Beneficial Effects of Nutraceuticals, Especially Polyphenols on Canine Health
Abstract
:1. Introduction
2. Functional Ingredients in Pet Food
- (1)
- Polyphenols. Polyphenols contain subfamilies such as simple phenols, including hydroxycinnamic acids, hydroxybenzoic acids and their derived alcohols, flavonoids (flavones, isoflavones, flavanols, flavanones, flavonols, anthocyanins, pro-anthocyanidins, catechins, and tannins); also, stilbenes, coumarins, lignans, betalains (betacyanins and betaxanthins), anthraquinones, and curcuminoids. Table 1 and Table 2 show the basic chemical structures and some examples, along with their common functionalities described of non-flavonoid and flavonoid types of phenolic compounds, respectively [25,26,27,28].
- (2)
- Glucosinolates. From an evolutionary perspective, these compounds are found in two distinct plant families: Brassicaceae, Capparaceae, and Caricaceae, as well as in the Putranjivaceae family. These substances contain nitrogen and/or sulfur in their chemical structure and are known as β-thioglucoside-N-hydroxysulfates. Over 120 different glucosinolate compounds have been discovered, which can be categorized into three types: aliphatic glucosinolates (derived from methionine, valine, leucine, or isoleucine), indole glucosinolates (derived from tryptophan), and aromatic glucosinolates (derived from phenylalanine or tyrosine). Sinigrin, raphanin, brassicin, and its gluco-derivatives are habitual components. Their hydrolysis products, mainly isothiocyanates, have been studied due to their role as anti-oncogenic substances [29,30].
- (3)
- Terpenoids or isoprenoids. These organic compounds are derived from the 5-C compound isoprene, with modified structures through the addition or deletion of methyl groups and/or oxygen atoms. Terpenoids are classified according to their number of isoprene units, including mono-, sesqui-, di-, tri-, tetra-, and polyterpenoids, among others. The most traditional use in food dogs are carotenes (α- and β-carotene, lycopene), although several xanthophylls with excellent characteristics have been considered. Another group of isoprenoids with interesting applications are essential oils (EOs), which are composed of mono-, di-, and sesquiterpenes, in addition to several phenolic compounds. Aspects such as their enormous diversity and their great ethnopharmacological history are making them increasingly used as functional ingredients. Also, triterpene saponins such as squalene and others have shown interesting future applications as hypocholesterolemic and anti-inflammatory agents [31].
- (4)
- Alkaloids. Constituted by a broad family of compounds, organic compounds contain at least one nitrogen atom in their structure. Mainly used pharmacologically for their psycho- and neuro-physiological properties, lately they are being revisited with extensive studies (capsaicin, piperine, piperidine, hypericin, etc.) on their functional properties [32,33]. This is also the case of anthraquinones (a class of phenolic compounds, classified as alkaloids in some cases), with examples such as emodin, barbaloin, rhein, chrysophanol, and rufigallol that are currently studied for their antimicrobial properties, among other functions [34,35,36]. All these compounds are provided by plants, constituting a huge and diverse store of functional ingredients with enormous application prospects in animal nutrition and also in pet food [27].
Chemical Name/Subclass | Example of Compounds | Potential Benefits | |
Simple phenols | Arbutin, tyrosol | Antiseptic, diuretic, anti-tumoral | |
Hydroxycinnamic acids Free forms Esters Alcohols, Aldehydes & Glycosides | Ferulic, caffeic, cinnamic Chlorogenic, rosmarinic, cynarin, cichoric, caftaric acids Coniferyl, caffeoyl, feruloyl, vanillin, eugenol | Antioxidant, chemoprotector, immunomodulatory, neuroprotector, dyspepsia, hypercholesterolaemia | |
Acetophenones | Apocynin, androsin, piceol, picein | Anti-asthmatic, anti-inflammatory, neuroprotective, sedative | |
Salicylates | Salicin, salicortin, populin | Analgesic, febrifuges, sciatica, myalgia | |
Curcuminoids | Curcumin, dimethoxy- and bisdemethoxy-curcumin, and breakdown metabolites | Anti-inflammatory, anti-tumoral, cardioprotective, wound healing, anti-arthritis, antioxidant, anti-depressive | |
Lignans & Neolignans | Pinoresinol, masoprocol, silybin, schizandrin, podophyllotoxin, enterodiol | Hypoglycemic, chemoprotector, antioxidant, keratosis, anti-fungal, anti-inflammatory, anti-tumoral, phytoestrogen precursors | |
Coumarins & Furanocoumarins | Coumarin, aesculetin, xanthotoxin, umbelliferone, psoralen, angelican, bergapten, khellin | Photosensitizer, anti-vitiligo, psoriasis, tinea hypopigmentation, spasmolytic, bronchodilator, asthma, anti-hypertensive, renal calculi, hay fever, rhinitis | |
Betalains Betacyanins Betaxanthins | Betanin, (iso-, pro-, neo-) Vulga-xanthin (mira-, portula-, indica-) | Antioxidant, antimicrobial, anti-tumoral | |
Stilbenes | Resveratrol, pinosylvin, piceatannol, piceid, pallidol, viniferin, pterostylbene | Anti-inflammatory, neuroprotective, anti-tumoral, cardioprotective, anti-aging, antioxidant, anti-fungal, hypoglycemic | |
Quinones Naphthoquinones, Naphthodiantrones, Anthraquinones & Kavalactones | Ubiquinol (Q10), menaquinone (vit K), plastoquinone, phylloquinone Juglone, lapachol, plumbagone, shikonin, hypericin, sennosides, carmine, fagopyrin, emodins, rhein, kavain, yangonin, methysticin | Anti-tumoral, anti-leukemic, antimicrobial, anti-parasitic, anti-fungal, anti-viral, anti-inflammatory, cardioprotective, laxative, hypnotic, sedative, anesthetic |
Chemical Name/Subclass | Example of Compounds | Potential Benefits | |
Flavones | Apigenin, luteolin, baicalein | ||
Isoflavones | Genistein, diadzein, biochanin | ||
Flavanones | Naringenin, eriodictyol, hesperetin, liquiritin | Antioxidant, anti-tumoral, anti-microbial, anti-viral, anti-atheromatous, anti-hypertensive, anti-inflammatory, hepatoprotective, endothelial protection, cardioprotective, neuroprotective, chemoprotective, immunoprotective, estrogen-mediated responses, anti-ageing | |
Flavonols | Quercetin, kaempferol, myricetin, isorhamnetin | ||
Flavanols | Catechin, epicatechin | ||
Flavan-3-ol (OPC)1 | Epicatechin-3-gallate, epigallocatechin-3-gallate | ||
Anthocyanidins | Malvidin, cyanidin, delphinidin, europinidin, pelargonidin, peonidin, rosinidin, aurantinidin | ||
Tannins Gallo- & Ellagitannins Condensed tannins (Proanthocyanidins) | Galloyl derivatives, ellagic acid, punicalagin, rugosin-D, oenthein-B, sanguiin, geraniin, agrimoniin, puncialin, corilagin Procyanidins (OPC), propelargonidins, prodelphinidins, profisetinidins, proteracacinidins, theaflavins | Anti-tumoral, anti-inflammatory, antioxidant, antidiarrhoeic, anti-haemorrhagic, antimicrobial, hypolipidaemic, astringent, sclerosis, cardioprotective, endothelial function, platelet function, anti-hypertensive, anti-atherosclerotic, oral health |
Polyphenols: Food Sources
3. Effects of Polyphenols in Canine Health
3.1. Antioxidant Activity of Polyphenols
3.2. Gastrointestinal Effect of Polyphenols
3.3. Effects of Polyphenols on Obesity
3.4. Effect on Diabetes and Insulin Sensitivity
- (a)
- Annatto condiment is a food coloring carotenoid-rich from the achiote seeds (Bixa orellana). Annatto extracts reduced the postprandial rise in blood glucose level and increased insulin level in female dogs treated for one hour, improving insulin affinity at blood red cell and mononuclear leukocyte receptors [114].
