Chow, J.C.; Watson, J.G.; Ho, K.; Ho, W.; Rong, B.; An, Z. Characterization of winter airborne particles at Emperor Qin’s Terra-cotta Museum, China. Sci. Total Environ. 2009, 407, 5319–5327. [Google Scholar] [CrossRef]
- Mouratidou, T.; Samara, C. PM2.5 and associated ionic component concentrations inside the archaeological museum of Thessaloniki, N. Greece. Atmos. Environ. 2004, 38, 4593–4598. [Google Scholar] [CrossRef]
- Lloyd, H.; Lithgow, K.; Brimblecombe, P.; Yoon, Y.H.; Frame, K.; Knight, B. The effects of visitor activity on dust in historic collections. Conserv. 2002, 26, 72–84. [Google Scholar] [CrossRef]
- Proietti, A.; Panella, M.; Leccese, F.; Svezia, E. Dust detection and analysis in museum environment based on pattern recognition. Measurement 2015, 66, 62–72. [Google Scholar] [CrossRef]
- Schmidt, A.L.; Bronée, P.; Kemp, K.; Fenger, J. Airborne dust in a museum environment. In IAP Copenhagen 2001, Copenhagen, Denmark, 8–9 November 2001; The National Museum of Denmark: Copenhagen, Denmark, 2001; Volume 71, Available online: http://www.iaq.dk/iap/iap2001/iap2001.pdf#page=73 (accessed on 6 December 2024).
- Shah, B.; Hunter, S.; Adams, S. Dust to Dust. Access to Access. Available online: http://www.vam.ac.uk/content/journals/conservation-journal/spring-2011-issue-59/dust-to-dust.-access-to-access./?srsltid=AfmBOooDN6Adto_u4dUQ1xeIZot13dw0ZFqd1WTc5-TbKId0QPZ60ZeY (accessed on 6 December 2024).
- Brizzi, S.; Łydżba-Kopczyńska, B.; Riminesi, C.; Salvadori, B.; Sawoszczuk, T.; Strojecki, M.; Syta, O.; Thickett, D.; Torres-Elguera, J.; Towarek, A.; et al. Surveying analytical techniques for a comprehensive analysis of airborne particulate samples in museum environments. TrAC Trends Anal. Chem. 2024, 176, 117766. [Google Scholar] [CrossRef]
- Saraiva, N.B.; Pereira, L.D.; Gaspar, A.R.; Costa, J.J. Measurement of particulate matter in a heritage building using optical counters: Long-term and spatial analyses. Sci. Total Environ. 2023, 862, 160747. [Google Scholar] [CrossRef]
- Ilieș, A.; Caciora, T.; Marcu, F.; Berdenov, Z.; Ilieș, G.; Safarov, B.; Hodor, N.; Grama, V.; Shomali, M.A.A.; Ilies, D.C.; et al. Analysis of the Interior Microclimate in Art Nouveau Heritage Buildings for the Protection of Exhibits and Human Health. Int. J. Environ. Res. Public Health 2022, 19, 16599. [Google Scholar] [CrossRef] [PubMed]
- Camuffo, D. Microclimate for Cultural Heritage: Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Dabanlis, G.; Loupa, G.; Tsalidis, G.A.; Kostenidou, E.; Rapsomanikis, S. The Interplay between Air Quality and Energy Efficiency in Museums, a Review. Appl. Sci. 2023, 13, 5535. [Google Scholar] [CrossRef]
- Fouseki, K.; Cassar, M. Energy Efficiency in Heritage Buildings—Future Challenges and Research Needs. Hist. Environ. Policy Pract. 2014, 5, 95–100. [Google Scholar] [CrossRef]
- Droutsa, K.G.; Balaras, C.A.; Lykoudis, S.; Kontoyiannidis, S.; Dascalaki, E.G.; Argiriou, A.A. Baselines for Energy Use and Carbon Emission Intensities in Hellenic Nonresidential Buildings. Energies 2020, 13, 2100. [Google Scholar] [CrossRef]
- Huang, Z.; Gou, Z. Electricity consumption variation of public buildings in response to COVID-19 restriction and easing policies: A case study in Scotland, UK. Energy Build. 2022, 267, 112149. [Google Scholar] [CrossRef]
- Kramer, R.P.; Maas, M.P.E.; Martens, M.H.J.; van Schijndel, A.W.M.; Schellen, H.L. Energy conservation in museums using different setpoint strategies: A case study for a state-of-the-art museum using building simulations. Appl. Energy 2015, 158, 446–458. [Google Scholar] [CrossRef]
- Mueller, H.F.O. Energy efficient museum buildings. Renew. Energy 2013, 49, 232–236. [Google Scholar] [CrossRef]
