Dietary Nutrient Evaluations in a Cohort of Dogs with Aminoaciduric Canine Hypoaminoacidemic Hepatopathy Syndrome Inform Dietary Targets for Protein, Fat, Sodium, and Calcium
Abstract
:1. Introduction
2. Materials and Methods
Study Design—Retrospective Cohort Study of 18 Client-Owned Dogs
3. Results
3.1. Patient Demographics
3.2. Home-Cooked Diets Were Substantially Higher in Protein
3.3. Dietary Inclusions of Several Nutrients Were Associated with Survival Times
3.4. Dietary Targets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loftus, J.P.; Center, S.A.; Astor, M.; Miller, A.J.; Peters-Kennedy, J. Clinical Features and Amino Acid Profiles of Dogs with Hepatocutaneous Syndrome or Hepatocutaneous-Associated Hepatopathy. J. Vet. Intern. Med. 2022, 36, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Walton, D.; Center, S.A.; Scott, D.; Collins, K. Ulcerative Dermatosis Associated with Diabetes-Mellitus in the Dog-a Report of 4 Cases. J. Am. Anim. Hosp. Assoc. 1986, 22, 79–88. [Google Scholar]
- Holm, S.M.; Peng, S.A.; Holter, M.M.; Cummings, B.P.; Loftus, J.P. Plasma Concentrations of Glucagon and Glucagon-like Peptide-1 Are Reduced in Dogs with Aminoaciduric Canine Hypoaminoacidemic Hepatopathy Syndrome versus Healthy Dogs: A Preliminary Study. Am. J. Vet. Res. 2023, 84, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Loftus, J.P.; Miller, A.J.; Center, S.A.; Peters-Kennedy, J.; Astor, M. Treatment and Outcomes of Dogs with Hepatocutaneous Syndrome or Hepatocutaneous-Associated Hepatopathy. J. Vet. Intern. Med. 2022, 36, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, A.C.; Loftus, J.P.; Rishniw, M. Short-Term Parenteral Infusions with High-Osmolality Amino Acid Solutions Can Be Safely Administered through Peripheral Catheters in Dogs Treated for Hypoaminoacidmia-Related Conditions. J. Am. Vet. Med. Assoc. 2024, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hall-Fonte, D.L.; Center, S.A.; McDonough, S.P.; Peters-Kennedy, J.; Trotter, T.S.; Lucy, J.M.; Berger, E.; Byers, C.; Cummings, C.G.; Burke, E.; et al. Hepatocutaneous Syndrome in Shih Tzus: 31 Cases (1996–2014). J. Am. Vet. Med. Assoc. 2016, 248, 802–813. [Google Scholar] [CrossRef]
- Bach, J.F.; Glasser, S.A. A Case of Necrolytic Migratory Erythema Managed for 24 Months with Intravenous Amino Acid and Lipid Infusions. Can. Vet. J. 2013, 54, 873–875. [Google Scholar]
- Jaffey, J.A.; Backus, R.C.; Sprinkle, M.; Ruggiero, C.; Ferguson, S.H.; Shumway, K. Successful Long-Term Management of Canine Superficial Necrolytic Dermatitis with Amino Acid Infusions and Nutritionally Balanced Home-Made Diet Modification. Front. Vet. Sci. 2020, 7, 28. [Google Scholar] [CrossRef]