- (b)
- Rosemary (Rosmarinus officinalis) and basil (Ocimum basilicum). Supplementation with rosemary and basil (polyphenol-rich leaf powder) in Rottweiler dogs with DM applying different diets (G1, basal diet (BD); G2, BD + commercial palatant; G3, BD + 0.05% rosemary; G4, BD + 0.05% basil; G5, BD + rosemary and basil each at 0.025%) reduced fasting glucose levels. The hypoglycemic effect observed was linked to increased insulin secretion in groups G1 and G3. Basil (G4) was found to inhibit the enzyme amylase, raise insulin levels, and lower cortisol levels. Additionally, the combination of basil and rosemary (G5) led to significant increases in the levels of glutathione, superoxide dismutase, and catalase, while reducing malondialdehyde and lactate dehydrogenase levels. The polyphenols present in the leaves of basil and rosemary also played a role in enhancing the hypoglycemic effect, positively influencing the function of pancreatic β-cells. The authors concluded that dietary supplementation with rosemary and/or basil (either 0.05% powder alone or 0.025% in combination) shows potential as a nutritional strategy for preventing and managing diabetes mellitus in puppies aged 4 to 8 months [63].
- (c)
- Green tea extract. Polyphenols from green tea enhanced the insulin sensitivity index in 60% of dogs that were obese and insulin-resistant. The findings from this study suggest that dietary amounts of green tea extract not only improved insulin sensitivity and lipid profiles but also modified the expression of genes related to the regulation of glucose and lipid balance [64].
- (d)
- The consumption of curcuminoids (250 mg) by a group of six diabetic dogs over a period of 180 days led to a significant reduction in oxidative stress, resulting in an increased ratio of glutathione to oxidized glutathione, while cytokine levels remained unchanged. Proteomic analysis indicated that the intake of curcuminoids modified the expression of proteins such as alpha-2-HS-glycoprotein, transthyretin, and apolipoproteins A-I and A-IV, implying that curcuminoids may enhance insulin sensitivity and lower the risk of cardiovascular issues. Additionally, no adverse effects on clinical symptoms, kidney function, or liver markers were observed [65].
3.5. Effect on Fat Metabolism
3.6. Effect on Cardiovascular Diseases
3.7. Effects on Neurological Diseases
3.8. Effects on the Immunological System
3.9. Effects on Cancer
3.10. Other Effects
3.10.1. Respiratory Diseases
3.10.2. Liver Diseases
3.10.3. Dental Diseases
3.10.4. Joint Diseases
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- de Godoy, M.R.; Kerr, K.R.; Fahey, G.C. Alternative dietary fiber sources in companion animal nutrition. Nutrients 2013, 5, 3099–3117. [Google Scholar] [CrossRef] [PubMed]
- APPA National Pet Owners Survey 2021–2022. Available online: https://americanpetproducts.org/Uploads/NPOS/21-2_BusinessandFinance.pdf (accessed on 23 January 2024).
- HFA. Global State of Pet Care. 2022. Available online: https://www.healthforanimals.org/wp-content/uploads/2022/07/Global-State-of-Pet-Care.pdf (accessed on 7 January 2023).
- FEDIAF. The European Pet Food Industry Federation. Annual Report 2022-2. 2023. Available online: https://europeanpetfood.org/wp-content/uploads/2023/02/Annual-Report-2022-2.pdf (accessed on 7 January 2023).
- McEvoy, V.; Espinosa, U.B.; Crump, A.; Arnott, G. Canine socialization: A narrative systematic review. Animals 2022, 12, 2895. [Google Scholar] [CrossRef] [PubMed]
- Mosteller, J. Animal-companion extremes and underlying consumer themes. J. Bus. Res. 2008, 61, 512–521. [Google Scholar] [CrossRef]
- Sanders, C.R. The animal other self: Self-definition, social identify and companion animals. Adv. Consum. Res. 1990, 17, 662–668. [Google Scholar]
- AVMA. American veterinary medical association. In U.S. Pet Ownership & Demographics Sourcebook; AVMA: Schaumburg, IL, USA, 2012. [Google Scholar]
- Ruiz-Cano, D.; Sánchez-Carrasco, G.; Arnao, M.B. Current vision of functional foods in the diet of cats and dogs. All Pet Food Mag. 2022, 3, 12–13. [Google Scholar]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The effects of nutrition on the gastrointestinal microbiome of cats and dogs: Impact on health and disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Theysgeur, S.; Cudennec, B.; Deracinois, B.; Perrin, C.; Guiller, I.; Lepoudère, A.; Flahaut, C.; Ravallec, R. New bioactive peptides identified from a tilapia byproduct hydrolysate exerting effects on DPP-IV activity and intestinal hormones regulation after canine gastrointestinal simulated digestion. Molecules 2020, 26, 136. [Google Scholar] [CrossRef]
- Marshall-Pescini, S.; Passalacqua, C.; Miletto Petrazzini, M.E.; Valsecchi, P.; Prato-Previde, E. Do dogs (Canis lupus familiaris) make counterproductive choices because they are sensitive to human ostensive cues? PLoS ONE 2012, 7, e35437. [Google Scholar] [CrossRef] [PubMed]
- Chandler, M.; Cunningham, S.; Lund, E.M.; Khanna, C.; Naramore, R.; Patel, A.; Day, M.J. Obesity and associated comorbidities in people and companion animals: A one health perspective. J. Comp. Pathol. 2017, 156, 296–309. [Google Scholar] [CrossRef]
- Öhlund, M.; Palmgren, M.; Holst, B.S. Overweight in adult cats: A cross-sectional study. Acta Vet. Scand. 2018, 60, 5. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Endo, A.; Beasley, S.; Salminen, S. Microbiota and probiotics in canine and feline welfare. Anaerobe 2015, 34, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Brugiapaglia, A.; Lussiana, C.; Destefanis, G. Fatty acid profile and cholesterol content of beef at retail of Piemontese, Limousin and Friesian breeds. Meat Sci. 2014, 86, 568–573. [Google Scholar] [CrossRef]
- Realini, C.E.; Guàrdia, M.D.; Díaz, I.; García-Regueiro, J.A.; Arnau, J. Effects of acerola fruit extract on sensory and shelf-life of salted beef patties from grinds differing in fatty acid composition. Meat Sci. 2015, 99, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Colmenero, F. Meat based functional foods. In Handbook of Food Products Manufacturing; Hui, Y.H., et al., Eds.; John Wiley & Son, Inc.: Hoboken, NJ, USA, 2007; pp. 989–1015. [Google Scholar]
- DeFelice, S.L. The nutraceutical revolution: Its impact on food industry R&D. Trends Food Sci. Technol. 1995, 6, 59–61. [Google Scholar]
- Baritugo, K.A.; Bakhsh, A.; Kim, B.; Park, S. Perspectives on functional foods for improvement of canine health and treatment of diseases. J. Funct. Foods 2023, 109, 105744. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Sánchez-Carrasco, G.; Arnao, M.B. Food supplements in pet food: An example in dogs with essential oils and melatonin as functional ingredients. All Pet Food Mag. 2022, 4, 8–12. [Google Scholar]
- Ruiz-Cano, D.; Sánchez-Carrasco, G.; El-Mihyaoui, A.; Arnao, M.B. Essential oils and melatonin as functional ingredients in dogs. Animals 2022, 12, 2089. [Google Scholar] [CrossRef]
- Maturana, M.; Castillejos, L.; Martin-Orue, S.M.; Minel, A.; Chetty, O.; Felix, A.P.; Adib Lesaux, A. Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: A review. Front Vet. Sci. 2023, 10, 1279506. [Google Scholar] [CrossRef]
- Kamble, A.; Deshmukh, R. Global Functional Pet Food Market. Allied Market Research 2021. Available online: https://www.alliedmarketresearch.com/functional-pet-food-market-A11855 (accessed on 25 July 2024).