- Cadelano, G.; Cicolin, F.; Emmi, G.; Mezzasalma, G.; Poletto, D.; Galgaro, A.; Bernardi, A. Improving the Energy Efficiency, Limiting Costs and Reducing CO2 Emissions of a Museum Using Geothermal Energy and Energy Management Policies. Energies 2019, 12, 3192. [Google Scholar] [CrossRef]
- Brophy, S.S.; Wylie, E. The Green Museum: A Primer on Environmental Practice; Altamira Press: Lanham, MD, USA, 2013. [Google Scholar]
- Calderón-Vargas, F.; Asmat-Campos, D.; Chávez-Arroyo, P. Sustainable tourism policies in Peru and their link with renewable energy: Analysis in the main museums of the Moche route. Heliyon 2021, 7, e08188. [Google Scholar] [CrossRef]
- Eti, S.; Yüksel, S.; Dinçer, H.; Kalkavan, H.; Hacioglu, U.; Mikhaylov, A.; Danish, M.S.S.; Pinter, G. Assessment of technical and financial challenges for renewable energy project alternatives. Clean. Eng. Technol. 2024, 18, 100719. [Google Scholar] [CrossRef]
- Vourdoubas, J. Possibilities of Creating Net Zero Carbon Emissions Cultural Buildings: A Case Study of the Museum at Eleutherna, Crete, Greece. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS) 2019, 56, 207–217. [Google Scholar]
- Annelies, C.; Vincent, L.B.; Geert, B.; Melissa, K.; Rebecca, N.; Bhavesh, S.; Wickens, A.J. Tools for the Analysis of Collection Environments; Getty Museum: Los Angeles, CA, USA, 2022. [Google Scholar]
- Richardson, E.; McCauley Krish, K.; Cummings, M.; Schooping, M.; Hopke, P.; Tétreault, J. Interrogating Pollutants in Collecting Institutions During the Implementation of HVAC Energy-Saving Strategies: Lessons Learned and Practical Implications for Optimizing Sustainable Environmental Control. Stud. Conserv. 2024, 69, 305–313. [Google Scholar] [CrossRef]
- Sciurpi, F.; Carletti, C.; Cellai, G.; Piselli, C. Indoor Air Quality in the Uffizi Gallery of Florence: Sampling, Assessment and Improvement Strategies. Appl. Sci. 2022, 12, 8642. [Google Scholar] [CrossRef]
- Elkadi, H.; Al-Maiyah, S.; Fielder, K.; Kenawy, I.; Martinson, D.B. The regulations and reality of indoor environmental standards for objects and visitors in museums. Renew. Sustain. Energy Rev. 2021, 152, 111653. [Google Scholar] [CrossRef]
- Gratton, G.; Padhra, A.; Rapsomanikis, S.; Williams, P.D. The impacts of climate change on Greek airports. Clim. Change 2020, 160, 219–231. [Google Scholar] [CrossRef]
- Cavicchioli, A.; Souza, R.O.C.d.; Reis, G.R.; Fornaro, A. Indoor Ozone and Nitrogen Dioxide Concentration in Two Museums of the São Paulo Megacity—Brazil. E-Preserv. Sci. 2013, 10, 114–122. [Google Scholar]
- Cavicchioli, A.; Morrone, E.P.; Fornaro, A. Particulate matter in the indoor environment of museums in the megacity of São Paulo. Química Nova 2014, 37, 1427–1435. [Google Scholar] [CrossRef]
- Hu, T.; Jia, W.; Cao, J.; Huang, R.; Li, H.; Liu, S.; Ma, T.; Zhu, Y. Indoor air quality at five site museums of Yangtze River civilization. Atmos. Environ. 2015, 123, 449–454. [Google Scholar] [CrossRef]
- Loupa, G.; Karageorgos, E.; Rapsomanikis, S. Potential effects of particulate matter from combustion during services on human health and on works of art in medieval churches in Cyprus. Environ. Pollut. 2010, 158, 2946–2953. [Google Scholar] [CrossRef]
- Li, J.; Fan, G.; Ou, Y.; Deng, Q. Characteristics and control strategies of indoor particles: An updated review. Energy Build. 2023, 294, 113232. [Google Scholar] [CrossRef]
- Stratigou, E.; Dusanter, S.; Brito, J.; Riffault, V. Investigation of PM10, PM2.5, PM1 in an unoccupied airflow-controlled room: How reliable to neglect resuspension and assume unreactive particles? Build. Environ. 2020, 186, 107357. [Google Scholar] [CrossRef]