- National Research Council; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Subcommittee on Dog and Cat Nutrition; Committee on Animal Nutrition. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006; Volume Rev, ISBN 978-0-309-08628-8. [Google Scholar]
- Loftus, J.P.; Rubio, M.E.D.; Yant, J.; Bichoupan, A.; Zhang, S.; Miller, A.J.; Center, S.A.; Ruiz, M.D.R.; Macho, L.P. Untargeted Metabolomic Profiles Reveal Widespread Metabolic Perturbations and Identify Candidate Biomarkers in Aminoaciduric Canine Hypoaminoacidemic Hepatopathy Syndrome. Am. J. Vet. Res. 2023, 84, 1–13. [Google Scholar] [CrossRef]
- Loftus, J.P.; Center, S.A.; Lucy, J.M.; Stanton, J.A.; McDonough, S.P.; Peters-Kennedy, J.; Arceneaux, K.A.; Bechtold, M.A.; Bennett, C.L.; Bradbury, C.A.; et al. Characterization of Aminoaciduria and Hypoaminoacidemia in Dogs with Hepatocutaneous Syndrome. Am. J. Vet. Res. 2017, 78, 735–744. [Google Scholar] [CrossRef]
- Gross, T.L.; O’Brien, T.D.; Davies, A.P.; Long, R.E. Glucagon-Producing Pancreatic Endocrine Tumors in Two Dogs with Superficial Necrolytic Dermatitis. J. Am. Vet. Med. Assoc. 1990, 197, 1619–1622. [Google Scholar] [CrossRef]
- Patel, A.; Prabhu, A. Hartnup Disease. Indian J. Dermatol. 2008, 53, 31–32. [Google Scholar] [CrossRef]
- Posey, J.E.; Burrage, L.C.; Miller, M.J.; Liu, P.; Hardison, M.T.; Elsea, S.H.; Sun, Q.; Yang, Y.; Willis, A.S.; Schlesinger, A.E.; et al. Lysinuric Protein Intolerance Presenting with Multiple Fractures. Mol. Genet. Metab. Rep. 2014, 1, 176–183. [Google Scholar] [CrossRef]
- Bröer, S.; Cavanaugh, J.A.; Rasko, J.E.J. Neutral Amino Acid Transport in Epithelial Cells and Its Malfunction in Hartnup Disorder. Biochem. Soc. Trans. 2005, 33, 233–236. [Google Scholar] [CrossRef]
- Hashmi, M.S.; Gupta, V. Hartnup Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Noguchi, A.; Takahashi, T. Overview of Symptoms and Treatment for Lysinuric Protein Intolerance. J. Hum. Genet. 2019, 64, 849–858. [Google Scholar] [CrossRef]
- Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef]
- Conigrave, A.D.; Franks, A.H.; Brown, E.M.; Quinn, S.J. L-Amino Acid Sensing by the Calcium-Sensing Receptor: A General Mechanism for Coupling Protein and Calcium Metabolism? Eur. J. Clin. Nutr. 2002, 56, 1072–1080. [Google Scholar] [CrossRef]
- Vandeweerd, J.-M.; Cambier, C.; Gustin, P. Nutraceuticals for Canine Liver Disease: Assessing the Evidence. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1171–1179. [Google Scholar] [CrossRef]
