Assembly and Annotation of the Complete Genome Sequence of the Paenibacillus Bacteriophage phJNUCC32
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolation
2.2. Sequencing and De Novo Assembly
2.3. Genome Annotation and Phylogenetic Tree
3. Results and Discussion
3.1. Genome Characteristics of the Paenibacillus Bacteriophage phJNUCC32
3.2. Phylogenetic Analysis
3.3. Functional Annotation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duckworth, D.H. Who discovered bacteriophage? Bacteriol. Rev. 1976, 40, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Gkitsaki, I.; Papachristoforou, A.; Michailidou, S. The transmittable through stinging microbiota differs between honeybees and wasps: A potentially greater microbial risk of the wasp sting for humans. Int. Microbiol. 2023, 26, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Rampacci, E.; Sforna, M.; Dentini, A. Paenibacillus amylolyticus osteomyelitis in a Poodle dog: Case report and literature review. J. Vet. Diagn. Investig. 2022, 34, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Genersch, E.; Forsgren, E.; Pentikäinen, J. Reclassification of Paenibacillus larvae subsp. Pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 2006, 56, 501–511. [Google Scholar] [PubMed]
- Evans, J.D. Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J. Invertebr. Pathol. 2003, 83, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Melo, L.D.R.; Kropinski, A.M. Complete genome sequence of the broad-host-range Paenibacillus larvae phage phiIBB_Pl23. Genome Announc. 2013, 1, 00438-13. [Google Scholar] [CrossRef] [PubMed]
- Sheflo, M.A.; Gardner, A.V.; Merrill, B.D. Complete genome sequences of five Paenibacillus larvae bacteriophages. Genome Announc. 2013, 1, 00668-13. [Google Scholar] [CrossRef] [PubMed]
- Philippos, K.T.; Diane, G.Y.; Andrew, K. Complete Genome Sequences of Nine Phages Capable of Infecting Paenibacillus larvae, the Causative Agent of American Foulbrood Disease in Honeybees. ASM Sci. J. 2015, 3, e01120-15. [Google Scholar]
- Merrill, B.D.; Fajardo, C.P.; Hilton, J.A. Complete genome sequences of 18 Paenibacillus larvae phages from the Western United States. Microbiol. Resour. Announc. 2018, 7, 00966-18. [Google Scholar] [CrossRef] [PubMed]
- Stamereilers, C.; Fajardo, C.P.; Walker, J.K. Genomic analysis of 48 Paenibacillus larvae bacteriophages. Viruses 2018, 10, 377. [Google Scholar] [CrossRef]
- Tsourkas, P.K. Paenibacillus larvae bacteriophages: Obscure past, promising future. Microb. Genom. 2020, 6, e000329. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.; São José, C.; Azeredo, J. Phage-derived peptidoglycan degrading enzymes: Challenges and future prospects for in vivo therapy. Viruses 2018, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yan, Y.; Ji, W. Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol. J. 2012, 9, 1–11. [Google Scholar] [CrossRef]
- Hua, Y.; An, X.; Pei, G. Characterization of the morphology and genome of an Escherichia coli podovirus. Arch. Virol. 2014, 159, 3249–3256. [Google Scholar] [CrossRef]
- Schmelcher, M.; Donovan, D.M.; Loessner, M.J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012, 7, 1147–1171. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, L.; Rong, J. Endolysins of bacteriophage vB_Sal-S-S10 can naturally lyse Salmonella enteritidis. BMC Vet. Res. 2022, 18, 410. [Google Scholar] [CrossRef]
