The Application of Fluorescence Anisotropy for Viscosity Measurements of Small Volume Biological Analytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Viscosity Standards
2.2. Time-Resolved Fluorescence Anisotropy Measurements
3. Results and Discussion
3.1. Viscosity Measurements in Different Analyte Volumes
3.2. Viscosity Measurements in Different Analyte Volumes with Alternate Probe
3.3. Viscosity Measurements in Diluted Samples
3.4. Rotational Correlation Times Analyses
3.5. Relevance of Technique to Biological Fluid Viscosity Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aitken-Saavedra, J.; Tarquinio, S.B.; da Rosa, W.O.; Gomes, A.P.; da Silva, A.F.; Fernandez, M.S.; Moreira, A.G.; Maturana-Ramirez, A.; Vasconcellos, A.C. Salivary characteristics may be associated with burning mouth syndrome? J. Clin. Exp. Dent. 2021, 13, e542–e548. [Google Scholar] [CrossRef] [PubMed]
- Sloop, G.D.; De Mast, Q.; Pop, G.; Weidman, J.J.; Cyr, J.A.S. The Role of Blood Viscosity in Infectious Diseases. Cureus 2020, 12, e7090. [Google Scholar] [CrossRef] [PubMed]
- Thai, L.P.A.; Mousseau, F.; Oikonomou, E.K.; Berret, J.F. On the rheology of pulmonary surfactant: Effects of concentration and consequences for the surfactant replacement therapy. Colloids Surf. B Biointerfaces 2019, 178, 337–345. [Google Scholar] [CrossRef]
- Freemont, A.J.; Denton, J. CHAPTER 30—Synovial fluid. In Diagnostic Cytopathology, 3rd ed.; Gray, W., Kocjan, G., Eds.; Churchill Livingstone: Edinburgh, UK, 2010; pp. 809–817. [Google Scholar]
- Omar, S.H.; Preddy, J. Advantages and Pitfalls in Fluid Biomarkers for Diagnosis of Alzheimer’s Disease. J. Pers. Med. 2020, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Irace, C.; Carallo, C.; Scavelli, F.; Esposito, T.; De Franceschi, M.S.; Tripolino, C.; Gnasso, A. Influence of blood lipids on plasma and blood viscosity. Clin. Hemorheol. Microcirc. 2014, 57, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.; Rubinstein, S.; Cornell, R.F. Hyperviscosity Syndrome in Paraprotein Secreting Conditions Including Waldenstrom Macroglobulinemia. Front. Oncol. 2020, 10, 815. [Google Scholar] [CrossRef] [PubMed]
- Connes, P.; Alexy, T.; Detterich, J.; Romana, M.; Hardy-Dessources, M.D.; Ballas, S.K. The role of blood rheology in sickle cell disease. Blood Rev. 2016, 30, 111–118. [Google Scholar] [CrossRef]
- Stuart, B.J.; Viera, A.J. Polycythemia vera. Am. Fam. Physician 2004, 69, 2139–2144. [Google Scholar]
- Steinberger, B.A.; Ford, S.M.; Coleman, T.A. Intravenous immunoglobulin therapy results in post-infusional hyperproteinemia, increased serum viscosity, and pseudohyponatremia. Am. J. Hematol. 2003, 73, 97–100. [Google Scholar] [CrossRef]
- Taco-Vasquez, E.D.; Barrera, F.; Serrano-Duenas, M.; Jimenez, E.; Rocuts, A.; Riveros Perez, E. Association between Blood Viscosity and Cardiovascular Risk Factors in Patients with Arterial Hypertension in a High Altitude Setting. Cureus 2019, 11, e3925. [Google Scholar] [CrossRef]
- Stojan, G.; Baer, A.N.; Danoff, S.K. Pulmonary manifestations of Sjogren’s syndrome. Curr. Allergy Asthma Rep. 2013, 13, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, H.; Zhu, J.; Liao, Z.; Wang, S.; Liu, W. Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods. Int. J. Environ. Res. Public Health 2022, 19, 4122. [Google Scholar] [CrossRef] [PubMed]
- Pawlaczyk-Kamienska, T.; Borysewicz-Lewicka, M.; Batura-Gabryel, H. Salivary Biomarkers and Oral Microbial Load in Relation to the Dental Status of Adults with Cystic Fibrosis. Microorganisms 2019, 7, 692. [Google Scholar] [CrossRef]
- Devendra, G.; Spragg, R.G. Lung surfactant in subacute pulmonary disease. Respir. Res. 2002, 3, 11. [Google Scholar] [CrossRef]
- Christmann, U.; Buechner-Maxwell, V.A.; Witonsky, S.G.; Hite, R.D. Role of lung surfactant in respiratory disease: Current knowledge in large animal medicine. J. Vet. Intern. Med. 2009, 23, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.W.; Perez-Gil, J.; Taeusch, H. Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. Biochim. Biophys. Acta 2009, 1788, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Whitsett, J.A.; Weaver, T.E. Hydrophobic surfactant proteins in lung function and disease. N. Engl. J. Med. 2002, 347, 2141–2148. [Google Scholar] [CrossRef]
- Agudelo, C.W.; Kumley, B.K.; Area-Gomez, E.; Xu, Y.; Dabo, A.J.; Geraghty, P.; Campos, M.; Foronjy, R.; Garcia-Arcos, I. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS ONE 2020, 15, e0228279. [Google Scholar] [CrossRef]
- Hentschel, R.; Bohlin, K.; van Kaam, A.; Fuchs, H.; Danhaive, O. Surfactant replacement therapy: From biological basis to current clinical practice. Pediatr. Res. 2020, 88, 176–183. [Google Scholar] [CrossRef]
- Mahendran, S.M.; Oikonomopoulou, K.; Diamandis, E.P.; Chandran, V. Synovial fluid proteomics in the pursuit of arthritis mediators: An evolving field of novel biomarker discovery. Crit. Rev. Clin. Lab. Sci. 2017, 54, 495–505. [Google Scholar] [CrossRef]
- Song, J.; Chang, H.J.; Tirodkar, M.; Chang, R.W.; Manheim, L.M.; Dunlop, D.D. Racial/ethnic differences in activities of daily living disability in older adults with arthritis: A longitudinal study. Arthritis Care Res. 2007, 57, 1058–1066. [Google Scholar] [CrossRef]
- Peck, J.; Slovek, A.; Miro, P.; Vij, N.; Traube, B.; Lee, C.; Berger, A.A.; Kassem, H.; Kaye, A.D.; Sherman, W.F.; et al. A Comprehensive Review of Viscosupplementation in Osteoarthritis of the Knee. Orthop. Rev. 2021, 13, 25549. [Google Scholar] [CrossRef]
- de Rezende, M.U.; de Campos, G.C. Viscosupplementation. Rev. Bras. Ortop. 2012, 47, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, R.A.; Valvassori, G.E. Inner Ear Fluid Volumes and the Resolving Power of Magnetic Resonance Imaging: Can it Differentiate Endolymphatic Structures? Ann. Otol. Rhinol. Laryngol. 2001, 110, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Hellberg, V.; Wallin, I.; Ehrsson, H.; Laurell, G. Cochlear pharmacokinetics of cisplatin: An in vivo study in the guinea pig. Laryngoscope 2013, 123, 3172–3177. [Google Scholar] [CrossRef]
- Salt, A.N.; Hale, S.A.; Plonkte, S.K. Perilymph sampling from the cochlear apex: A reliable method to obtain higher purity perilymph samples from scala tympani. J. Neurosci. Methods 2006, 153, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Steinmark, I.E.; Chung, P.H.; Ziolek, R.M.; Cornell, B.; Smith, P.; Levitt, J.A.; Tregidgo, C.; Molteni, C.; Yahioglu, G.; Lorenz, C.D.; et al. Time-Resolved Fluorescence Anisotropy of a Molecular Rotor Resolves Microscopic Viscosity Parameters in Complex Environments. Small 2020, 16, e1907139. [Google Scholar] [CrossRef] [PubMed]
- Visser, A.J.W.G.; Westphal, A.H.; Skakun, V.V.; Borst, J.W. GFP as potential cellular viscosimeter. Methods Appl. Fluoresc. 2016, 4, 035002. [Google Scholar] [CrossRef]
- Teijeiro-Gonzalez, Y.; Crnjar, A.; Beavil, A.J.; Beavil, R.L.; Nedbal, J.; Le Marois, A.; Molteni, C.; Suhling, K. Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer. Biophys. J. 2021, 120, 254–269. [Google Scholar] [CrossRef]
