Correlative Light and Electron Microscopy (CLEM): A Multifaceted Tool for the Study of Geological Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Light Microscopy (LM)
2.3. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX)
2.4. Description of the Innovative Sample Holder (GTSx6)
2.5. ZEISS ZEN Connect Software
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carl Zeiss—Research Microscopy Solutions. Correlative Microscopy in Materials Science. 2017. Available online: www.essentialknowledgebriefings.com (accessed on 25 August 2023).
- Timmermans, F.J.; Otto, C. Contributed Review: Review of integrated correlative light and electron microscopy. Rev. Sci. Instrum. 2015, 86, 011501. [Google Scholar] [CrossRef]
- Schorb, M.; Briggs, J.A.G. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity. Ultramicroscopy 2014, 143, 24–32. [Google Scholar] [CrossRef]
- Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224. [Google Scholar] [CrossRef]
- van Rijnsoever, C.; Oorschot, V.; Klumperman, J. Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat. Methods 2008, 5, 973–980. [Google Scholar] [CrossRef]
- Polishchuk, R.S.; Polishchuk, E.V.; Marra, P.; Alberti, S.; Buccione, R.; Luini, A.; Mironov, A.A. Correlative Light-Electron Microscopy Reveals the Tubular-Saccular Ultrastructure of Carriers Operating between Golgi Apparatus and Plasma Membrane. J. Cell Biol. 2000, 148, 45–58. [Google Scholar] [CrossRef]
- Spiegelhalter, C.; Tosch, V.; Hentsch, D.; Koch, M.; Kessler, P.; Schwab, Y.; Laporte, J. From Dynamic Live Cell Imaging to 3D Ultrastructure: Novel Integrated Methods for High Pressure Freezing and Correlative Light-Electron Microscopy. PLoS ONE 2010, 5. [Google Scholar] [CrossRef]
- Meißlitzer-Ruppitsch, C.; Röhrl, C.; Neumüller, J.; Pavelka, M.; Ellinger, A. Photooxidation technology for correlated light and electron microscopy. J. Microsc. 2009, 235, 322–335. [Google Scholar] [CrossRef]
- Shaner, N.C.; Patterson, G.H.; Davidson, M.W. Advances in fluorescent protein technology. J. Cell Sci. 2007, 120, 4247–4260. [Google Scholar] [CrossRef]
- Müller-Reichert, T.; Srayko, M.; Hyman, A.; O’Toole, E.T.; McDonald, K. Correlative Light and Electron Microscopy of Early Caenorhabditis elegans Embryos in Mitosis. Methods Cell Biol. 2007, 79, 101–119. [Google Scholar] [CrossRef]
- Kolotuev, I.; Bumbarger, D.J.; Labouesse, M.; Schwab, Y. Targeted Ultramicrotomy: A Valuable Tool for Correlated Light and Electron Microscopy of Small Model Organisms. Methods Cell Biol. 2012, 111, 203–222. [Google Scholar] [CrossRef]
- Brown, E.; Verkade, P. The use of markers for correlative light electron microscopy. Protoplasma 2010, 244, 91–97. [Google Scholar] [CrossRef]
- Han, S.; Raabe, M.; Hodgson, L.; Mantell, J.; Verkade, P.; Lasser, T.; Landfester, K.; Weil, T.; Lieberwirth, I. High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. Nano Lett. 2019, 19, 2178–2185. [Google Scholar] [CrossRef]
- Begemann, I.; Galic, M. Correlative light electron microscopy: Connecting synaptic structure and function. Front. Synaptic Neurosci. 2016, 8. [Google Scholar] [CrossRef]
- Hayashi, S.; Ohno, N.; Knott, G.; Molnár, Z. Correlative light and volume electron microscopy to study brain development. Microscopy 2023, 72, 279–286. [Google Scholar] [CrossRef]
- Booth, D.G.; Beckett, A.J.; Prior, I.A.; Meijer, D. SuperClem: An accessible correlative light and electron microscopy approach for investigation of neurons and glia in vitro. Biol. Open 2019, 8, bio042085. [Google Scholar] [CrossRef]