- Wang, J.; Liang, S.; Lu, X. Bacteriophage endolysin Ply113 as a potent antibacterial agent against polymicrobial biofilms formed by enterococci and Staphylococcus aureus. Front. Microbiol. 2023, 14, 1304932. [Google Scholar] [CrossRef]
- Abdurahman, M.A.; Durukan, İ.; Dinçer, T. Staphylococcus aureus Bacteriophage 52 endolysin exhibits anti-biofilm and broad antibacterial activity against gram-positive bacteria. Protein J. 2023, 42, 596–606. [Google Scholar] [CrossRef]
- Soontarach, R.; Srimanote, P.; Arechanajan, B. Characterization of a novel bacteriophage endolysin (LysAB1245) with extended lytic activity against distinct capsular types associated with Acinetobacter baumannii resistance. PLoS ONE 2024, 19, e0296453. [Google Scholar] [CrossRef]
- Mohammadi, T.N.; Lin, Y.; Maung, A.T. Characterization and antibacterial activity of highly thermo-and pH-stable endolysin LysCPQ7 and its application as a biocontrol agent against Clostridium perfringens in milk and cheese. Food Control. 2024, 156, 110157. [Google Scholar] [CrossRef]
- Pennone, V.; Sanz-Gaitero, M.; O’Connor, P. Inhibition of L. monocytogenes biofilm formation by the amidase domain of the phage vB_LmoS_293 endolysin. Viruses. 2019, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Cisek, A.A.; Dąbrowska, I.; Gregorczyk, K.P. Phage therapy in bacterial infections treatment: One hundred years after the discovery of bacteriophages. Curr. Microbiol. 2017, 74, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Drulis-Kawa, Z.; Majkowska-Skrobek, G.; Maciejewska, B. Bacteriophages and phage-derived proteins–application approaches. Curr. Med. Chem. 2015, 22, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Loessner, M.J. Bacteriophage endolysins-current state of research and applications. Curr. Opin. Microbiol. 2005, 8, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liang, X.; Hyun, C.G. Isolation, Characterization, Genome Annotation, and Evaluation of Tyrosinase Inhibitory Activity in Secondary Metabolites of Paenibacillus sp. JNUCC32: A Comprehensive Analysis through Molecular Docking and Molecular Dynamics Simulation. Int. J. Mol. Sci. 2024, 25, 2213. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; Von, H.A. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenie. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Maluf, N.K.; Gaussier, H.; Bogner, E. Assembly of bacteriophage lambda terminase into a viral DNA maturation and packaging machine. Biochemistry 2006, 45, 15259–15268. [Google Scholar] [CrossRef]
- Prevelige, J.P.E.; Cortines, J.R. Phage assembly and the special role of the portal protein. Curr. Opin. Virol. 2018, 31, 66–73. [Google Scholar] [CrossRef]
- Taslem, M.J.; Awe, A.; Guo, W. Understanding bacteriophage tail fiber interaction with host surface receptor: The key “blueprint” for reprogramming phage host range. Int. J. Mol. Sci. 2022, 23, 12146. [Google Scholar] [CrossRef]
- Kruithof, P.D.; Lunev, S.; Lozano, S.P.A. Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. BBA-Mol. Basis Dis. 2020, 1866, 165716. [Google Scholar] [CrossRef]
- Nakajima, T. Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: Responses to radiation exposure. Med. Sci. Monit. 2015, 21, 1721. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rubio, L.; Martínez, B.; Donovan, D.M. Bacteriophage virion-associated peptidoglycan hydrolases: Potential new enzybiotics. Crit. Rev. Microbiol. 2013, 39, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.N.; Smith, D.L.; Young, R. Holins: The protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 2000, 54, 799–825. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Nat. Acad. Sci. USA 1996, 93, 1156–1160. [Google Scholar] [CrossRef]