- Chatoutsidou, S.E.; Lazaridis, M. Assessment of the impact of particulate dry deposition on soiling of indoor cultural heritage objects found in churches and museums/libraries. J. Cult. Herit. 2019, 39, 221–228. [Google Scholar] [CrossRef]
- Lv, L.; Zhao, B. Shape-dependent aerosol dynamics in indoor environments: Penetration, deposition, and dispersion. J. Hazard. Mater. 2024, 480, 136305. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, H.; Wei, S.; Wu, T.; Liu, T.; Chen, B. The experimental study on indoor and outdoor penetration coefficient of atmospheric fine particles. Build. Environ. 2018, 132, 70–82. [Google Scholar] [CrossRef]
- Asadi, S.; Wexler, A.S.; Cappa, C.D.; Barreda, S.; Bouvier, N.M.; Ristenpart, W.D. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 2019, 9, 2348. [Google Scholar] [CrossRef]
- You, S.; Wan, M.P. Experimental investigation and modelling of human-walking-induced particle resuspension. Indoor Built Environ. 2014, 24, 564–576. [Google Scholar] [CrossRef]
- Fu, N.; Kim, M.K.; Huang, L.; Liu, J.; Chen, B.; Sharples, S. Experimental and numerical analysis of indoor air quality affected by outdoor air particulate levels (PM1.0, PM2.5 and PM10), room infiltration rate, and occupants’ behaviour. Sci. Total Environ. 2022, 851, 158026. [Google Scholar] [CrossRef]
- Han, Q.; Huang, H.; Li, C.; Tang, H. An experimental study on the characteristics of human respiratory aerosol emission in different activity intensity states. Build. Environ. 2025, 267, 112314. [Google Scholar] [CrossRef]
- Tétreault, J. Airborne Pollutants in Museums, Galleries and Archives: Risk Assessment, Control Strategies and Preservation Management; Canadian Conservation Institute: Ottawa, ON, USA, 2003.
- Loupa, G.; Rapsomanikis, S. Air pollutant emission rates and concentrations in medieval churches. J. Atmos. Chem. 2008, 60, 169–187. [Google Scholar] [CrossRef]
- Lloyd, H.; Brimblecombe, P.; Lithgow, K. Economics of Dust. Stud. Conserv. 2007, 52, 135–146. [Google Scholar] [CrossRef]
- Tétreault, J. Control of Pollutants in Museums and Archives–Technical Bulletin 37; Government of Canada, Canadian Conservation Institute: Ottawa, ON, Canada, 2021.
- Lazaridis, M.; Katsivela, E.; Kopanakis, I.; Raisi, L.; Mihalopoulos, N.; Panagiaris, G. Characterization of airborne particulate matter and microbes inside cultural heritage collections. J. Cult. Herit. 2018, 30, 136–146. [Google Scholar] [CrossRef]
- Afshari, A.; Ekberg, L.; Forejt, L.; Mo, J.; Rahimi, S.; Siegel, J.; Chen, W.; Wargocki, P.; Zurami, S.; Zhang, J. Electrostatic Precipitators as an Indoor Air Cleaner—A Literature Review. Sustainability 2020, 12, 8774. [Google Scholar] [CrossRef]
- Grzywacz, C.M. Monitoring for Gaseous Pollutants in Museum Environments; Getty Publications: Los Angeles, CA, USA, 2006. [Google Scholar]
- Fermo, P.; Comite, V. Indoor Air Quality in Heritage and Museum Buildings. In Handbook of Cultural Heritage Analysis; D’Amico, S., Venuti, V., Eds.; Springer International Publishing: Cham, Swizterland, 2022; pp. 1003–1031. [Google Scholar]
- Papadakis, N.; Katsaprakakis, D.A. A Review of Energy Efficiency Interventions in Public Buildings. Energies 2023, 16, 6329. [Google Scholar] [CrossRef]
- Jamiu, A.; Ayodele, A. Carbon monoxide formation from total volatile organic compounds from the use of household spray products. J. Air Pollut. Health 2023, 8, 361–380. [Google Scholar] [CrossRef]
- Ashrae. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air Conditioning Engineers; Ashrae: Atlanta, GA, USA, 2020. [Google Scholar]
- 16893:2018, C.B.E.; Conservation of Cultural Heritage—Specifications for Location, Construction and Modification of Buildings or Rooms Intended for the Storage or Use of Heritage Collections. BSI Standards Limited: London, UK, 2018.
