Tracking Particulate Matter Accumulation on Green Roofs: A Study at Warsaw University Library
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Plant Material
2.2. Methodology
2.2.1. Filter Preparation Protocol
2.2.2. Extraction of Surface Particulate Matter (SPM)
2.2.3. Determination of Particulate Matter Embedded in Epicuticular Waxes (WPM)
2.2.4. Leaf Surface Area Measurement
2.2.5. Determination of Trace Elements Content in Leaves
2.2.6. Statistical Analysis
3. Results
3.1. Total PM (PM0.2–100) Accumulation
3.2. PM Accumulation of Three Particle Sizes Fractions
3.3. Comparison of SPM and WPM Accumulation
3.4. Amount of Waxes
3.5. Concentration of Trace Elements on Leaves
3.6. Correlation Coefficients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jim, C.Y.; Hui, L.C. Offering green roofs in a compact city: Benefits and landscape preferences of socio-demographic cohorts. Appl. Geogr. 2022, 145, 102733. [Google Scholar] [CrossRef]
- Cook, L.M.; Larsen, T.A. Towards a performance-based approach for multifunctional green roofs: An interdisciplinary review. Build. Environ. 2021, 188, 107489. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, C.; Xue, D. A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework. Sustainability 2024, 16, 1870. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Raji, B.; Tenpierik, M.J.; Dobbelsteen, A. The impact of greening systems on building energy performance: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef]
- Hekrle, M.; Liberalesso, T.; Machac, J.; Silva, C.M. The economic value of green roofs: A case study using different cost-benefit analysis approaches. J. Clean. Prod. 2023, 413, 137531. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, N. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Jim, C.Y.; Tsang, S.W. Modeling the heat diffusion process in the abiotic layers of green roofs. Energy Build. 2011, 43, 1342–1350. [Google Scholar] [CrossRef]
- Sun, B.; Fang, C.; Liao, X.; Guo, X.; Liu, Z. The relationship between urbanization and air pollution affected by intercity factor mobility: A case of the Yangtze River Delta region. Environ. Impact Assess. Rev. 2023, 100, 107092. [Google Scholar] [CrossRef]
- Popek, R.; Fornal-Pieniak, B.; Dąbrowski, P.; Chyliński, F. The role of spontaneous flora in the mitigation of particulate matter from traffic roads in an urbanised area. Sustainability 2023, 15, 7568. [Google Scholar] [CrossRef]
- Kunecki, P.; Franus, W.; Wdowin, M. Statistical study and physicochemical characterization of particulate matter in the context of Kraków, Poland. Atmos. Pollut. Res. 2020, 11, 520–530. [Google Scholar] [CrossRef]
- Roy, A.; Mandal, M.; Przybysz, A.; Haynes, A.; Robinson, S.A.; Sarkar, A.; Popek, R. Phytoremediating the air down under: Evaluating airborne particulate matter accumulation by 12 plant species in Australia. Ecol. Res. 2024, 1–13. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Malec, A.; Borowski, G. The hazards of dusting and monitoring of atmospheric air. Inżyn. Ekol. 2016, 50, 161–170. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Geng, C.; Yang, W.; Wang, X.; Yin, B.; Gu, C.; Gao, S.; Chen, L.; Bai, Z. Impact of anthropogenic and natural constituents on particulate matter in oasis cities on the southern margin of the Taklimakan Desert based on MERRA-2 and multi-site ground observation. Atmos. Res. 2024, 311, 107685. [Google Scholar] [CrossRef]