- Suhling, K.; Davis, D.M.; Phillips, D. The Influence of Solvent Viscosity on the Fluorescence Decay and Time-Resolved Anisotropy of Green Fluorescent Protein. J. Fluoresc. 2002, 12, 91–95. [Google Scholar] [CrossRef]
- Swaminathan, R.; Hoang, C.P.; Verkman, A.S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 1997, 72, 1900–1907. [Google Scholar] [CrossRef] [PubMed]
- Elowitz, M.B.; Surette, M.G.; Wolf, P.E.; Stock, J.B.; Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 1999, 181, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Mullaney, J.M.; Thompson, R.B.; Gryczynski, Z.; Black, L.W. Green fluorescent protein as a probe of rotational mobility within bacteriophage T4. J. Virol. Methods 2000, 88, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Heikal, A.A.; Hess, S.T.; Webb, W.W. Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): Acid–base specificity. Chem. Phys. 2001, 274, 37–55. [Google Scholar] [CrossRef]
- Surzhikova, D.P.; Sukovatyi, L.A.; Nemtseva, E.V.; Esimbekova, E.N.; Slyusareva, E.A. Functioning of a Fluorescein pH-Probe in Aqueous Media: Impact of Temperature and Viscosity. Micromachines 2023, 14, 1442. [Google Scholar] [CrossRef]
- Baddam, D.O.; Ragi, S.D.; Tsang, S.H.; Ngo, W.K. Ophthalmic Fluorescein Angiography. In Retinitis Pigmentosa; Tsang, S.H., Quinn, P.M.J., Eds.; Springer: New York, NY, USA, 2023; pp. 153–160. [Google Scholar] [CrossRef]
- Srikantha, N.; Teijeiro-Gonzalez, Y.; Simpson, A.; Elsaid, N.; Somavarapu, S.; Suhling, K.; Jackson, T.L. Determining vitreous viscosity using fluorescence recovery after photobleaching. PLoS ONE 2022, 17, e0261925. [Google Scholar] [CrossRef]
- Kihara, T.; Ito, J.; Miyake, J. Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PLoS ONE 2013, 8, e82382. [Google Scholar] [CrossRef]
- Hunt, J.; Keeble, A.H.; Dale, R.E.; Corbett, M.K.; Beavil, R.L.; Levitt, J.; Swann, M.J.; Suhling, K.; Ameer-Beg, S.; Sutton, B.J.; et al. A fluorescent biosensor reveals conformational changes in human immunoglobulin E Fc: Implications for mechanisms of receptor binding, inhibition, and allergen recognition. J. Biol. Chem. 2012, 287, 17459–17470. [Google Scholar] [CrossRef]
- Devauges, V.; Marquer, C.; Lécart, S.; Cossec, J.-C.; Potier, M.-C.; Fort, E.; Suhling, K.; Lévêque-Fort, S. Homodimerization of Amyloid Precursor Protein at the Plasma Membrane: A homoFRET Study by Time-Resolved Fluorescence Anisotropy Imaging. PLoS ONE 2012, 7, e44434. [Google Scholar] [CrossRef]
- Martin, M.M.; Lindqvist, L. The pH dependence of fluorescein fluorescence. J. Lumin. 1975, 10, 381–390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sydor, M.J.; Serban, M.A. The Application of Fluorescence Anisotropy for Viscosity Measurements of Small Volume Biological Analytes. J. Exp. Theor. Anal. 2023, 1, 86-96. https://doi.org/10.3390/jeta1020007
Sydor MJ, Serban MA. The Application of Fluorescence Anisotropy for Viscosity Measurements of Small Volume Biological Analytes. Journal of Experimental and Theoretical Analyses. 2023; 1(2):86-96. https://doi.org/10.3390/jeta1020007
Chicago/Turabian StyleSydor, Matthew J., and Monica A. Serban. 2023. "The Application of Fluorescence Anisotropy for Viscosity Measurements of Small Volume Biological Analytes" Journal of Experimental and Theoretical Analyses 1, no. 2: 86-96. https://doi.org/10.3390/jeta1020007
APA StyleSydor, M. J., & Serban, M. A. (2023). The Application of Fluorescence Anisotropy for Viscosity Measurements of Small Volume Biological Analytes. Journal of Experimental and Theoretical Analyses, 1(2), 86-96. https://doi.org/10.3390/jeta1020007