- Gallego-Maya, I.; Rubio-Bellido, C. Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville. Energies 2024, 17, 5480. [Google Scholar] [CrossRef]
- Frasca, F.; Verticchio, E.; Bosco, E.; Kuka, E.; Lee, D.S.-H.; Andersen, C.K.; Bertolin, C.; Siani, A.M. Assessing microclimate thresholds for heritage preventive conservation to achieve sustainable and energy efficiency goals in a changing climate. Sci. Rep. 2024, 14, 18707. [Google Scholar] [CrossRef]
- Schito, E.; Conti, P.; Testi, D. Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks. Appl. Energy 2018, 224, 147–159. [Google Scholar] [CrossRef]
- Mostafa Refat Ismail, M.; Aly Nessim, A.; Fathy, F. Factors affecting museum buildings and heritage spaces in terms of energy optimization and comfort. Ain Shams Eng. J. 2024, 15, 103069. [Google Scholar] [CrossRef]
- Farreny, R.; Oliver-Solà, J.; Escuder-Bonilla, S.; Roca-Martí, M.; Sevigné, E.; Gabarrell, X.; Rieradevall, J. The metabolism of cultural services. Energy and water flows in museums. Energy Build. 2012, 47, 98–106. [Google Scholar] [CrossRef]
- Oliver-Solà, J.; Núñez, M.; Gabarrell, X.; Boada, M.; Rieradevall, J. Service sector metabolism: Accounting for energy impacts of the Montjuïc urban park in Barcelona. J. Ind. Ecol. 2007, 11, 83–98. [Google Scholar] [CrossRef]
GF1 | Out | ||||
---|---|---|---|---|---|
PM (μg m−2) | Mean | Std.Dev. | Mean | Std.Dev. | I/O |
PM1 | 13.33 | 8.01 | 5.60 | 2.78 | 2.38 |
PM2.5 | 17.61 | 11.35 | 9.85 | 4.79 | 1.79 |
PM4 | 26.99 | 25.17 | 24.84 | 11.44 | 1.09 |
PM7 | 33.47 | 34.54 | 45.18 | 19.37 | 0.74 |
PM10 | 35.19 | 37.31 | 53.76 | 22.77 | 0.65 |
TSP | 36.70 | 39.65 | 63.07 | 26.00 | 0.58 |
Gases | Mean | Std.Dev. | Mean | Std.Dev. | I/O |
TVOC (ppb) | 321.65 | 124.87 | 190.66 | 31.49 | 1.69 |
CO (ppb) | 189.38 | 185.60 | 315.33 | 204.16 | 0.60 |
CO2 (ppm) | 468.92 | 62.91 | 471.78 | 24.57 | 0.99 |
O3 (ppb) | 6.46 | 12.78 | 13.77 | 18.20 | 0.47 |
NO (ppb) | 124.91 | 24.63 | 184.80 | 15.45 | 0.68 |
NO2 (ppb) | 46.64 | 32.12 | 85.05 | 21.21 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loupa, G.; Dabanlis, G.; Kostenidou, E.; Rapsomanikis, S. Air Quality and Energy Use in a Museum. Air 2025, 3, 5. https://doi.org/10.3390/air3010005
Loupa G, Dabanlis G, Kostenidou E, Rapsomanikis S. Air Quality and Energy Use in a Museum. Air. 2025; 3(1):5. https://doi.org/10.3390/air3010005
Chicago/Turabian StyleLoupa, Glykeria, Georgios Dabanlis, Evangelia Kostenidou, and Spyridon Rapsomanikis. 2025. "Air Quality and Energy Use in a Museum" Air 3, no. 1: 5. https://doi.org/10.3390/air3010005
APA StyleLoupa, G., Dabanlis, G., Kostenidou, E., & Rapsomanikis, S. (2025). Air Quality and Energy Use in a Museum. Air, 3(1), 5. https://doi.org/10.3390/air3010005