Previous Issue
Volume 2, December
 
 

NDT, Volume 3, Issue 1 (March 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 9271 KiB  
Article
Integrating 3D Polarimetric Ground Penetrating Radar and Augmented Reality for Reinforced Autoclaved Aerated Concrete Inspection
by Samuel J. I. Forster, Daniel Conniffe, Anthony J. Peyton, Frank J. W. Podd, Nigel Davidson and Joshua B. Elliott
NDT 2025, 3(1), 4; https://doi.org/10.3390/ndt3010004 - 28 Jan 2025
Viewed by 343
Abstract
Radar polarimetric imaging for non-destructive testing is a powerful and flexible tool that can be used to enhance the detection of internal structures. In this study, reinforced autoclaved aerated concrete (RAAC) is measured using a polarimetric system in three different acquisition modes—two downward-looking [...] Read more.
Radar polarimetric imaging for non-destructive testing is a powerful and flexible tool that can be used to enhance the detection of internal structures. In this study, reinforced autoclaved aerated concrete (RAAC) is measured using a polarimetric system in three different acquisition modes—two downward-looking and one sideways-looking configurations, each at a different height. Each acquisition mode is compared and new polarisation states are created using the principle of polarisation synthesis. Images of the internal structures are created using a 3D imaging algorithm, which are used for the analysis. The comparison between acquisition modes demonstrates that using a higher lift-off and polarisation synthesis could offer more flexible operation in the field, allowing the use of handheld detectors and drone-based systems for inaccessible areas. Additionally, the sideways-looking data captured both horizontal and vertical reinforcement and were detected within a single polarisation channel; this configuration also has reduced clutter from the air–concrete boundary, providing a viable option for single polarisation systems. Full article
Show Figures

Figure 1

58 pages, 25512 KiB  
Review
The Role of Non-Destructive Testing of Composite Materials for Aerospace Applications
by Thiago Luiz Lara Oliveira, Maha Hadded, Saliha Mimouni and Renata Brandelli Schaan
NDT 2025, 3(1), 3; https://doi.org/10.3390/ndt3010003 - 3 Jan 2025
Viewed by 2442
Abstract
This review examines the essential application of non-destructive testing (NDT) techniques in assessing the integrity and damage of composite materials used in aerospace engineering, focusing on polymer matrix composites (PMCs), metal matrix composites (MMCs), and ceramic matrix composites (CMCs). As these materials increasingly [...] Read more.
This review examines the essential application of non-destructive testing (NDT) techniques in assessing the integrity and damage of composite materials used in aerospace engineering, focusing on polymer matrix composites (PMCs), metal matrix composites (MMCs), and ceramic matrix composites (CMCs). As these materials increasingly replace traditional metallic and alloy components due to their advantageous properties, such as light weight, high strength, and corrosion resistance, ensuring their structural integrity becomes paramount. Here, various NDT techniques were described in detail, including ultrasonic, radiographic, and acoustic emission, among others, highlighting their significance in identifying and evaluating damages that are often invisible, yet critical, to parts safety. It stresses the need for innovation in NDT technologies to keep pace with the evolving complexity of composite materials and their applications. The review underscores the ongoing challenges and developments in NDT, advocating for enhanced techniques that provide accurate, reliable, and timely assessments to ensure the safety and durability of aerospace components. This comprehensive analysis not only illustrates current capabilities but also directs future research pathways for improving NDT methodologies in aerospace material engineering. Full article
(This article belongs to the Topic Nondestructive Testing and Evaluation)
Show Figures

Graphical abstract

21 pages, 7471 KiB  
Article
Monitoring the Calibration Status of a Universal Testing Machine Through the Implementation of Acoustic Methods: Development of Equipment and a Suitable Interface
by Sharath P. Subadra, Roy Skaria, Andrea Hasselmann, Eduard Mayer and Shahram Sheikhi
NDT 2025, 3(1), 2; https://doi.org/10.3390/ndt3010002 - 2 Jan 2025
Viewed by 615
Abstract
The calibration of a universal testing machine (UTM) verifies the accuracy of the system instruments responsible for obtaining force and displacement measurements. This process involves comparing the instrument to equipment that has already been calibrated to a known traceable standard. The limit of [...] Read more.
The calibration of a universal testing machine (UTM) verifies the accuracy of the system instruments responsible for obtaining force and displacement measurements. This process involves comparing the instrument to equipment that has already been calibrated to a known traceable standard. The limit of accuracy is then certified and the traceability of the measurements is determined. There are several internationally recognized standards that are used to calibrate the cross-head speed and displacement (ASTM E2658 and E2309, respectively), strain and load rate (ASTM E2309), measurement of tension, compression (ASTM E4) and dynamic force (ASTM E467). The current study aims to monitor the calibration status of UTMs through the implementation of acoustic methods. A methodology is developed whereby a reference sample is initially identified with suitable material properties, enabling it to be used continuously. The sample is used simultaneously with acoustic instruments to check its natural frequencies, which enables the monitoring of the UTM calibration status. An algorithm is developed that enables the user to interact with the system, thus forming an interface and helping the user to check the calibration status of the equipment. The entire system is validated to check if the equipment and the inbuilt algorithm can predict the calibration status of the machine. It was found that the geometric constraints imposed on the sample influence the output from the algorithm, and hence correct values should be fed to the system. Our sample never lost its elastic characteristics through continuous use, demonstrating that it can be used to continuously monitor the machine’s status. Full article
Show Figures

Graphical abstract

13 pages, 22484 KiB  
Article
An Experimental Study of Machine-Learning-Driven Temperature Monitoring for Printed Circuit Boards (PCBs) Using Ultrasonic Guided Waves
by Lawrence Yule, Nicholas Harris, Martyn Hill and Bahareh Zaghari
NDT 2025, 3(1), 1; https://doi.org/10.3390/ndt3010001 - 1 Jan 2025
Viewed by 765
Abstract
Temperature has a significant impact on the operational lifetime of electronic components, as excessive heat can lead to accelerated degradation and ultimately failure. In safety-critical applications, it is important that real-time monitoring is employed to reduce the risk of system failures and maintain [...] Read more.
Temperature has a significant impact on the operational lifetime of electronic components, as excessive heat can lead to accelerated degradation and ultimately failure. In safety-critical applications, it is important that real-time monitoring is employed to reduce the risk of system failures and maintain the safety, reliability, and integrity of the connected systems. In the case of printed circuit boards (PCBs), it is often not feasible to install enough sensors to adequately cover all of the temperature sensitive components. In this study, we present a novel method for the temperature monitoring of PCBs using ultrasonic guided waves and machine learning techniques. Our approach utilizes a small number of low-cost, unobtrusive piezoelectric wafer active sensors (PWAS) sensors for propagating ultrasonic guided waves across a PCB. Through interaction with board features, the temperature of components can be predicted using multi-output regression algorithms. Our technique has been applied to three different PCBs, each with five hotspot positions, achieving an RMSE of <3.5 °C and R2 > 0.95 in all three cases. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop