Integrating 3D Polarimetric Ground Penetrating Radar and Augmented Reality for Reinforced Autoclaved Aerated Concrete Inspection
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Setup
2.2. Pre-Processing
2.3. 3D Polarimetric Synthetic Aperture Radar
2.4. Jones Vector Polarisation Synthesis
3. Results
3.1. Polarisation Components
3.2. Polarisation Synthesis
3.3. 3D Image Representations
3.4. Augmented Reality
4. Conclusions
5. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saad, A.M.; Gorse, C.; Goodier, C.I.; Blay, K.; Cavalaro, S. Autoclaved Aerated Concrete in Reinforced Building Applications: A Systematic Review of AAC/RAAC in the Last 40+ Years. Results Eng. 2024, 24, 103431. [Google Scholar] [CrossRef]
- Jeong, H.; Takahashi, H.; Teramura, S. Low temperature fracture behaviour and AE characteristics of autoclaved aerated concrete(AAC). Cem. Concr. Res. 1987, 17, 743–754. [Google Scholar] [CrossRef]
- Fouad, F.H.; Schoch, T. AAC in the USA—A second look. ce/papers 2018, 2, E1–E6. [Google Scholar] [CrossRef]
- Liddell, M.; Read, R.; Palmer, M.; Robertson, D.; Goodier, C. Reinforced Autoclaved Aerated Concrete (RAAC) Panels: Investigation and Assessment; Technical Report; The Institution of Structural Engineers RAAC Inspection and Assessment: London, UK, 2022. [Google Scholar]
- Di Sarno, L.; Albuhairi, D. Reinforced Autoclaved Aerated Concrete: Structural Assessment and Retrofitting. Buildings 2024, 14, 2570. [Google Scholar] [CrossRef]
- Cabrera, J. Deterioration of concrete due to reinforcement steel corrosion. Cem. Concr. Compos. 1996, 18, 47–59. [Google Scholar] [CrossRef]
- Broomfield, J.P. Corrosion of Steel in Concrete: Understanding, Investigation and Repair; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Fang, C.; Lundgren, K.; Chen, L.; Zhu, C. Corrosion influence on bond in reinforced concrete. Cem. Concr. Res. 2004, 34, 2159–2167. [Google Scholar] [CrossRef]
- Cheng, W.; Fan, Z.; Tan, K.H. Characterisation of corrosion-induced crack in concrete using ultrasonic diffuse coda wave. Ultrasonics 2023, 128, 106883. [Google Scholar] [CrossRef]
- Larose, E.; Planes, T.; Rossetto, V.; Margerin, L. Locating a small change in a multiple scattering environment. Appl. Phys. Lett. 2010, 96, 204101. [Google Scholar] [CrossRef]
- Song, W.J.; Popovics, J.S.; Aldrin, J.C.; Shah, S.P. Measurement of surface wave transmission coefficient across surface-breaking cracks and notches in concrete. J. Acoust. Soc. Am. 2003, 113, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Sun, H.H.; Wan, L.S.; Fan, Z.; Tan, K.H. Corrosion damage detection in reinforced concrete using Rayleigh wave-based method. Cem. Concr. Compos. 2023, 143, 105253. [Google Scholar] [CrossRef]
- ASTM C876-91; Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete. ASTM: West Conshohocken, PA, USA, 1999; Volume 3.
- Elsener, B.; Andrade, C.; Gulikers, J.; Polder, R.; Raupach, M. Half-cell potential measurements—Potential mapping on reinforced concrete structures. Mater. Struct. 2003, 36, 461–471. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Sun, M.; Li, Z. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors. Constr. Build. Mater. 2017, 135, 68–75. [Google Scholar] [CrossRef]
- Gu, P.; Elliott, S.; Hristova, R.; Beaudoin, J.; Brousseau, R.; Baldock, B. A study of corrosion inhibitor performance in chloride contaminated concrete by electrochemical impedance spectroscopy. ACI Mater. J. 1997, 94, 385–395. [Google Scholar]
- Ford, S.; Shane, J.; Mason, T. Assignment of features in impedance spectra of the cement-paste/steel system. Cem. Concr. Res. 1998, 28, 1737–1751. [Google Scholar] [CrossRef]
- Poupard, O.; Aıt-Mokhtar, A.; Dumargue, P. Corrosion by chlorides in reinforced concrete: Determination of chloride concentration threshold by impedance spectroscopy. Cem. Concr. Res. 2004, 34, 991–1000. [Google Scholar] [CrossRef]
- Andrade, C.; González, J. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Mater. Corros. 1978, 29, 515–519. [Google Scholar] [CrossRef]
- Clear, K.C. Measuring Rate of Corrosion of Steel in Field Concrete Structures; Transportation Research Record; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 1989. [Google Scholar]
- Andrade, C.; Alonso, M.C.; Gonzalez, J.A. An initial effort to use the corrosion rate measurements for estimating rebar durability. In Corrosion Rates of Steel in Concrete; ASTM International: West Conshohocken, PA, USA, 1990. [Google Scholar]
- Newton, C.; Sykes, J. A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corros. Sci. 1988, 28, 1051–1074. [Google Scholar] [CrossRef]
- Sathiyanarayanan, S.; Natarajan, P.; Saravanan, K.; Srinivasan, S.; Venkatachari, G. Corrosion monitoring of steel in concrete by galvanostatic pulse technique. Cem. Concr. Compos. 2006, 28, 630–637. [Google Scholar] [CrossRef]
- Vedalakshmi, R.; Balamurugan, L.; Saraswathy, V.; Kim, S.H.; Ann, K. Reliability of Galvanostatic Pulse Technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies. KSCE J. Civ. Eng. 2010, 14, 867–877. [Google Scholar] [CrossRef]
- Elyasigorji, A.; Rezaee, M.; Ghorbanpoor, A. Magnetic corrosion detection in concrete structures. In Proceedings of the International Conference on Sustainable Infrastructure, Los Angeles, CA, USA, 6–9 November 2019; American Society of Civil Engineers Reston: Reston, VA, USA, 2019; pp. 175–184. [Google Scholar]
- Shams, S.; Ghorbanpoor, A.; Lin, S.; Azari, H. Nondestructive Testing of Steel Corrosion in Prestressed Concrete Structures using the Magnetic Flux Leakage System. Transp. Res. Rec. 2018, 2672, 132–144. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, J.; Di, H.; Zhao, S.; Zhou, J.; Yang, F. Quantitative Evaluation of Corrosion Degrees of Steel Bars Based on Self-Magnetic Flux Leakage. Metals 2019, 9, 952. [Google Scholar] [CrossRef]
- de Alcantara, N.P., Jr.; Da Silva, F.M.; Guimarães, M.T.; Pereira, M.D. Corrosion assessment of steel bars used in reinforced concrete structures by means of eddy current testing. Sensors 2015, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Eddy, I.; Underhill, P.R.; Morelli, J.; Krause, T.W. Pulsed Eddy Current Response to General Corrosion in Concrete Rebar. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2020, 3, 044501. [Google Scholar] [CrossRef]
- Rahita, A.C.; Zaki, A. Corrosion Analysis on Reinforcing Steel in Concrete Using the Eddy Current Method. In Proceedings of the 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), Yogyakarta, Indonesia, 9–10 August 2023; pp. 476–480. [Google Scholar] [CrossRef]
- Dérobert, X.; Aubagnac, C.; Abraham, O. Comparison of NDT techniques on a post-tensioned beam before its autopsy. NDT E Int. 2002, 35, 541–548. [Google Scholar] [CrossRef]
- Roqueta, G.; Jofre, L.; Feng, M.Q. Analysis of the Electromagnetic Signature of Reinforced Concrete Structures for Nondestructive Evaluation of Corrosion Damage. IEEE Trans. Instrum. Meas. 2012, 61, 1090–1098. [Google Scholar] [CrossRef]
- Tešić, K.; Baričević, A.; Serdar, M. Non-Destructive Corrosion Inspection of Reinforced Concrete Using Ground-Penetrating Radar: A Review. Materials 2021, 14, 975. [Google Scholar] [CrossRef]
- Zaki, A.; Megat Johari, M.A.; Wan Hussin, W.M.A.; Jusman, Y. Experimental Assessment of Rebar Corrosion in Concrete Slab Using Ground Penetrating Radar (GPR). Int. J. Corros. 2018, 2018, 5389829. [Google Scholar] [CrossRef]