- Araujo, J.A.; Nel, A.E. Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Part. Fibre Toxicol. 2009, 6, 24. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediat. 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Mandal, M.; Popek, R.; Przybysz, A.; Roy, A.; Das, S.; Sarkar, A. Breathing fresh air in the city: Implementing avenue trees as a sustainable solution to reduce particulate pollution in urban agglomerations. Plants 2023, 12, 1545. [Google Scholar] [CrossRef] [PubMed]
- Treesubsuntorn, C.; Setiawan, G.D.; Permana, B.H.; Citra, Y.; Krobthong, S.; Yingchutrakul, Y.; Siswanto, D.; Thiravetyan, P. Particulate matter and volatile organic compound phytoremediation by perennial plants: Affecting factors and plant stress response. Sci. Total Environ. 2021, 794, 148779. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Koutrakis, P.; Michanikou, A.; Panayiotis, K.; Panayiotou, A.G.; Kinni, P.; Tymvios, F.; Chrysanthou, A.; Neophytou, M.; Mouzourides, P.; et al. Indoor residential and outdoor sources of PM2.5 and PM10 in Nicosia, Cyprus. Air Qual. Atmos. Health 2023, 17, 485–499. [Google Scholar] [CrossRef]
- Adams, K.; Greenbaum, D.S.; Shaikh, R.; van Erp, A.M.; Russell, A.G. Particulate matter components, sources, and health: Systematic approaches to testing effects. J. Air Waste Manag. Assoc. 2015, 65, 544–558. [Google Scholar] [CrossRef]
- Yang, Y.; Pun, V.V.; Sun, S.; Lin, H.; Mason, T.G.; Qiu, H. Particulate matter components and health: A literature review on exposure assessment. J. Public Health Emerg. 2018, 2, 14. [Google Scholar] [CrossRef]
- Kim, K.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Wen, Y.; Xiao, J.; Yang, J.; Cai, S.; Liang, M.; Zhou, P. Quantitatively Disentangling the Geographical Impacts of Topography on PM2.5 Pollution in China. Remote Sens. 2022, 14, 6309. [Google Scholar] [CrossRef]
- Wróblewska, K.; Jeong, B.R. Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. Environ. Sci. Eur. 2021, 33, 110. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.; Waris, A.; Ilyas, M.; Zamel, D. Phytoremediation of pollutants from wastewater: A concise review. Open Life Sci. 2022, 17, 488–496. [Google Scholar] [CrossRef]
- Meagher, R.B. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 2000, 3, 153–162. [Google Scholar] [CrossRef]
- Wang, J.; Delavar, M.A. Techno-economic analysis of phytoremediation: A strategic rethinking. Sci. Total Environ. 2023, 902, 165949. [Google Scholar] [CrossRef] [PubMed]
- Moura, B.B.; Zammarchi, F.; Manzini, J.; Yasutomo, H.; Brilli, L.; Vagnoli, C.; Gioli, B.; Zaldei, A.; Giordano, T.; Martinelli, F.; et al. Assessment of seasonal variations in particulate matter accumulation and elemental composition in urban tree species. Environ. Res. 2024, 252, 118782. [Google Scholar] [CrossRef] [PubMed]
- Popek, R.; Przybysz, A. Precipitation plays a key role in the processes of accumulation, retention and re-suspension of particulate matter (PM) on Betula pendula, Tilia cordata and Quercus robur foliage. Desalin. Water Treat. 2022, 275, 14–23. [Google Scholar] [CrossRef]
- Barima, Y.S.; Angaman, D.M.; N’gouran, K.P.; Koffi, N.A.; Kardel, F.; De Cannière, C.; Samson, R. Assessing atmospheric particulate matter distribution based on Saturation Isothermal Remanent Magnetization of herbaceous and tree leaves in a tropical urban environment. Sci. Total Environ. 2014, 470–471, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Tomson, M.; Kumar, P.; Abhijith, K.V.; Watts, J.F. Exploring the interplay between particulate matter capture, wash-off, and leaf traits in green wall species. Sci. Total Environ. 2024, 921, 170950. [Google Scholar] [CrossRef]