- Williams, R.J. Restriction endonuclease: Classification, properties, and applications. Mol. Biotechnol. 2003, 23, 225–243. [Google Scholar] [CrossRef]
CDS | Position | Prediction Function | BLAST Hit | E-Value |
---|---|---|---|---|
1 | 658..1101 | Helix–turn–helix protein | Bacill_phBC6A51_NC_004820 | 1.48 × 10−33 |
2 | 1252..2823 | Terminase large subunit | Bacill_phBC6A51_NC_004820 | 0.0 |
3 | 2845..4356 | Portal Gp-6 family-like protein | Bacill_Mgbh1_NC_041879 | 8.21 × 10−154 |
4 | 4349..4618 | Hypothetical protein | PHAGE_Verruc_P8625_NC_029047 | 1.29 × 10−12 |
5 | 5395..5970 | Capsid protein-like protein | Bacill_Mgbh1_NC_041879 | 1.15 × 10−25 |
6 | 6011..6385 | Hypothetical protein | Bacill_Mgbh1_NC_041879 | 2.85 × 10−46 |
7 | 6457..7482 | Major capsid protein | Bacill_Mgbh1_NC_041879 | 1.42 × 10−131 |
8 | 7689..8117 | Hypothetical protein | Bacill_phBC6A51_NC_004820 | 4.01 × 10−13 |
9 | 8114..8962 | MuF-like minor capsid protein | Gordon_Sadboi_NC_048815 | 8.92 × 10−7 |
10 | 8962..9603 | Hypothetical protein | Paenib_Tripp_NC_028930 | 1.40 × 10−5 |
11 | 9603..10037 | HK97 gp10 family phage protein | Paenib_Tripp_NC_028930 | 1.97 × 10−5 |
12 | 10513..11559 | xkdK-like tail sheath protein | Clostr_phiCTC2B_NC_030951 | 8.04 × 10−23 |
13 | 11575..12021 | Putative tail core protein | Clostr_phiCDHM19_NC_028996 | 1.06 × 10−15 |
14 | 12089..12472 | Putative core tail protein | Lactob_jlb1_NC_024206 | 1.87 × 10−12 |
15 | 12674..14686 | Tail tape measure protein | Lister_LP_101_NC_024387 | 7.65 × 10−71 |
16 | 14699..15373 | XkdP | BalMu_1_NC_030945 | 4.36 × 10−42 |
17 | 15373..16485 | Late control D protein | Brevib_Jimmer1_NC_029104 | 4.17 × 10−23 |
18 | 16836..17252 | DUF2634 domain-containing protein | Brevib_Abouo_NC_029029 | 1.36 × 10−20 |
19 | 17252..18334 | Baseplate J | Thermu_OH2_NC_021784 | 2.68 × 10−70 |
20 | 18331..18894 | Portal protein | Clostr_phiCT9441A_NC_029022 | 2.04 × 10−28 |
21 | 18898..19938 | Putative tail fiber protein | Bacill_BCD7_NC_019515 | 6.31 × 10−7 |
22 | 19953..20351 | Rhodanese-related sulfurtransferase | Thermu_OH2_NC_021784 | 1.04 × 10−24 |
23 | 20607..20999 | Hpothetical protein | Bacill_vB_BboS_125_NC_048735 | 3.69 × 10−12 |
24 | 21003..21692 | Endolysin | Bacill_Waukesha92_NC_025424 | 3.66 × 10−30 |
25 | 21694..21912 | Holin | Entero_AUEF3_NC_042134 | 1.48 × 10−6 |
26 | 22530..22928 | Hypothetical protein | Paenib_Tripp_NC_028930 | 5.86 × 10−21 |
27 | 22981..23205 | Helix–turn–helix transcriptional regulator | Bacill_BceA1_NC_048628 | 1.85 × 10−15 |
28 | 23654..24877 | DNA translocase FtsK | Bacill_BceA1_NC_048628 | 4.29 × 10−81 |
29 | 24877..25479 | Replication–relaxation family protein | Bacill_PfEFR_4_NC_048641 | 4.68 × 10−64 |
30 | 25921..26772 | Conserved phage protein | Bacill_WBeta_NC_007734 | 3.53 × 10−21 |
31 | 26888..27655 | Putative cobyrinic acid ac-diamide synthase | Brevib_Sudance_NC_028749 | 3.91 × 10−102 |
32 | 29301..29675 | Hypothetical protein | Tripp_NC_028930 | 1.29 × 10−12 |
33 | 29777..30010 | Hypothetical protein | Bacill_Staley_NC_022767 | 1.71 × 10−24 |
34 | 32215..32625 | Hypothetical protein | Paenib_Tripp_NC_028930 | 1.10 × 10−35 |
35 | 32620..32838 | Xre-like protein | Bacter_Lily_NC_028841 | 4.75 × 10−11 |