- Chang, C.W.; Lin, C.H.; Lien, H.S. Measurement radius of reinforcing steel bar in concrete using digital image GPR. Constr. Build. Mater. 2009, 23, 1057–1063. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Kalogeropoulos, A.; Soldovieri, F.; Prisco, G. Processing strategies for high-resolution GPR concrete inspections. NDT E Int. 2010, 43, 334–342. [Google Scholar] [CrossRef]
- Elliott, J.B.; Chaney, D.; Murtaza, H. Angled ground penetrating radar to detect and position reinforcement and bearing lengths within reinforced autoclaved aerated concrete planks. Constr. Build. Mater. 2024, 449, 138528. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, J.; Ding, F.; Meng, X.; Liu, C.; Cui, J. Detection of early-stage rebar corrosion using a polarimetric ground penetrating radar system. Constr. Build. Mater. 2022, 317, 125768. [Google Scholar] [CrossRef]
- Benedetto, A.; Manacorda, G.; Simi, A.; Tosti, F. Novel perspectives in bridges inspection using GPR. Nondestruct. Test. Eval. 2012, 27, 239–251. [Google Scholar] [CrossRef]
- Pasculli, D.; Natali, A.; Salvatore, W.; Morelli, F.; Morandi, D. Investigation of reinforced concrete bridges by using a dual-polarized high-frequency GPR. In Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Noonan, C. Environmental asbestos exposure and risk of mesothelioma. Ann. Transl. Med. 2017, 5, 234. [Google Scholar] [CrossRef] [PubMed]
- Forster, S.J.I.; Peyton, A.J.; Podd, F.J.W. Calibration of dual-polarised antennas for air-coupled ground penetrating radar applications. Remote Sens. 2024, 16, 4114. [Google Scholar] [CrossRef]
- Forster, S.J.I.; Peyton, A.J.; Podd, F.J.W.; Davidson, N. Polarisation Synthesis Applied to 3D Polarimetric Imaging for Enhanced Buried Object Detection and Identification. Remote Sens. 2024, 16, 4279. [Google Scholar] [CrossRef]
- Strang, G. Introduction to Linear Algebra; Wellesley-Cambridge Press: Wellesley, MA, USA, 2009. [Google Scholar]
- Hecht, E. Optics, 4th ed.; Pearson Education Limited: Harlow, UK, 2014; p. 680. [Google Scholar]
- Skolnik, M.I. Introduction to Radar Systems; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Ohm, G.S. Die Galvanische Kette, Mathematisch Bearbeitet; Riemann: Berlin, Germany, 1827. [Google Scholar]
- Joule, J.P. On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis. Philos. Mag. 1841, 19, 260–277. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J. Opt. Soc. Am. 1941, 31, 488–493. [Google Scholar] [CrossRef]
- Hurwitz, H.; Jones, R.C. A new calculus for the treatment of optical systems II. Proof of three general equivalence theorems. J. Opt. Soc. Am. 1941, 31, 493–499. [Google Scholar] [CrossRef]
- Jones, R.C. New calculus for the treatment of optical systems. III. The Sohncke theory of optical activity. J. Opt. Soc. Am. 1941, 31, 500. [Google Scholar] [CrossRef]
- Huynen, J.R. Phenomenological Theory of Radar Targets. Ph.D. Thesis, Technical University of Delft, Delft, The Netherlands, 1970. [Google Scholar]
- Yang, R.; Dai, B.; Tan, L.; Liu, X.; Yang, Z.; Li, H. Polarimetric Microwave Imaging; Springer: Singapore, 2021; pp. 52–58. [Google Scholar] [CrossRef]
- Pereira, M.; Burns, D.; Orfeo, D.; Zhang, Y.; Jiao, L.; Huston, D.; Xia, T. 3-D Multistatic Ground Penetrating Radar Imaging for Augmented Reality Visualization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5666–5675. [Google Scholar] [CrossRef]
- Childs, J.; Orfeo, D.; Burns, D.; Huston, D.; Xia, T. Enhancing ground penetrating radar with augmented reality systems for underground utility management. In Proceedings of the Virtual, Augmented, and Mixed Reality (XR) Technology for Multi-Domain Operations, Online, 27 April–8 May 2020; Dennison, M.S., Jr., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2020; Volume 11426, p. 1142608. [Google Scholar] [CrossRef]
- Berezowski, V.; Moffat, I.; Shendryk, Y.; MacGregor, D.; Ellis, J.; Mallett, X. A multidisciplinary approach to locating clandestine gravesites in cold cases: Combining geographic profiling, LiDAR, and near surface geophysics. Forensic Sci. Int. Synerg. 2022, 5, 100281. [Google Scholar] [CrossRef] [PubMed]
- Voordijk, H.; olde Scholtenhuis, L. Technological mediation and 3D visualizations in construction engineering practice. AI Soc. 2024, 39, 207–220. [Google Scholar] [CrossRef]
- Screening Eagle Technologies. Leveraging Augmented Reality to Save Money—And Lives. 2024. Available online: https://www.screeningeagle.com/en/about-us/news/leveraging-augmented-reality-to-save-money%E2%80%93and-lives (accessed on 6 January 2024).
- Clarke, T.J.; Gwilt, I.; Zucco, J.; Mayer, W.; Smith, R.T. Superpowers in the Metaverse: Augmented Reality Enabled X-Ray Vision in Immersive Environments. In Augmented and Virtual Reality in the Metaverse; Geroimenko, V., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 283–309. [Google Scholar] [CrossRef]
- Prinz, L.M.; Mathew, T. Support Lines and Grids for Depth Ordering in Indoor Augmented Reality using Optical See-Through Head-Mounted Displays. In Proceedings of the 2024 ACM Symposium on Spatial User Interaction, New York, NY, USA, 7–8 October 2024. [Google Scholar] [CrossRef]
- Lavik, M. UnityVolumeRendering. 2024. Available online: https://github.com/mlavik1/UnityVolumeRendering (accessed on 20 November 2024).
Start Frequency (GHz) | Stop Frequency (GHz) | Intermediate Frequency (kHz) | Frequency Points |
---|---|---|---|
1 | 6.5 | 10 | 202 |
Polarisation | (°) | (°) | (°) | (°) |
---|---|---|---|---|
Right-hand circular (RHC) | 45 | 45 | - | - |
Left-hand circular (LHC) | −45 | −45 | - | - |
Left-hand elliptical (LHE) | −30 | −30 | 50 | 50 |
Polarisation | (°) | (°) | (°) | (°) |
---|---|---|---|---|
RHC | 45 | 45 | - | - |
LHC | −45 | −45 | - | - |
45° Cross-polar | 0 | 0 | −45 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forster, S.J.I.; Conniffe, D.; Peyton, A.J.; Podd, F.J.W.; Davidson, N.; Elliott, J.B. Integrating 3D Polarimetric Ground Penetrating Radar and Augmented Reality for Reinforced Autoclaved Aerated Concrete Inspection. NDT 2025, 3, 4. https://doi.org/10.3390/ndt3010004
Forster SJI, Conniffe D, Peyton AJ, Podd FJW, Davidson N, Elliott JB. Integrating 3D Polarimetric Ground Penetrating Radar and Augmented Reality for Reinforced Autoclaved Aerated Concrete Inspection. NDT. 2025; 3(1):4. https://doi.org/10.3390/ndt3010004
Chicago/Turabian StyleForster, Samuel J. I., Daniel Conniffe, Anthony J. Peyton, Frank J. W. Podd, Nigel Davidson, and Joshua B. Elliott. 2025. "Integrating 3D Polarimetric Ground Penetrating Radar and Augmented Reality for Reinforced Autoclaved Aerated Concrete Inspection" NDT 3, no. 1: 4. https://doi.org/10.3390/ndt3010004
APA StyleForster, S. J. I., Conniffe, D., Peyton, A. J., Podd, F. J. W., Davidson, N., & Elliott, J. B. (2025). Integrating 3D Polarimetric Ground Penetrating Radar and Augmented Reality for Reinforced Autoclaved Aerated Concrete Inspection. NDT, 3(1), 4. https://doi.org/10.3390/ndt3010004