- Serra, V.; Salvatori, G.; Pastorelli, G. Dietary polyphenol supplementation in food producing animals: Effects on the quality of derived products. Animals 2021, 11, 401. [Google Scholar] [CrossRef]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent developments in polyphenol applications on human health: A review with current knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef]
- Tanprasertsuk, J.; Tate, D.E.; Shmalberg, J. Roles of plant-based ingredients and phytonutrients in canine nutrition and health. J. Anim. Physiol. Anim. Nutr. 2022, 106, 586–613. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Rodman, J.E.; Soltis, P.S.; Soltis, D.E.; Sytsma, K.J.; Karol, K.G. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am. J. Bot. 1998, 85, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.; Zalcmann, A.; Talalay, P. the chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Smith, T.J. Squalene: Potential chemopreventive agent. Expert. Opin. Investig. Drugs 2000, 9, 1841–1848. [Google Scholar] [CrossRef]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharm. 2019, 858, 172472. [Google Scholar] [CrossRef] [PubMed]
- Muvva, S.; Prasad, S.M.; Prachet, P.; Rao, N.R. A review on capsaicin-methods of extraction, estimation and therapeutic effects. Int. J. Pharm. Sci. Nanotechnol. 2023, 16, 6888–6893. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, L.; Fan, L.; Wang, L.; Zhou, Y.; Qin, D.; Sun, Q.; Wu, J.; Cao, S. Free total rhubarb anthraquinones protect intestinal injury via regulation of the intestinal immune response in a rat model of severe acute pancreatitis. Front. Pharmacol. 2018, 9, 75. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, Y.; Zhao, Y. Advances in the pharmacological effects and molecular mechanisms of emodin in the treatment of metabolic diseases. Front. Pharmacol. 2023, 14, 1240820. [Google Scholar] [CrossRef]
- Prateeksha; Yusuf, M.A.; Singh, B.N.; Sudheer, S.; Kharwar, R.N.; Siddiqui, S.; Abdel-Azeem, A.M.; Fernandes Fraceto, L.; Dashora, K.; Gupta, V.K. Chrysophanol: A natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules 2019, 9, 68. [Google Scholar]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
- Correia-da-Silva, M.; Sousa, E.; Pinto, M. Emerging sulfated flavonoids and other polyphenols as drugs: Nature as an inspiration. Med. Res. Rev. 2014, 34, 223–279. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects. A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar]
- García-Conesa, M.T.; Larrosa, M. Polyphenol-rich foods for human health and disease. Nutrients 2020, 12, 400. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 29, 162750. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the phenol-explorer database. Eur. J. Clin. Nutr. 2010, 3, S112–S120. [Google Scholar] [CrossRef]
- Meccariello, R.; D’Angelo, S. Impact of polyphenolic-food on longevity: An elixir of life. An overview. Antioxidants 2021, 10, 507. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 5, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Kuznetsova, T.A.; Fedyanina, L.N.; Makarenkova, I.D.; Zvyagintseva, T.N. Algae polyphenolic compounds and modern antibacterial strategies: Current achievements and immediate prospects. Biomedicines 2020, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem. 2018, 82, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr. 2017, 105, 10–22. [Google Scholar] [CrossRef]
- Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J.M.; Nauser, T. Fast antioxidant reaction of polyphenols and their metabolites. Antioxidants 2021, 10, 1297. [Google Scholar] [CrossRef] [PubMed]
- Quintavalla, F. Phytotherapeutic approaches in canine pediatrics. Vet. Sci. 2024, 11, 133. [Google Scholar] [CrossRef]
- Yang, K.; Jian, S.; Guo, D.; Wen, C.; Xin, Z.; Zhang, L.; Kuang, T.; Wen, J.; Yin, Y.; Deng, B. Fecal microbiota and metabolomics revealed the effect of long-term consumption of gallic acid on canine lipid metabolism and gut health. Food Chem. 2022, 15, 100377. [Google Scholar] [CrossRef]
- Scarsella, E.; Cintio, M.; Iacumin, L.; Ginaldi, F.; Stefanon, B. Interplay between neuroendocrine biomarkers and gut microbiota in dogs supplemented with grape proanthocyanidins: Results of dietary intervention study. Animals 2020, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Jose, T.; Pattanaik, A.K.; Jadhav, S.E.; Dutta, N.; Sharma, S. Nutrient digestibility, hindgut metabolites and antioxidant status of dogs supplemented with pomegranate peel extract. J. Nutr. Sci. 2017, 6, e36. [Google Scholar] [CrossRef]
- Li, Y.; Rahman, S.U.; Huang, Y.; Zhang, Y.; Ming, P.; Zhu, L.; Chu, X.; Li, J.; Feng, S.; Wang, X.; et al. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J. Nutr. Biochem. 2020, 78, 108324. [Google Scholar] [CrossRef] [PubMed]
- Dogra, R.; Tyagi, S.P.; Kumar, A. Efficacy of seabuckthorn (Hippophae rhamnoides) oil vis-a-vis other standard drugs for management of gastric ulceration and erosions in dogs. Vet. Med. Int. 2013, 2013, 176848. [Google Scholar] [CrossRef] [PubMed]
- Atuahene, D.; Costale, A.; Martello, E.; Mannelli, A.; Radice, E.; Ribaldone, D.G.; Chiofalo, B.; Stefanon, B.; Meineri, G.A. A supplement with bromelain, Lentinula edodes, and quercetin: Antioxidant capacity and effects on morphofunctional and fecal parameters (calprotectin, cortisol, and intestinal fermentation products) in kennel dogs. Vet. Sci. 2023, 10, 486. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Deng, X.; Jian, S.; Zhang, M.; Wen, C.; Xin, Z.; Zhang, L.; Tong, A.; Ye, S.; Liao, P.; et al. Gallic Acid alleviates gut dysfunction and boosts immune and antioxidant activities in puppies under environmental stress based on microbiome-metabolomics analysis. Front. Immunol. 2022, 12, 813890. [Google Scholar] [CrossRef]
- Pan, Y. Use of soy isoflavones for weight management in spayed/neutered dogs. FASEB J. 2006, 20, 854–855. [Google Scholar] [CrossRef]
- Pan, Y.; Ramadan, Z.; Martin, F.P.; Collino, S.; Rezzi, S.; Kochhar, S. Effects of isoflavones, conjugated linoleic acid and L-carnitine on weight loss and oxidative stress in overweight dogs. In Animal Nutrition Summit: Focus on Obesity and Obesity-Related Diseases; Purina Co.: Tucson, AZ, USA, 2011; pp. 92–98. [Google Scholar]
- Abdelrahman, N.; El-Banna, R.; Arafa, M.M.; Hady, M.M. Hypoglycemic efficacy of Rosmarinus officinalis and/or Ocimum basilicum leaves powder as a promising clinical-nutritional management tool for diabetes mellitus in Rottweiler dogs. Vet. World 2020, 13, 73–79. [Google Scholar] [CrossRef]