36 | 33500..34174 | DNA replication protein | Paenib_Tripp_NC_028930 | 8.27 × 10−79 |
37 | 34178..35518 | DNA helicase-like protein | Bacill_Mgbh1_NC_041879 | 1.12 × 10−137 |
38 | 35720..36700 | DNA primase | Paenib_Tripp_NC_028930 | 9.76 × 10−80 |
39 | 37121..37783 | Sigma-70 family RNA polymerase sigma factor | Bacill_Mgbh1_NC_041879 | 4.35 × 10−10 |
40 | 38141..38707 | Hypothetical protein | Paenib_Tripp_NC_028930 | 1.20 × 10−24 |
41 | 39014..39790 | Single-stranded DNA-binding protein | Paenib_Tripp_NC_028930 | 3.87 × 10−95 |
42 | 40070..40516 | Hypothetical protein KLEB271_gp57 Bacillus phage | Paenib_Tripp_NC_028930 | 9.99 × 10−49 |
43 | 40737..42182 | Hypothetical protein | Bacill_Mgbh1_NC_041879 | 6.27 × 10−19 |
44 | 42311..43990 | DNA polymerase | Paenib_Tripp_NC_028930 | 0.0 |
45 | 44173..45258 | DNA polymerase | Paenib_Tripp_NC_028930 | 0.0 |
46 | 45264..46277 | hypothetical protein | Paenib_Tripp_NC_028930 | 2.99 × 10−110 |
47 | 46437..46979 | Crossover junction endodeoxyribonuclease | Bacill_Mgbh1_NC_041879 | 5.54 × 10−48 |
48 | 47398..49614 | Ribonucleotide diphosphate reductase alpha subunit | Bacill_Eldridge_NC_030920 | 0.0 |
49 | 49634..50128 | Putative HNH homing endonuclease | Bacill_BCP8_2_NC_027355 | 3.09 × 10−30 |
50 | 50166..51197 | Ribonucleotide diphosphate reductase beta subunit | Bacill_SP_15_NC_031245 | 1.95 × 10−109 |
51 | 51394..52047 | Phosphate starvation-inducible protein PhoH-like protein | Bacill_SP_10_NC_019487 | 2.71 × 10−56 |
52 | 52274..52627 | Hypothetical protein | Bacill_Blue_NC_031056 | 9.58 × 10−16 |
53 | 52645..53076 | dCTPase | Acinet_ZZ1_NC_018087 | 7.08 × 10−9 |
54 | 53407..54123 | Thymidylate synthase | Bacill_Riggi_NC_022765 | 1.53 × 10−105 |
55 | 54881..55084 | Portal protein | Bacill_T_NC_024205 | 2.15 × 10−8 |
56 | 55081..56412 | Hypothetical protein | Paenib_Tripp_NC_028930 | 1.33 × 10−32 |
57 | 56620..57171 | ATPase-like protein | Paenib_Tripp_NC_028930 | 1.76 × 10−58 |
58 | 57276..57605 | Hypothetical protein | Paenib_Tripp_NC_028930 | 1.14 × 10−7 |
59 | 57676..59025 | Modification methylase | Bacill_SPbeta_NC_001884 | 1.24 × 10−92 |
60 | 59025..59426 | SigK-like protein | Paenib_Tripp_NC_028930 | 2.46 × 10−43 |
61 | 59413..60039 | Hypothetical protein | Paenib_Tripp_NC_028930 | 4.38 × 10−33 |
62 | 60715..60981 | Hypothetical protein | Paenib_Tripp_NC_028930 | 6.08 × 10−6 |
63 | 60968..61792 | Hypothetical protein | Paenib_Tripp_NC_028930 | 1.42 × 10−106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liang, X.; Hyun, C.-G. Assembly and Annotation of the Complete Genome Sequence of the Paenibacillus Bacteriophage phJNUCC32. Acta Microbiol. Hell. 2024, 69, 144-152. https://doi.org/10.3390/amh69030014
Xu Y, Liang X, Hyun C-G. Assembly and Annotation of the Complete Genome Sequence of the Paenibacillus Bacteriophage phJNUCC32. Acta Microbiologica Hellenica. 2024; 69(3):144-152. https://doi.org/10.3390/amh69030014
Chicago/Turabian StyleXu, Yang, Xuhui Liang, and Chang-Gu Hyun. 2024. "Assembly and Annotation of the Complete Genome Sequence of the Paenibacillus Bacteriophage phJNUCC32" Acta Microbiologica Hellenica 69, no. 3: 144-152. https://doi.org/10.3390/amh69030014
APA StyleXu, Y., Liang, X., & Hyun, C. -G. (2024). Assembly and Annotation of the Complete Genome Sequence of the Paenibacillus Bacteriophage phJNUCC32. Acta Microbiologica Hellenica, 69(3), 144-152. https://doi.org/10.3390/amh69030014