- Pedrinelli, V.; Zafalon, R.V.A.; Rodrigues, R.B.A.; Perini, M.P.; Conti, R.M.C.; Vendramini, T.H.A.; de Carvalho Balieiro, J.C.; Brunetto, M.A. Concentrations of Macronutrients, Minerals and Heavy Metals in Home-Prepared Diets for Adult Dogs and Cats. Sci. Rep. 2019, 9, 13058. [Google Scholar] [CrossRef]
- Sargeant, J.M.; Plishka, M.; Ruple, A.; Selmic, L.E.; Totton, S.C.; Vriezen, E.R. Quality of Reporting of Clinical Trials in Dogs and Cats: An Update. J. Vet. Intern. Med. 2021, 35, 1957–1971. [Google Scholar] [CrossRef]
- Spitznagel, M.B.; Carlson, M.D. Caregiver Burden and Veterinary Client Well-Being. Vet. Clin. Small Anim. Pract. 2019, 49, 431–444. [Google Scholar] [CrossRef] [PubMed]
Breed | Age (Year) | Sex | Weight (kg) | Diet Type | Commercial Diet Consumed | Survival Interval (Days) | Outcome |
---|---|---|---|---|---|---|---|
Bichon Frise | 11 | FS | 9.1 | COM | RC MP | 214 | E:ACHES/SND |
Chihuahua | 10 | FS | 5.5 | COM | Blue Buffalo Salmon | 834 | C:Alive |
Chihuahua | 14 | MN | 2.3 | COM | Hill’s a/d | 683 | E:Other (Septic Abdomen) |
GSD Mix | 11 | MN | 23 | COM | RC HP | 107 | E: ACHES/SND |
Lab | 7 | FS | 35 | COM | RC Duck and Potato | 523 | C: Alive |
MBD | 11 | MN | 27.6 | COM | Purina EN Low Fat | 346 | E:Other (Multifactorial) |
Terrier Mix | 13 | FS | 11.3 | COM | RC GI Low Fat | 68 | Censored:Alive |
WHWT | 9 | MN | 7.5 | COM | Hill’s i/d | 6 | D:ACHES/SND |
WHWT | 8 | MN | 9.6 | COM | Hill’s w/d | 1714 | C:Alive |
WHWT | 9 | MN | 10.4 | COM | Hill’s l/d | 8 | E:ACHES/SND |
GSP | 10 | MN | 38 | HC | - | 846 | E:Other (Pneumonia) |
Husky/Lab Mix | 10 | FS | 33.5 | HC | - | 498 | E:Other (Multifactorial) |
Maltese | 8 | FS | 6.6 | HC | - | 1783 | C:Alive |
Poodle Mix | 11 | MN | 11 | HC | - | 1065 | E:Other (Abdominal Mass, Anemia) |
SSD | 8 | MN | 13.6 | HC | - | 557 | E: ACHES/SND |
SSD | 14 | MN | 12.1 | HC | - | 176 | E: Other (AKI) |
Shih Tzu | 8 | FS | 4.8 | HC | - | 168 | E: ACHES/SND |
WHWT | 11 | MN | 9.2 | HC | - | 238 | C: Alive |
Nutrient | Unit | NRC RA 1 | Home-Cooked Diets | Commercial Diets | ||||
---|---|---|---|---|---|---|---|---|
Median (n) | Min | Max | Median (n) | Min | Max | |||
Protein | g | 25-* | 111.4 (8) | 88.85 | 136.47 | 61.51 (10) | 39 | 90 |
Arginine | g | 0.88-* | 5.87 (8) | 4.2 | 7.28 | 3.55 (6) | 2.64 | 4.2 |
Histidine | g | 0.48-* | 2.9 (8) | 2.11 | 3.75 | 1.36 (5) | 0.8 | 1.6 |
Isoleucine | g | 0.95-* | 4.79 (8) | 3.59 | 6.39 | 2.2 (5) | 1.6 | 2.38 |
Leucine | g | 1.7-* | 7.15 (8) | 5.22 | 9.11 | 3.96 (5) | 3 | 4.19 |