- Serisier, S.; Leray, V.; Poudroux, W.; Magot, T.; Ouguerram, K.; Nguyen, P. Effects of green tea on insulin sensitivity, lipid profile and expression of PPARα and PPARγ and their target genes in obese dogs. Br. J. Nutr. 2008, 99, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Suemanotham, N.; Photcharatinnakorn, P.; Chantong, B.; Buranasinsup, S.; Phochantachinda, S.; Sakcamduang, W.; Reamtong, O.; Thiangtrongjit, T.; Chatchaisak, D. Curcuminoid supplementation in canine diabetic mellitus and its complications using proteomic analysis. Front. Vet. Sci. 2022, 9, 1057972. [Google Scholar] [CrossRef]
- Borin-Crivellenti, S.; de Crivellenti, L.Z.; Oliveira, F.R.; Costa, P.B.; Alvarenga, A.W.; Rezende, L.R.; Gouvêa, F.N.; Assef, N.D.; Branco, L.O. Effect of phytosterols on reducing low-density lipoprotein cholesterol in dogs. Domest. Anim. Endocrinol. 2021, 76, 106610. [Google Scholar] [CrossRef]
- Shanmuganayagam, D.; Beahm, M.R.; Osman, H.E.; Krueger, C.G.; Reed, J.D.; Folts, J.D. Grape seed and grape skin extracts elicit a greater antiplatelet effect when used in combination than when used individually in dogs and humans. J. Nutr. 2002, 132, 3592–3598. [Google Scholar] [CrossRef]
- Kolchin, I.N.; Maksiutina, N.P.; Balanda, P.P.; Luĭk, A.I.; Bulakh, V.N.; Moĭbenko, A.A. The cardioprotective action of quercetin in experimental occlusion and reperfusion of the coronary artery in dogs. Farmakol. Toksikol. 1991, 54, 20–23. [Google Scholar] [PubMed]
- Liu, X.; Chen, B.; Chen, J.; Wang, X.; Dai, X.; Li, Y.; Zhou, H.; Wu, L.-M.; Liu, Z.; Yang, Y. A cardiac-targeted nanozyme interrupts the inflammation-free radical cycle in myocardial infarction. Adv. Mater. 2024, 36, 2308477. [Google Scholar] [CrossRef]
- Ephraim, E.; Brockman, J.A.; Jewell, D.E. A diet supplemented with polyphenols, prebiotics and omega-3 fatty acids modulates the intestinal microbiota and improves the profile of metabolites linked with anxiety in dogs. Biology 2022, 11, 976. [Google Scholar] [CrossRef] [PubMed]
- Fragua, V.; Lepoudère, A.; Leray, V.; Baron, C.; Araujo, J.A.; Nguyen, P.; Milgram, N.W. Effects of dietary supplementation with a mixed blueberry and grape extract on working memory in aged beagle dogs. J. Nutr. Sci. 2017, 6, e35. [Google Scholar] [CrossRef] [PubMed]
- Sgorlon, S.; Stefanon, B.; Sandri, M.; Colitti, M. Nutrigenomic activity of plant derived compounds in health and disease: Results of a dietary intervention study in dog. Res. Vet. Sci. 2016, 109, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Chethan, G.E.; De, U.K.; Singh, M.K.; Chander, V.; Raja, R.; Paul, B.R.; Choudhary, O.P.; Thakur, N.; Sarma, K.; Prasad, H. Antioxidant supplementation during treatment of outpatient dogs with parvovirus enteritis ameliorates oxidative stress and attenuates intestinal injury: A randomized controlled trial. Vet. Anim. Sci. 2023, 21, 100300. [Google Scholar] [CrossRef]
- Park, H.; Park, S.; Bazer, F.W.; Lim, W.; Song, G. Myricetin treatment induces apoptosis in canine osteosarcoma cells by inducing DNA fragmentation, disrupting redox homeostasis, and mediating loss of mitochondrial membrane potential. J. Cell. Physiol. 2018, 233, 7457–7466. [Google Scholar] [CrossRef]
- Raghavan, M.; Knapp, D.W.; Bonney, P.L.; Dawson, M.H.; Glickman, L.T. Evaluation of the effect of dietary vegetable consumption on reducing risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. J. Am. Vet. Med. Assoc. 2005, 227, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Reichling, J.; Fitzi, J.; Fürst-Jucker, J.; Bucher, S.; Saller, R. Echinacea powder: Treatment for canine chronic and seasonal upper respiratory tract infections. Schweiz. Arch. Tierheilk. 2003, 145, 223–231. [Google Scholar] [CrossRef]
- Martello, E.; Perondi, F.; Bisanzio, D.; Lippi, I.; Meineri, G.; Gabriele, V. Antioxidant effect of a dietary supplement containing fermentative S-acetyl-glutathione and silybin in dogs with liver disease. Vet. Sci. 2023, 10, 131. [Google Scholar] [CrossRef]
- Perondi, F.; Bisanzio, D.; Adami, R.; Lippi, I.; Meineri, G.; Cutrignelli, M.I.; Martello, E. The effect of a diet supplement containing S-acetyl-glutathione (SAG) and other antioxidant natural ingredients on glutathione peroxidase in healthy dogs: A pilot study. Ital. J. Anim. Sci. 2023, 22, 589–593. [Google Scholar] [CrossRef]
- Thongma, N.; Sivamaruthi, B.S.; Bharathi, M.; Tansrisook, C.; Peerajan, S.; Tanongpitchayes, K.; Chawnan, N.; Rashmi, S.; Thongkorn, K.; Chaiyasut, C. Influence of gallic acid-containing mouth spray on dental health and oral microbiota of healthy dogs: A pilot study. Vet. Sci. 2023, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Musco, N.; Vassalotti, G.; Mastellone, V.; Cortese, L.; Della Rocca, G.; Molinari, M.L.; Calabrò, S.; Tudisco, R.; Cutrignelli, M.I.; Lombardi, P. Effects of a nutritional supplement in dogs affected by osteoarthritis. Vet. Med. Sci. 2019, 5, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australas. J. Anim. Sci. 2017, 30, 299. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. J. Clin. Investig. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Aatif, M. Current understanding of polyphenols to enhance bioavailability for better therapies. Biomedicines 2023, 11, 2078. [Google Scholar] [CrossRef]
- 57 Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Rubio, C.P.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Hernández-Ruiz, J.; Pardo-Marin, L.; Segarra, S.; Joaquín Ceron, J. Changes in serum biomarkers of oxidative stress after treatment for canine leishmaniosis in sick dogs. Comp. Immunol. Microbiol. Infect. Dis. 2016, 49, 51–57. [Google Scholar] [CrossRef]
- Rubio, C.P.; Yilmaz, Z.; Martínez-Subiela, S.; Kocaturk, M.; Hernández-Ruiz, J.; Yalcin, E.; Tvarijonaviciute, A.; Escribano, D.; Ceron, J.J. Serum antioxidant capacity and oxidative damage in clinical and subclinical canine ehrlichiosis. Res. Vet. Sci. 2017, 115, 301–306. [Google Scholar] [CrossRef]
- Rubio, C.P.; Martínez-Subiela, S.M.; Hernández-Ruiz, J.; Tvarijonaviciute, A.; Cerón, J.J. Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease. Vet. J. 2017, 221, 56–61. [Google Scholar] [CrossRef]
- Crnogaj, M.; Cerón, J.J.; Šmit, I.; Kiš, I.; Gotić, J.; Brkljačić, M.; Matijatko, V.; Rubio, C.P.; Kučer, N.; Mrljak, V. Relation of antioxidant status at admission and disease severity and outcome in dogs naturally infected with Babesia canis canis. BMC Vet. Res. 2017, 13, 114. [Google Scholar] [CrossRef]