- Russell, M.R.G.; Lerner, T.R.; Burden, J.J.; Nkwe, D.O.; Pelchen-Matthews, A.; Domart, M.-C.; Durgan, J.; Weston, A.; Jones, M.L.; Peddie, C.J.; et al. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy. J. Cell Sci. 2017, 130, 278–291. [Google Scholar] [CrossRef]
- Murphy, G.E.; Narayan, K.; Lowekamp, B.C.; Hartnell, L.M.; Heymann, J.A.; Fu, J.; Subramaniam, S. Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J. Struct. Biol. 2011, 176, 268–278. [Google Scholar] [CrossRef]
- Dini, D.; Cognigni, F.; Passeri, D.; Scaramuzzo, F.A.; Pasquali, M.; Rossi, M. Review—Multiscale Characterization of Li-Ion Batteries through the Combined Use of Atomic Force Microscopy and X-ray Microscopy and Considerations for a Correlative Analysis of the Reviewed Data. J. Electrochem. Soc. 2021, 168. [Google Scholar] [CrossRef]
- Cognigni, F.; Dinarelli, S.; Girasole, M.; Longo, G.; Fabi, G.; Rossi, M. 3D X-ray Microscopy (XRM) investigation of exogenous materials inside mussels’ organs. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; p. 012012. [Google Scholar] [CrossRef]
- Cognigni, F.; Pasquali, M.; Prosini, P.P.; Paoletti, C.; Aurora, A.; Scaramuzzo, F.A.; Rossi, M. X-ray Microscopy: A Non-Destructive Multi-Scale Imaging to Study the Inner Workings of Batteries. ChemElectroChem 2023, 10. [Google Scholar] [CrossRef]
- Carmignato, S.; Dewulf, W.; Leach, R. Industrial X-ray Computed Tomography; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Bernabale, M.; Cognigni, F.; Mura, F.; Nigro, L.; Montanari, D.; Rossi, M.; De Vito, C. 3D imaging of micro-segregation and corrosion behavior of alloying elements in archaeological artefacts from Motya (Sicily, Italy). Corros. Sci. 2023, 211, 110900. [Google Scholar] [CrossRef]
- Whittig, L.D.; Allardice, W.R. X-ray Diffraction Techniques. In Methods of Soil Analysis; Klute, A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1986. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Udriştioiu, E.G.; Aboul-Enein, H.Y. X-ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299. [Google Scholar] [CrossRef]
- Mulvaney, S.P.; Keating, C.D. Raman Spectroscopy. Anal. Chem. 2000, 72, 145–158. [Google Scholar] [CrossRef]
- Hanlon, E.B.; Manoharan, R.; Koo, T.-W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 2000, 45. [Google Scholar] [CrossRef]
- Cognigni, F.; Sgambetterra, M.; Zucca, G.; Gentile, D.; Ricci, S.; Testa, G.; Rizzi, G.; Rossi, M. Multimodal and multiscale investigation for the optimization of AlSi10Mg components made by powder bed fusion-laser beam. Discov. Mater. 2023, 3, 21. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Kumar, M.; Adams, B.L.; Field, D.P. Electron Backscatter Diffraction in Materials Science; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Mura, F.; Cognigni, F.; Ferroni, M.; Morandi, V.; Rossi, M. Advances in Focused Ion Beam Tomography for Three-Dimensional Characterization in Materials Science. Materials 2023, 16, 5808. [Google Scholar] [CrossRef]
- Bernabale, M.; Cognigni, F.; Mancini, C.; Proietti, A.; Mura, F.; Montanari, D.; Nigro, L.; Rossi, M.; De Vito, C. 3D fractures analysis and conservation assessment of wrought iron javelin through advanced non-invasive techniques. Sci. Rep. 2023, 13, 10142. [Google Scholar] [CrossRef]
- Bernabale, M.; Cognigni, F.; Nigro, L.; Rossi, M.; de Caro, T.; De Vito, C. A comprehensive strategy for exploring corrosion in iron-based artefacts through advanced Multiscale X-ray Microscopy. Sci. Rep. 2022, 12, 6125. [Google Scholar] [CrossRef]
- Carl Zeiss—Research Microscopy Solutions. ZEISS Axio Zoom V16 for Materials. Available online: https://www.zeiss.com/microscopy/en/products/light-microscopes/stereo-and-zoom-microscopes/axio-zoom-v16-for-materials.html (accessed on 25 August 2023).