Lysine | g | 0.88-* | 7.6 (8) | 5.55 | 10.24 | 2.66 (6) | 1.7 | 3.88 |
Methionine | g | 0.83-* | 2.51 (8) | 1.84 | 3.35 | 1.68 (6) | 0.9 | 2.1 |
Methionine-cystine | g | 1.63-* | 3.82 (8) | 2.81 | 4.92 | 2.38 (6) | 1.51 | 2.7 |
Phenylalanine | g | 1.13-* | 3.79 (8) | 2.94 | 4.89 | 2.4 (5) | 1.8 | 2.56 |
Phenylalanine-tyrosine | g | 1.85-* | 6.88 (8) | 5.27 | 8.97 | 4.32 (5) | 3.32 | 4.99 |
Threonine | g | 1.08-* | 3.97 (8) | 2.91 | 5.18 | 2.13 (5) | 1.5 | 2.42 |
Tryptophan | g | 0.35-* | 1.07 (8) | 0.53 | 1.7 | 0.7 (6) | 0.4 | 0.75 |
Valine | g | 1.23-* | 4.7 (8) | 3.51 | 6.07 | 2.7 (5) | 2 | 2.96 |
Total fat | g | 13.8–77.5 | 34.5 (8) | 19.23 | 52.8 | 37.35 (10) | 17.4 | 67 |
18:2 undifferentiated (linoleic acid) | g | 2.8–16.3 | 4.93 (8) | 3.98 | 13.92 | 6.9 (5) | 3.3 | 11.4 |
Choline | mg | 419-* | 525.56 (8) | 153.23 | 756.27 | 621.25 (6) | 414 | 719.9 |
Folate | mcg | 67.5-* | 493.45 (8) | 84.37 | 1017 | 3.79 (6) | 2.35 | 745.9 |
Niacin | mg | 4.25-* | 46.59 (8) | 29.35 | 59.05 | 8.85 (6) | 5 | 268.4 |
Pantothenic acid | mg | 3.75–5000 | 8.82 (8) | 4.22 | 18.05 | 10.52 (6) | 5.21 | 41.9 |
Riboflavin | mg | 1.3–375 | 1.98 (8) | 1.55 | 3.59 | 1.74 (6) | 1.3 | 13.8 |
Thiamin | mg | 0.56–450 | 1.79 (8) | 0.59 | 6.17 | 3.34 (6) | 1.1 | 14.1 |
Vitamin A, RAE | mcg | 379–16,000 | 2870.52 (8) | 308.56 | 4561.1 | 1840.5 (7) | 196 | 2258 |
Vitamin B12 | mcg | 8.75-* | 33.17 (8) | 4.24 | 71.15 | 22.38 (5) | 20 | 40 |
Vitamin B6 | mg | 0.375–125 | 4.51 (8) | 1.65 | 9.53 | 8.2 (5) | 1.7 | 22.1 |
Vitamin D | IU | 136–800 | 678.35 (8) | 57.32 | 1818.2 | 258.85 (6) | 201 | 762 |
Vitamin E (alpha-tocopherol) | IU | 7.5–250 | 32.42 (8) | 26.04 | 89.6 | 172 (10) | 151 | 211.5 |
Vitamin K (phylloquinone) | mg | 0.41-* | 0.13 (8) | 0.03 | 0.49 | 0 (6) | 0 | 0.1 |
Calcium | g | 1-* | 1.39 (8) | 0.92 | 2.81 | 2.54 (10) | 1.3 | 3.3 |
Chloride | g | 0.3–5.875 | 1.28 (8) | 0.69 | 1.64 | 1.93 (6) | 1.2 | 2.5 |
Copper | mg | 1.5-* | 1.16 (8) | 0.39 | 2.99 | 4.35 (6) | 1.5 | 9.1 |
Iodine | mg | 0.22–1 | 0.24 (8) | 0.18 | 0.64 | 1.1 (5) | 0.7 | 1.4 |
Iron | mg | 7.5-* | 21.84 (8) | 14.73 | 34.7 | 35.2 (5) | 25.3 | 50.7 |
Magnesium | g | 0.15-* | 0.24 (8) | 0.17 | 0.29 | 0.2 (9) | 0.19 | 0.3 |
Manganese | mg | 1.2-* | 2.95 (8) | 1.18 | 6.45 | 20.3 (5) | 7.56 | 24.2 |
Phosphorus | g | 0.75-* | 1.07 (8) | 0.75 | 2.36 | 2.0 (9) | 1 | 2.4 |
Potassium | g | 1-* | 1.76 (8) | 1.12 | 3.26 | 2.25 (10) | 1.7 | 2.9 |
Selenium | mg | 0.09-* | 0.14 (8) | 0.11 | 0.21 | 0.1 (5) | 0.07 | 179 |
Sodium | g | 0.2–3.75 ** | 0.81 (8) | 0.5 | 1.03 | 1.1 (10) | 0.42 | 1.82 |