- Rubio, C.P.; Hernández-Ruiz, J.; Martínez-Subiela, S.M.; Tvarijonaviciute, A.; Arnao, M.B.; Cerón, J.J. Validation of three automated assays for total antioxidant capacity (TAC) determination in canine serum samples. J. Vet. Diagn. Invest. 2016, 28, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Bian, Z.; Huang, H.; Liu, T.; Ren, R.; Chen, X.; Zhang, X.; Wang, Y.; Deng, B.; Zhang, L. Dietary strategies for relieving stress in pet dogs and cats. Antioxidants 2023, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H.; Russell, R.M. Essential nutrients: Food or supplements: Where should the emphasis be? JAMA 2005, 294, 351. [Google Scholar] [CrossRef]
- Jewell, D.E.; Motsinger, L.A.; Paetau-Robinson, I. Effect of dietary antioxidants on free radical damage in dogs and cats. J. Anim. Sci. 2024, 3, skae153. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pan, Z.; Yang, R.; Bi, Y.; Xiong, X. The canine gastrointestinal microbiota: Early studies and research frontiers. Gut Microbes 2020, 11, 635–654. [Google Scholar] [CrossRef]
- Lee, D.; Goh, T.W.; Kang, M.G.; Choi, H.J.; Yeo, S.Y.; Yang, J.; Huh, C.S.; Kim, Y.Y.; Kim, Y. Perspectives and advances in probiotics and the gut microbiome in companion animals. J. Anim. Sci. Technol. 2022, 64, 197–217. [Google Scholar] [CrossRef]
- Garrigues, Q.; Apper, E.; Rodiles, A.; Rovere, N.; Chastant, S.; Mila, H. Composition and evolution of the gut microbiota of growing puppies is impacted by their birth weight. Sci. Rep. 2023, 13, 14717. [Google Scholar] [CrossRef]
- Henkel, R.; Sandhu, I.S.; Agarwal, A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia 2019, 51, e13162. [Google Scholar] [CrossRef]
- Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Bork, P. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 2018, 6, 72. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Van Hée, V.F.; Bindels, L.B.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: Potential implication of the gut microbiota. Brit. J. Nutr. 2013, 109, 802–809. [Google Scholar] [CrossRef]
- Plamada, D.; Vodnar, D.C. Polyphenols-gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients 2022, 14, 137. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef]
- Boston, S.E.; Moens, N.M.M.; Kruth, S.A.; Southorn, E.P. Endoscopic evaluation of the gastroduodenalmucosa to determine the safety of short-term concurrent administration of meloxicam and dexamethasone in healthy dogs. Am. J. Vet. Res. 2003, 11, 1369–1375. [Google Scholar] [CrossRef]
- Mu, J.; Wang, L.; Lv, J.; Chen, Z.; Brennan, M.; Ma, Q.; Wang, W.; Liu, W.; Wang, J.; Brennan, C. Phenolics from sea buckthorn (Hippophae rhamnoides L.) modulate starch digestibility through physicochemical modifications brought about by starch—Phenolic molecular interactions. LWT Food Sci. Tech. 2022, 165, 113682. [Google Scholar] [CrossRef]
- Candellone, A.; Cerquetella, M.; Girolami, F.; Badino, P.; Odore, R. Acute diarrhea in dogs: Current management and potential role of dietary polyphenols supplementation. Antioxidants 2020, 9, 725. [Google Scholar] [CrossRef]
- Marchi, P.H.; Vendramini, T.H.A.; Perini, M.P.; Zafalon, R.V.A.; Amaral, A.R.; Ochamotto, V.A.; Da Silveira, J.C.; Dagli, M.L.Z.; Brunetto, M.A. Obesity, inflammation, and cancer in dogs: Review and perspectives. Front. Vet. Sci. 2022, 9, 1004122. [Google Scholar] [CrossRef]
- Ahuja, R.P.; Fletcher, J.M.; Granger, L.A.; Liu, C.C.; Miessler, B.; Mitchell, M.A. Changes in glucose tolerance and insulin secretion in a cohort of cats with chronic obesity. Can. J. Vet. Res. 2022, 86, 181–187. [Google Scholar]
- Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Carpi, S.; Massaro, M.; Pellegrino, M.; Polini, B.; Carluccio, M.A.; Wabitsch, M.; Verri, T.; Nieri, P.; De Caterina, R. Hydroxytyrosol modulates adipocyte gene and miRNA expression under inflammatory condition. Nutrients 2019, 11, 2493. [Google Scholar] [CrossRef] [PubMed]
- Loftus, J.P.; Wakshlag, J.J. Canine and feline obesity: A review of pathophysiology, epidemiology, and clinical management. Vet. Med. 2015, 6, 49–60. [Google Scholar]
- Pan, Y.; Spears, J.K.; Xu, H.; Bhatnagar, S. Effects of a therapeutic weight loss diet on weight loss and metabolic health in overweight and obese dogs. J. Anim. Sci. 2023, 101, skad183. [Google Scholar] [CrossRef]
- Rahman, S.U.; Huang, Y.; Zhu, L.; Chu, X.; Junejo, S.A.; Zhang, Y.; Khan, I.M.; Li, Y.; Feng, S.; Wu, J.; et al. Tea polyphenols attenuate liver inflammation by modulating obesity-related genes and down-regulating COX-2 and iNOS expression in high fat-fed dogs. BMC Vet. Res. 2020, 16, 234. [Google Scholar] [CrossRef] [PubMed]
- Jergens, A.E.; Guard, B.C.; Redfern, A.; Rossi, G.; Mochel, J.P.; Pilla, R.; Chandra, L.; Seo, Y.J.; Steiner, J.M.; Lidbury, J.; et al. Microbiota-related changes in unconjugated fecal bile acids are associated with naturally occurring, insulin-dependent diabetes mellitus in dogs. Front. Vet. Sci. 2019, 6, 199. [Google Scholar] [CrossRef]
- Xenoulis, P.G.; Levinski, M.D.; Suchodolski, J.S.; Steiner, J.M. Association of hypertriglyceridemia with insulin resistance in healthy miniature Schnauzers. J. Am. Vet. Med. Assoc. 2011, 238, 1011–1016. [Google Scholar] [CrossRef]
- Truett, A.A.; Borne, A.T.; Monteiro, M.P.; West, D.B. Composition of dietary fat affects blood pressure and insulin responses to dietary obesity in the dog. Obes. Res. 1998, 6, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.R.M.; Morrison, E.Y.S.A.; Ragoobirsingh, D. The effect of annatto on insulin binding properties in the dog. Phyt. Res. 2005, 19, 433–436. [Google Scholar] [CrossRef]
- Xenoulis, P.G.; Steiner, J.M. Canine hyperlipidaemia. J. Small Anim. Practic. 2015, 56, 595–605. [Google Scholar] [CrossRef]
- Toth, P.P.; Dayspring, T.D.; Pokrywka, G.S. Drug therapy for hypertriglyceridemia: Fibrates and omega-3 fatty acids. Curr. Atheroscler. Rep. 2009, 11, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Kolátorová, L.; Lapčík, O.; Stárka, L. Phytoestrogens and the intestinal microbiome. Physiol. Res. 2018, 67, S401–S408. [Google Scholar] [CrossRef]
- Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary flaxseed as a strategy for improving human health. Nutrients 2019, 11, 1171. [Google Scholar] [CrossRef]
- Arshad, M.S.; Ahmad, M.H. (Eds.) Functional Foods: Phytochemicals and Health Promoting Potential; IntechOpen Ltd.: London, UK, 2021. [Google Scholar]
- Dunlap, K.L.; Reynolds, A.J.; Duffy, L.K. Total antioxidant power in sled dogs supplemented with blueberries and the comparison of blood parameters associated with exercise. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2006, 143, 429–434. [Google Scholar] [CrossRef]
- Demrow, H.S.; Slane, P.R.; Folts, J.D. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 1995, 91, 1182–1188. [Google Scholar] [CrossRef]
- Osman, H.E.; Maalej, N.; Shanmuganayagam, D.; Folts, J.D. Grape juice but not orange or grapefruit juice inhibits platelet activity in dogs and monkeys. J. Nutr. 1998, 128, 2307–2312. [Google Scholar] [CrossRef]