- Wang, H.; Shi, H.; Wang, Y. Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions. Acta Ecol. Sin. 2015, 35, 1696–1705. [Google Scholar] [CrossRef]
- Cai, M.; Xin, Z.; Yu, X. Spatio-temporal variations in PM leaf deposition: A meta-analysis. Environ. Pollut. 2017, 231, 207–218. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Moniuszko, H.; Popek, R.; Nawrocki, A.; Stankiewicz-Kosyl, M.; Grylewicz, S.; Podoba, S.; Przybysz, A. Urban meadow—A recipe for long-lasting anti-smog land cover. Int. J. Phytoremediat. 2024, 26, 1932–1941. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.K.; Kwak, M.J.; Lim, Y.J.; Kim, H.; Jeong, S.G.; Son, J.-a.; Oh, C.-Y.; Je, S.M.; Chang, H.; et al. Relationship between Leaf Traits and PM-Capturing Capacity of Major Urban-Greening Species. Horticulturae 2022, 8, 1046. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Popek, R.; Haynes, A.; Przybysz, A.; Robinson, S.A. How Much Does Weather Matter? Effects of Rain and Wind on PM Accumulation by Four Species of Australian Native Trees. Atmosphere 2019, 10, 633. [Google Scholar] [CrossRef]
- Gourdji, S. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec. Environ. Pollut. 2018, 241, 378–387. [Google Scholar] [CrossRef]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Lu, X.; Lin, C.; Li, W.; Chen, Y.; Huang, Y.; Fung, J.C.H.; Lau, A.K.H. Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden. Sci. Total Environ. 2019, 652, 683–695. [Google Scholar] [CrossRef]
- Santunione, G.; Barbieri, A.; Sgarbi, E. Analysis of particulate matter (PM) trapped by four different plant species in an urban forest: Quantification and characterization. Trees For. People 2024, 16, 100585. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018, 30, 98–108. [Google Scholar] [CrossRef]
- Burkhardt, J. Hygroscopic particles on leaves: Nutrients or desiccants? Ecol. Monogr. 2010, 80, 369–399. [Google Scholar] [CrossRef]
- Chen, D.; Yan, J.; Sun, N.; Sun, W.; Zhang, W.; Long, Y.; Yin, S. Selective capture of PM2.5 by urban trees: The role of leaf wax composition and physiological traits in air quality enhancement. J. Hazard. Mater. 2024, 478, 135428. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall, and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Haynes, A.; Popek, R.; Boles, M.; Paton-Walsh, C.; Robinson, S.A. Roadside Moss Turfs in South East Australia Capture More Particulate Matter Along an Urban Gradient than a Common Native Tree Species. Atmosphere 2019, 10, 224. [Google Scholar] [CrossRef]
- Moorby, J.; Squire, H.M. The loss of radioactive isotopes from the leaves of plants in dry conditions. Radiat. Bot. 1963, 3, 163–167. [Google Scholar] [CrossRef]
- Dołęgowska, S.; Gałuszka, A.; Migaszewski, Z.M.; Krzciuk, K. Bioavailability of selected trace and rare earth elements to Juncus effusus L.: The potential role of de-icing chlorides in the roadside environment. Plant Soil. 2022, 472, 641–658. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley and Sons: New York, NY, USA, 1982. [Google Scholar]
- Burkhardt, J.; Drechsel, P. The synergism between SO2 oxidation and manganese leaching on spruce needles--a chamber experiment. Environ. Pollut. 1997, 95, 1–11. [Google Scholar] [CrossRef]
Species | Surface Roughness | Trichome Density | Foliage Density | Additional Traits |
---|---|---|---|---|
Betula pendula | High | Sparse | Medium | High wax content |
Cornus sericea | Low | Sparse | Dense | Flexible leaves |
Cotoneaster dammeri | Low | Absent | Dense | Small leaf area |