Zinc | mg | 15-* | 23.48 (8) | 17.3 | 51.25 | 61.98 (7) | 1.05 | 69.4 |
EPA + DHA (omega-3 fatty acids) | g | 0.11–2.8 | 1.75 (8) | 1.16 | 2.01 | 0.75 (7) | 0 | 2.24 |
Parameter | Hazard Ratio Estimate | 95% Confidence Interval (Profile Likelihood) | p Value |
---|---|---|---|
Protein (g/1000 kcal) 1 | 0.92 | 0.82 to 1.0 | 0.043 * |
Total fat (g/1000 kcal) | 1.15 | 1.02 to 1.37 | 0.043 * |
Vitamin E (alpha-tocopherol, IU) | 0.96 | 0.90 to 1.005 | 0.14 |
Calcium (g/1000 kcal) | 9.92 | 1.02 to 201.0 | 0.067 |
Potassium (g/1000 kcal) | 1.21 | 0.08 to 34.09 | 0.9 |
Sodium (g/1000 kcal) | 0.02 | <0.01 to 0.38 | 0.037 * |
Round 1 Validation | Round 2 Validation | |||||
---|---|---|---|---|---|---|
Parameter | Hazard Ratio Estimate | 95% Confidence Interval (Profile Likelihood) | p Value | Hazard Ratio Estimate | 95% Confidence Interval (Profile Likelihood) | p Value |
Protein (<90 g/1000 kcal) | 16.1 | 1.8 to 499 | 0.025 * | 20.8 | 1.8 to 718.6 | 0.02 * |
Total fat (≥40 g/1000 kcal) | 33.0 | 2.0 to 1314 | 0.013 * | 25.90 | 1.6 to 981.5 | 0.018 * |
Calcium (≥2.8 g/1000 kcal) | 6.1 | 0.73 to 130.7 | 0.07 | 4.7 | 0.6 to 96.3 | 0.09 |
Sodium (<0.8 g/1000 kcal) | 8.0 | 0.88 to 193.0 | 0.05 | - | - | - |
Sodium (<0.7 g/1000 kcal) | - | - | - | 12.9 | 1.5 to 285.6 | 0.018 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowe, J.C.; Luo, E.; Cline, M.G.; Astor, M.; Loftus, J.P. Dietary Nutrient Evaluations in a Cohort of Dogs with Aminoaciduric Canine Hypoaminoacidemic Hepatopathy Syndrome Inform Dietary Targets for Protein, Fat, Sodium, and Calcium. Pets 2024, 1, 216-227. https://doi.org/10.3390/pets1030016
Rowe JC, Luo E, Cline MG, Astor M, Loftus JP. Dietary Nutrient Evaluations in a Cohort of Dogs with Aminoaciduric Canine Hypoaminoacidemic Hepatopathy Syndrome Inform Dietary Targets for Protein, Fat, Sodium, and Calcium. Pets. 2024; 1(3):216-227. https://doi.org/10.3390/pets1030016
Chicago/Turabian StyleRowe, John C., Emmy Luo, Martha G. Cline, Michael Astor, and John P. Loftus. 2024. "Dietary Nutrient Evaluations in a Cohort of Dogs with Aminoaciduric Canine Hypoaminoacidemic Hepatopathy Syndrome Inform Dietary Targets for Protein, Fat, Sodium, and Calcium" Pets 1, no. 3: 216-227. https://doi.org/10.3390/pets1030016
APA StyleRowe, J. C., Luo, E., Cline, M. G., Astor, M., & Loftus, J. P. (2024). Dietary Nutrient Evaluations in a Cohort of Dogs with Aminoaciduric Canine Hypoaminoacidemic Hepatopathy Syndrome Inform Dietary Targets for Protein, Fat, Sodium, and Calcium. Pets, 1(3), 216-227. https://doi.org/10.3390/pets1030016