- Sechi, S.; Fiore, F.; Chiavolelli, F.; Dimauro, C.; Nudda, A.; Cocco, R. Oxidative stress and food supplementation with antioxidants in therapy dogs. Can. J. Vet. Res. 2017, 81, 206–216. [Google Scholar]
- Freeman, L.M.; Rush, J.E.; Milbury, P.E.; Blumberg, J.B. Antioxidant status and biomarkers of oxidative stress in dogs with congestive heart failure. J. Vet. Intern. Med. 2005, 19, 537–541. [Google Scholar] [CrossRef]
- Freeman, L.M. Interventional nutrition for cardiac disease. Clin. Tech. Small Anim. Pract. 1998, 13, 232–237. [Google Scholar] [CrossRef]
- Sagols, E.; Priymenko, N. Oxidative stress in dog with heart failure: The role of dietary fatty acids and antioxidants. Vet. Med. Int. 2011, 2011, 180206. [Google Scholar] [CrossRef]
- Cotman, C.W.; Head, E.; Muggenburg, B.A.; Zicker, S.; Milgram, N.W. Brain aging in the canine: A diet enriched in antioxidants reduces cognitive dysfunction. Neurobiol. Aging 2002, 23, 809–818. [Google Scholar] [CrossRef]
- Dewey, C.W.; Davies, E.S.; Xie, H.; Wakshlag, J.J. Canine cognitive dysfunction: Pathophysiology, diagnosis, and treatment. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 477–499. [Google Scholar] [CrossRef]
- Head, E.; Thornton, P.L.; Tong, L.; Cotman, C.W. Initiation and propagation of molecular cascades in human brain aging: Insight from the canine model to promote successful aging. Prog. Neuropsychopharmacol. Biol. Psychiatry 2000, 24, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Osella, M.C.; Re, G.; Odore, R.; Girardi, C.; Badino, P.; Barbero, R.; Bergamasco, L. Canine cognitive dysfunction syndrome: Prevalence, clinical signs and treatment with a neuroprotective nutraceutical. Appl. Anim. Behav. Sci. 2007, 105, 297–310. [Google Scholar] [CrossRef]
- Head, E.; Liu, J.; Hagen, T.M.; Muggenburg, B.A.; Milgram, N.W.; Ames, B.N.; Cotman, C.W. Oxidative damage increases with age in a canine model of human brain aging. J. Neurochem. 2002, 82, 375–381. [Google Scholar] [CrossRef]
- Ikeda-Douglas, C.J.; Zicker, S.C.; Estrada, J.; Jewell, D.E.; Milgram, N.W. Prior experience, antioxidants, and mitochondrial cofactors improve cognitive function in aged beagles. Vet. Ther. 2004, 5, 5–16. [Google Scholar] [PubMed]
- Calder, P.C.; Jackson, A.A. Undernutrition, infection and immune function. Nutr. Res. Rev. 2000, 13, 3–29. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 2008, 8, 923–934. [Google Scholar] [CrossRef]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Albers, R.; Bourdet-Sicard, R.; Braun, D.; Calder, P.C.; Herz, U.; Lambert, C.; Lenoir-Wijnkoop, I.; Méheust, A.; Ouwehand, A.; Phothirath, P.; et al. Monitoring immune modulation by nutrition in the general population: Identifying and substantiating effects on human health. Br. J. Nutr. 2013, 2, S1–S30. [Google Scholar] [CrossRef]
- Atwal, J.; Joly, W.; Bednall, R.; Albanese, F.; Farquhar, M.; Holcombe, L.J.; Watson, P.; Harrison, M. Dietary supplementation with nucleotides, short-chain fructooligosaccharides, xylooligosaccharides, beta-carotene and vitamin E influences immune function in kittens. Animals 2023, 13, 3734. [Google Scholar] [CrossRef]
- Jewell, D.E.; Toll, P.; Wedekind, K.J.; Zicker, S.C. Effect of increasing dietary antioxidants on concentrations of vitamin E and total alkenals in serum of dogs and cats. Vet. Therapy 2000, 1, 264–272. [Google Scholar]
- Tizard, I.R. Veterinary Immunology: An Introduction, 7th ed.; Saunders, W.B.: Philadelphia, PA, USA, 2004. [Google Scholar]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, D.A.; Jackson, M.I.; Wernimont, S.M.; Feld, G.K.; Badri, D.V.; Brejda, J.J.; Cochrane, C.Y.; Gross, K.L. Adding a polyphenol-rich fiber bundle to food impacts the gastrointestinal microbiome and metabolome in dogs. Front. Vet. Sci. 2023, 9, 1039032. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.A. The aging immune system: Primer and prospectus. Science 1996, 273, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Ganju, L.; Padwad, Y.; Singh, R.; Karan, D.; Chanda, S.; Chopra, M.K.; Bhatnagar, P.; Kashyap, R.; Sawhney, R.C. Anti-inflammatory activity of seabuckthorn (Hippophae rhamnoides) leaves. Int. Immunopharmacol. 2005, 5, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.P.; Ganju, L.; Chanda, S.; Karan, D.; Sawhney, R.C. Aqueous extract of rhodiola imbricata rhizome stimulates toll like receptor 4, granzyme B and Th1 cytokines in-vitro. Immunobiology 2009, 214, 27–31. [Google Scholar] [CrossRef]
- Mishra, K.P.; Mishra, R.; Yadav, A.P.; Jayashankar, B.; Chanda, S.; Ganju, L. A comparative analysis of immunomodulatory potential of seabuckthorn leaf extract in young and old mice. Biomed. Aging Pathol. 2011, 1, 61–64. [Google Scholar] [CrossRef]
- Hall, J.A.; Picton, R.A.; Finneran, P.S.; Bird, K.E.; Skinner, M.M.; Jewell, D.E.; Zicker, S. Dietary antioxidants and behavioral enrichment enhance neutrophil phagocytosis in geriatric Beagles. Vet. Immunol. Immunopathol. 2006, 113, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Verlinden, A.; Hesta, M.; Millet, S.; Janssens, G.P.J. Food allergy in dogs and cats: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Chew, B.P.; Park, J.S.; Weng, B.C.; Wong, T.S.; Hayek, M.G.; Reinhart, G.A. Dietary beta-carotene is taken up by blood plasma and leukocytes in dogs. J. Nutr. 2000, 130, 1788–1791. [Google Scholar] [CrossRef]
- Chew, B.P.; Park, J.S.; Wong, T.S.; Kim, H.W.; Weng, B.B.C.; Byrne, K.M.; Hayek, M.G.; Reinhart, G.A. Dietary β-carotene stimulates cell-mediated and humoral immune response in dogs. J. Nutr. 2000, 130, 1910–1913. [Google Scholar] [CrossRef]
- Kim, H.W.; Chew, B.P.; Wong, T.S.; Park, J.S.; Weng, B.B.; Byrne, K.M.; Hayek, M.G.; Reinhart, G.A. Dietary lutein stimulates immune response in the canine. Vet. Immunol. Immunopathol. 2000, 74, 315–327. [Google Scholar] [CrossRef]
- Massimino, S.; Kearns, R.J.; Loos, K.M.; Burr, J.; Park, J.S.; Chew, B.; Adams, S.; Hayek, M.G. Effects of age and dietary β-carotene on immunological variables in dogs. J. Vet. Intern. Med. 2003, 17, 835–842. [Google Scholar] [PubMed]
- Shin, B.; Park, W. Zoonotic diseases and phytochemical medicines for microbial infections in veterinary science: Current state and future perspective. Front. Vet. Sci. 2018, 5, 166. [Google Scholar] [CrossRef] [PubMed]
- Soni, A.; Mishra, S.; Singh, N.; Pathak, R.; Sonkar, N.; Kashyap, A.; Das, S. Role of nutraceuticals in pet animals. Biot. Res. Today 2021, 3, 26–29. [Google Scholar]
- Worl Health Organization (WHO). Cancer. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 17 July 2024).