Hemerocallis xhybrida | Low | Sparse | Medium | Long, narrow leaves |
Rosa rugosa | Medium | Dense | Medium | Thorns leaves |
Salix alba | Low | Sparse | Medium | Long, linear leaves |
Sedum spectabile | Very low | Absent | Dense | Succulent leaves |
Spiraea japonica | Medium | Sparse | Dense | High foliage density |
Species | Term | Trace Elements (mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mn | ±SE | Fe | ±SE | Cu | ±SE | Zn | ±SE | ||
Betula pendula | Spring | 58.0 c | 2.0 | 375.0 a | 22.9 | 20.0 a | 2.1 | 473.1 c | 18.7 |
Summer | 99.3 a | 5.4 | 342.7 b | 9.7 | 18.3 a | 1.5 | 721.7 a | 52.7 | |
Autumn | 87.0 b | 6.8 | 324.3 c | 14.6 | 14.3 b | 0.9 | 581.2 b | 57.3 | |
Cornus sericea | Spring | 65.2 a | 2.4 | 184.7 c | 8.8 | 15.3 b | 0.7 | 34.7 c | 0.7 |
Summer | 43.3 b | 7.4 | 167.0 b | 18.9 | 16.7 b | 3.2 | 56.3 a | 10.1 | |
Autumn | 41.7 b | 3.8 | 251.0 a | 18.3 | 19.7 a | 2.3 | 44.7 b | 1.8 | |
Cotoneaster dammeri | Spring | 45.3 a | 6.2 | 255.0 a | 2.1 | 17.7 a | 0.3 | 62.7 a | 0.7 |
Summer | 40.2 a | 7.5 | 215.7 b | 26.4 | 12.3 b | 3.3 | 48.5 b | 7.8 | |
Autumn | 28.1 b | 4.4 | 259.7 a | 25.3 | 16.3 a | 1.3 | 41.3 b | 3.8 | |
Hemerocallis xhybrida | Spring | 60.4 a | 3.0 | 466.7 b | 40.8 | 24.0 b | 3.5 | 54.0 b | 4.0 |
Summer | 63.0 a | 9.1 | 433.7 b | 23.6 | 40.5 a | 2.0 | 63.7 a | 4.9 | |
Autumn | 63.0 a | 8.7 | 586.0 a | 45.7 | 20.0 b | 5.6 | 51.7 b | 6.4 | |
Rosa rugosa | Spring | 57.7 a | 1.0 | 203.7 b | 10.5 | 9.3 a | 0.3 | 28.5 b | 0.3 |
Summer | 38.7 c | 2.0 | 135.0 c | 9.1 | 6.2 b | 0.7 | 40.5 a | 5.4 | |
Autumn | 51.3 b | 4.3 | 264.3 a | 26.3 | 7.5 b | 0.3 | 25.7 b | 1.9 | |
Salix alba | Spring | 58.7 a | 5.4 | 746.3 a | 57.6 | 24.7 a | 0.9 | 56.3 a | 2.2 |
Summer | 54.7 ab | 7.8 | 596.7 b | 72.2 | 23.1 a | 3.2 | 54.0 a | 5.0 | |
Autumn | 48.3 b | 4.4 | 432.0 c | 90.1 | 17.2 b | 4.6 | 43.6 b | 4.0 | |
Sedum spectabile | Spring | 52.0 a | 5.0 | 213.0 a | 23.5 | 15.9 a | 2.3 | 304.2 a | 61.7 |
Summer | 40.4 b | 2.7 | 209.7 a | 30.7 | 12.7 b | 0.6 | 225.7 b | 13.8 | |
Autumn | 29.3 c | 4.6 | 196.3 a | 54.1 | 10.1 c | 2.3 | 122.3 c | 21.2 | |
Spirea japonica | Spring | 84.0 a | 7.4 | 237.0 a | 21.0 | 22.3 a | 1.8 | 66.7 a | 4.1 |
Summer | 84.0 a | 1.2 | 245.7 a | 6.5 | 21.0 a | 1.2 | 57.0 b | 0.9 | |
Autumn | 78.7 a | 3.2 | 239.3 a | 19.6 | 19.7 a | 0.6 | 43.5 c | 0.7 |
Parameters | Waxes | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
PM0.2–100 | −0.12 | −0.09 | −0.09 | −0.02 | 0.04 |
PM10–100 | −0.16 | −0.11 | −0.13 | 0.00 | 0.02 |
PM2.5–10 | −0.16 | −0.11 | −0.07 | −0.01 | −0.04 |
PM0.2–2.5 | 0.23 | 0.20 | −0.01 | −0.10 | 0.42 |
sPM | −0.11 | −0.12 | −0.07 | −0.03 | −0.03 |
wPM | −0.13 | −0.05 | −0.11 | 0.00 | 0.13 |
Waxes | 1.00 | 0.34 | −0.02 | −0.03 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gładysz, K.; Wrochna, M.; Popek, R. Tracking Particulate Matter Accumulation on Green Roofs: A Study at Warsaw University Library. Air 2025, 3, 4. https://doi.org/10.3390/air3010004
Gładysz K, Wrochna M, Popek R. Tracking Particulate Matter Accumulation on Green Roofs: A Study at Warsaw University Library. Air. 2025; 3(1):4. https://doi.org/10.3390/air3010004
Chicago/Turabian StyleGładysz, Katarzyna, Mariola Wrochna, and Robert Popek. 2025. "Tracking Particulate Matter Accumulation on Green Roofs: A Study at Warsaw University Library" Air 3, no. 1: 4. https://doi.org/10.3390/air3010004
APA StyleGładysz, K., Wrochna, M., & Popek, R. (2025). Tracking Particulate Matter Accumulation on Green Roofs: A Study at Warsaw University Library. Air, 3(1), 4. https://doi.org/10.3390/air3010004