- Carl Zeiss—Research Microscopy Solutions. ZEISS EVO Scanning Electron Microscope. Available online: https://www.zeiss.com/microscopy/en/products/sem-fib-sem/sem/evo.html (accessed on 25 August 2023).
- Oxford Instruments. Introducing the Ultim® Max Range: A New Suite of High Performance SEM-EDS Detectors. Available online: https://www.oxinst.com/news/introducing-the-ultim-max-range-a-new-suite-of-high-performance-sem-eds-detectors/ (accessed on 5 September 2023).
- Carl Zeiss—Research Microscopy Solutions. Visualize Images and Data in Context—ZEISS ZEN Connect. Available online: https://www.zeiss.com/microscopy/en/resources/insights-hub/manufacturing-assembly/visualize-images-and-data-in-context---zeiss-zen-connect.html (accessed on 25 August 2023).
- Nesse, W.D. Introduction to Mineralogy, 3rd ed.; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Schumacher, R.; Schmincke, H.U. Internal structure and occurrence of accretionary lapilli—A case study at Laacher See Volcano. Bull. Volcanol. 1991, 53, 612–634. [Google Scholar] [CrossRef]
- Taddeucci, J.; Pompilio, M.; Scarlato, P. Monitoring the explosive activity of the July–August 2001 eruption of Mt. Etna (Italy) by ash characterization. Geophys. Res. Lett. 2002, 29, 71-1–71-4. [Google Scholar] [CrossRef]
- Miwa, T.; Shimano, T.; Nishimura, T. Characterization of the luminance and shape of ash particles at Sakurajima volcano, Japan, using CCD camera images. Bull. Volcanol. 2015, 77, 5. [Google Scholar] [CrossRef]
- Lücke, O.H.; Calderón, A. Characterization Of The Ashes From The 2014-2015 Turrialba Volcano Eruptions By Means Of Scanning Electron Microscopy And Energy Dispersive X-ray Spectroscopy. Rev. Geog. Am. Cent. 2016, 54, 109–123. [Google Scholar] [CrossRef]
- Yamanoi, Y.; Takeuchi, S.; Okumura, S.; Nakashima, S.; Yokoyama, T. Color measurements of volcanic ash deposits from three different styles of summit activity at Sakurajima volcano, Japan: Conduit processes recorded in color of volcanic ash. J. Volcanol. Geotherm. 2008, 178, 81–93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cognigni, F.; Miraglia, L.; Contessi, S.; Biancardi, F.; Rossi, M. Correlative Light and Electron Microscopy (CLEM): A Multifaceted Tool for the Study of Geological Specimens. J. Exp. Theor. Anal. 2023, 1, 74-85. https://doi.org/10.3390/jeta1020006
Cognigni F, Miraglia L, Contessi S, Biancardi F, Rossi M. Correlative Light and Electron Microscopy (CLEM): A Multifaceted Tool for the Study of Geological Specimens. Journal of Experimental and Theoretical Analyses. 2023; 1(2):74-85. https://doi.org/10.3390/jeta1020006
Chicago/Turabian StyleCognigni, Flavio, Lucia Miraglia, Silvia Contessi, Francesco Biancardi, and Marco Rossi. 2023. "Correlative Light and Electron Microscopy (CLEM): A Multifaceted Tool for the Study of Geological Specimens" Journal of Experimental and Theoretical Analyses 1, no. 2: 74-85. https://doi.org/10.3390/jeta1020006
APA StyleCognigni, F., Miraglia, L., Contessi, S., Biancardi, F., & Rossi, M. (2023). Correlative Light and Electron Microscopy (CLEM): A Multifaceted Tool for the Study of Geological Specimens. Journal of Experimental and Theoretical Analyses, 1(2), 74-85. https://doi.org/10.3390/jeta1020006