- Dobson, J.M.; Samuel, S.; Milstein, H.; Rogers, K.; Madera, J.L.N. Canine neoplasia in the UK: Estimates of incidence rates from a population of insured dogs. J. Small Anim. Pract. 2002, 43, 240–246. [Google Scholar] [CrossRef]
- Merlo, D.F.; Rossi, L.; Pellegrino, C.; Ceppi, M.; Cardellino, U.; Capurro, C.; Ratto, A.; Sambucco, P.L.; Sestito, V.; Tanara, G.; et al. Cancer incidence in pet dogs: Findings of the animal tumor registry of Genoa, Italy. J. Vet. Intern. Med. 2008, 22, 976–984. [Google Scholar] [CrossRef]
- Xia, W.; Gong, E.; Lin, Y.; Zheng, B.; Yang, W.; Li, T.; Zhang, S. Wild pink bayberry free phenolic extract induces mitochondria-dependent apoptosis and G0/G1 cell cycle arrest through p38/MAPK and PI3K/Akt pathway in MDA-MB-231 cancer cells. Food Sci. Hum. Wellness 2023, 12, 1510–1518. [Google Scholar] [CrossRef]
- Helmerick, E.C.; Loftus, J.P.; Wakshlag, J.J. The effects of baicalein on canine osteosarcoma cell proliferation and death. Vet. Comp. Oncol. 2014, 12, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Alwasel, S.H.; Harrath, A.H. The influence of plant isoflavones daidzein and equol on female reproductive processes. Pharmaceuticals 2021, 14, 373. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrition 2018, 10, 1618. [Google Scholar] [CrossRef]
- Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int. J. Mol. Sci. 2018, 19, 3568. [Google Scholar] [CrossRef] [PubMed]
- Gorlach, S.; Fichna, J.; Lewandowska, U. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett. 2015, 366, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Kondratyuk, T.P.; Adrian, J.A.; Wright, B.; Park, E.J.; van Breemen, R.B.; Morris, K.R.; Pezzuto, J.M. Evidence supporting the conceptual framework of cancer chemoprevention in canines. Sci. Rep. 2016, 6, 26500. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.; Alderete, K.S.; Grant, M.K.O.; Seelig, D.M.; Sharkey, L.C.; Zordoky, B.N.M. Anticancer effects of resveratrol in canine hemangiosarcoma cell lines. Vet. Comp. Oncol. 2018, 16, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, N.; Ishida, T.; Ishii, K.; Sato, A.; Dagli, M.L.Z.; Virgona, N.; Yano, T. Resveratrol can induce differentiating phenotypes in canine oral mucosal melanoma cells. J. Vet. Med. Sci. 2023, 85, 721–726. [Google Scholar] [CrossRef] [PubMed]
Polyphenol Subclasses | Food/Plant Sources |
---|---|
Non-Flavonoid Types | |
Simple phenols and phenolic acids | Coffee, olive, cabbage, apples, cherries, grapes, wine, artichoke, hawthorn, tomatoes, pears, ginger, basil, thyme, oregano, aloe, echinacea, strawberries, orange, pineapple, sunflower, blueberries, oats, rice, peanuts, MAPs |
Acetophenones | Almonds, cherries, honeysuckle, jasmine, strawberries |
Salicylates | Willow tree, Gaultheria fruits, poplar leaves |
Curcuminoids | Turmeric roots |
Lignans and neolignans | Linseeds, sesame seeds, chives, nuts, roots, leaves, Brasicaceae, spices, whole grains, strawberries |
Coumarins and furanocoumarins | Tonka beans, cinnamon, figs, celery, parsley, West Indian satinwood, citrus fruits |
Betalains (betacyanins and betaxanthins) | Caryophyllales order (cacti, carnations, amaranths, ice plants, beets) |
Stilbenes | Almond, cocoa seeds, grape seeds, grape skin, red wine, peanuts, blueberries, raspberries |
Quinones, naphthoquinones, naphthodiantrones, anthraquinones, and kavalactones | Black walnut, St John’s wort, rhubarb, buckthorn, knotgrass, kava plant |
Flavonoid types | |
Flavones | Celery, red pepper, lemon, onion, oregano, rosemary, parsley, MAPs, flowers of Trollius sp. |
Isoflavones | Peas, soybean, lentils, red kidney beans |
Flavanones | Grapefruit, oranges, tangerines, peppermint, lemons, limes, olives, MAPs |
Flavonols | Vitis grape berry skins, onions, leeks, broccoli, black tea, lettuce, apples, green tea, wine, dill leaves |
Flavanols | Tea, grapes, red wine, apples, blackberries, apricots, cocoa seeds |
Anthocyanins | Blackberries, cherries, strawberries, raspberries, chokeberries, tomatoes, grapes, green coffee, red cabbage, potatoes |
Tannins, and Gallo- and Ellagitannins | Bean seeds, persimmons, green coffee, mango, pomegranates, strawberries, walnuts, almonds |
Condensed tannins (proanthocyanidins) | Breakax (Schinopsis) wood, mimosa, spruce and pine barks, grape seeds, tropical woods |
Treatment Group | Source | Dosage/Duration | Effects | References |
---|---|---|---|---|
Gastrointestinal effects: | ||||
Beagle (n = 20) | Gallic acid | 0.02–0.08%/45 d | ↓ B/F ratio, P; ↑ A-O, A-I; alleviate I, OS; ↑ SCFAs; regulate serum LM (↓T, FD) and CM in feces; ↓ DR | [54] |
Dogs (n = 24) | Grape polyphenols | 1 or 3 mg/kg LW/28 d | E, Eu, F, Ph, SS, FP | [55] |
Breed dogs (n = 6) | Pomegranate peel extract. | 50 mg/kg BW/30 d | ↑ SCFAs; enhance GH (↓ G, C, GP, GS-t) | [56] |
Dogs (n = 30) | Green tea | 0.48–1.92% g/kg/18 weeks | ↑ F; ↓ B, Fu, | [57] |
Mongrel dogs (n = 20) | Seabuckthorn seed oil | 5 mL twice d till complete healing | ↑ WG, RDP, Hb, PCV, TEC | [58] |
American staffordshire terrier (n = 30) | Bromelain Quercetin of grape Lentinula edodes | 13.5–10 mg/g/28 d. Dosage 1 mg every 10 kg BW | ↑ FS, ↓ FC, FCo, FN-M, FI/S; improve GH, PPC | [59] |
Beagle puppies (n = 19) | Gallic acid | 500 mg/kg/weeks | ↑FAE, FSc, SCFAs, GP, LF; ↓MDA, ↓PB, ↓ES, ↓CSS1; AA (↓DR: ↓SCo, ↓HSP-70); alleviate OS, I and improve GH | [60] |
Obesity effects: | ||||
Beagle (n = 20) | Gallic acid | 0.08%/45 d | Regulate serum LM (↓ T, ↓ FD) and ↓ B/F ratio; ↓ P; no negative effect on BC; PO | [54] |
Dogs (n = 30) | Green tea | 0.48–0.96–1.92% g/kg/18 weeks | ↓ WG, ↓ I; anti-obesity properties | [57] |
Labrador Retrievers spayed/neutered (n = 14) | Soy isoflavones | 25% more than their maintenance energy requirement/12 month | Reducing body fat accumulation | [61] |
Labrador Retrievers (Obeses) (n = 30) | Soy germ meal | 579 mg/kg/6 month | ↑ BF; prevent LBM; promote: LW, MH (↓ BC, ↓ T, ↓ IS, ↓ L, ↓ PIGC); reduce CI (↓ CY, ↓ CH) | [62] |
Diabetes and insulin sensitivity effects: | ||||
Rottweiler (n = 45) | Rosemary leaves Basil leaves | 0.025–0.05%/8 weeks | ↓ SG; inhibite activity EA; ↑ IS, G, C, SD; ↓ Co, MD, LD; positive Pβ; ↑ CNMT | [63] |
Beagle insulin-resistant (n = 10) | Green tea | 80 mg/kg per d/12 weeks | ↑ ISI 60%, ↓ T 50%; improve I, LM; altered expression genes involved GC and LH | [64] |
Dogs induced myocardial infarction (n = 6) | Curcuminoids | 250 mg/180 d | ↓ OS, ↑ GSH/GSSG; improved IS sensitivity; reduce cardiovascular complications | [65] |
Fat metabolism effects: | ||||
Beagle (n = 8) | Phytosterols | 1300 mg/15 d | ↓ LDL, ↑ HDL; hypolipemiant hypolipemiant drugs (LM: T and BC) | [66] |
Dogs (n = 7) | Grape seed/skin | threshold doses (individually or in combination)/8 d | Inhibit platelet aggregation | [67] |
Cardiovascular effects: | ||||
Dogs induced myocardial infarction | Quercetin | 50 mg/kg/15 d | Cardioprotective; enhance CFLVM, CYC; ↓ FHR, ↓ CDS; prevent formation ITS | [68] |
Dogs induced myocardial infarction | Nanozime FeCurTA | 10 mg/kg i.v./30 d | ↓ IFS, ↑ LVEF, ↓ LV-ESV, ↓ LGE, ↓ T1 mapping, ↓ ECV, ↑ GLS, ↑ IVS, ↑ Ki67; preserve CF; inhibite CIY | [69] |
Neurological effects: | ||||
Senior Beagle (n = 40) | Tomato pomace | 106 mg/g/30 d | Plasma ↓ 4-EPS; ↑ fecal microbiota: Blautia, Parabacteroides, Odoribacter; improve anxiety-linked metabolites | [70] |
Senior Beagle (n = 24) | Polyphenol extracts (grape and blueberry) | 240–480 ppm/75 d | Improve WM and cognitive performance | [71] |
Immunological system effects: | ||||
Beagle (n = 20) | Gallic acid | 0.08%/45 d | ↓ SA in Fece; enhance immunity | [54] |
Dogs (n = 74) | Echinacea angust. Curcuma longa Vaccinium myrtillus Silybum marianum | EA 0.1 mg/kg BD/60 d CL 6.6 mg/kg BD/60 d VM 0.2 mg/kg BD/60 d SM 1.5 mg/kg BD/60 d | IMA, A-I, A-O, ↓ PIC, LPA | [72] |
Puppies (n = 45) | Resveratrol | 10 mg/Kg BW/7 d | ↓ OS; improve TLC and NC | [73] |
Cancer effects: | ||||
Canine osteosarcoma epithelial cells | Myricetin | 100 μM, dose-dependent | ↓ Osteosarcoma progression, cell division, DNA replication ↑ DNA fragmentation, ROS, mitochondrial damage, apoptosis induction Regulate several MAPK factors (AKT, ERK1/2, JNK, PI3k) | [74] |
92 adult Scottish Terriers with cell carcinoma and83 Scottish Terriers healthy | Supplemented diets with extra vegetables: yellow-vegs, green-vegs, and cruciferae-vegs | Extra vegs: Only once; Once a week; Three times a week. | Inverse relationship between vegs intake and cell carcinoma progression Green-vegs > yellow-vegs > Crucif-vegs > vitamin suplements | [75] |
Respiratory effects: | ||||
Dogs (n = 41) | Echinacea purpurea | 1 g/10 kg/8 weeks | ↓ Symptoms and improvement in 92% after 4 weeks | [76] |
Liver effects: | ||||
Dogs (n = 74) | Sylibum marianum | SM 1.5 mg/kg BD/60 d | ↓ ALT, ↑ PXA | [72] |
Dogs (n = 12) | Orange bioflavonoids Sylibum marianum | one tablet/15 kg/8 weeks | ↓ ALT, ↓ AST, ↓ ALP, ↓ GGT, ↓ BL; hepatoprotective activity | [77] |
American staffordshire terrier (n = 15) | Orange bioflavonoids Sylibum marianum S-acetyl-glutathione | one tablet/15 kg/35 d | Enhanced LBP; ↑ GP | [78] |
Dental effects: | ||||
Dogs (n = 38) | Gallic acid | 0.8% mouth spray/42 d | ↓ GI, ↓ PI, ↓ CI; altered oral microbiota | [79] |
Joint effects: | ||||
Dogs w/arthrosis (n = 20) | Supplement with different herbs | 0.5 mL/kg LW/90 d | Improving joints and reducing pains in dogs with advanced osteoarthritis | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Cano, D.; Arnao, M.B. Beneficial Effects of Nutraceuticals, Especially Polyphenols on Canine Health. Pets 2024, 1, 228-254. https://doi.org/10.3390/pets1030017
Ruiz-Cano D, Arnao MB. Beneficial Effects of Nutraceuticals, Especially Polyphenols on Canine Health. Pets. 2024; 1(3):228-254. https://doi.org/10.3390/pets1030017
Chicago/Turabian StyleRuiz-Cano, Domingo, and Marino B. Arnao. 2024. "Beneficial Effects of Nutraceuticals, Especially Polyphenols on Canine Health" Pets 1, no. 3: 228-254. https://doi.org/10.3390/pets1030017
APA StyleRuiz-Cano, D., & Arnao, M. B. (2024). Beneficial Effects of Nutraceuticals, Especially Polyphenols on Canine Health. Pets, 1(3), 228-254. https://doi.org/10.3390/pets1030017