Advanced Research of Rhizosphere Microbial Activity—Series II

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Agricultural Soils".

Deadline for manuscript submissions: closed (20 October 2024) | Viewed by 27453

Special Issue Editors


E-Mail Website
Guest Editor
Centre for Agricultural Research, Institute for Soil Sciences, Herman O. út 15., 1022 Budapest, Hungary
Interests: soil biology; microbial ecology; sodic soils; karst soils; long-term experiments; restoration ecology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
HUN-REN Centre for Agricultural Research, Institute for Soil Sciences, Herman O. út 15., H-1022 Budapest, Hungary
Interests: arbuscular mycorrhizal fungi (AMF); microbial inoculation; organic farming; long-term experiments; plant stress physiology; bioremediation/phytoremediation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The rhizosphere is one of the most important hotspots in soils and it harbors a huge number of microbial species, including archaea, bacteria and fungi. Root exudates serve as carbon and energy sources for heterotrophic microbes and have selective power to shape the microbial communities around root systems. The microbial activity of the rhizosphere can be one or two orders of magnitude higher than that of the surrounding bulk soil, and it is also a very dynamic and sensitive system. Microbes in the rhizosphere can aid plant nutrition and water uptake and promote plant growth by hormone and siderophore production; in addition, they can protect plants against pathogenic microbes, while in certain conditions some of them also become pathogenic. Climate change, land use change and different management options pose challenges to evaluating soil health in connection with plant–microbe interactions, and the microbial activity of the rhizosphere can be detected and measured in several ways. This Special Issue welcomes newly developed methods, such as community-level physiological profiling, the measurement of enzyme activity—alone or together with microbiome diversity by next-generation DNA sequencing—and other methodical approaches focusing on the microbial activity of the rhizosphere in all types of agricultural soils, including grassland and pasture soils.

Dr. Tibor Szili-Kovács
Dr. Tünde Takács
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rhizosphere
  • microbial activity
  • functional diversity
  • community-level physiological profile
  • soil health
  • bacterial and fungal community
  • PGPR bacteria
  • root exudates
  • root colonization
  • mycorrhizal fungi

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2533 KiB  
Article
Evaluating the Efficacy of Selected Plant Growth-Promoting Microorganisms in Optimizing Plant Growth and Soil Health in Diverse Soil Types
by Sándor Attila Pabar, Zsolt Kotroczó, Tünde Takács and Borbála Biró
Agriculture 2024, 14(9), 1586; https://doi.org/10.3390/agriculture14091586 - 12 Sep 2024
Viewed by 1908
Abstract
This study explores the efficacy of bio-efficient solutions, specifically plant growth-promoting microorganisms (PGPMs), in sustainable soil management. This research was conducted in 2020. It evaluates the impact of various single microbial inoculants, including Enterobacter ludwigii, Bacillus subtilis, Pseudomonas fluorescens, Kosakonia [...] Read more.
This study explores the efficacy of bio-efficient solutions, specifically plant growth-promoting microorganisms (PGPMs), in sustainable soil management. This research was conducted in 2020. It evaluates the impact of various single microbial inoculants, including Enterobacter ludwigii, Bacillus subtilis, Pseudomonas fluorescens, Kosakonia cowanii, and Trichoderma harzianum, on plant growth soil enzyme activity and organism abundance. Perennial ryegrass and mustard were used as test plants, in controlled environmental conditions. The results show generally positive effects of microbial inoculants on plant biomass (E. ludwigii increased ryegrass biomass by 9.75%, and P. fluorescens increased mustard biomass by up to 38.81% compared to the control) and on soil microbial activities. Our study further investigated the combined application of all these strains in five different soil types and textures. The results highlight the significance of soil physicochemical properties in determining inoculant efficacy; we found that clayey soils with higher colloid content support more robust microbial activity. Additionally, using natural clay minerals like alginite for enhancing soil conditions showed promising interactions with microbial inoculants, although application requires further optimization. These findings suggest that integrating microbial inoculants in sustainable agricultural practices could enhance plant growth, improve soil health, and reduce the need of chemical fertilizers. Future research should aim to refine the combinations and application methods of these bio-efficient solutions for broader agricultural applicability. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

16 pages, 946 KiB  
Article
Response of Biostimulants Based on Native Arbuscular Mycorrhizal Fungi of the Glomeraceae on Maize Yield in a Farming Environment
by Luckman Tokumbo Alao, Codjo Gaston Ouikoun, S. Mohamed Ismaël Hoteyi, Ricardos Mèvognon Aguégué, Abdel Djihal Koda, Sylvestre Abado Assogba, Olaréwadjou Amogou, Corentin Akpodé, Marcel Yévèdo Adoko, Nadège Adoukè Agbodjato, Nestor Ahoyo Adjovi, Adolphe Adjanohoun, Olubukola Oluranti Babalola and Lamine Baba-Moussa
Agriculture 2024, 14(6), 906; https://doi.org/10.3390/agriculture14060906 - 7 Jun 2024
Viewed by 1237
Abstract
In the face of persistent soil degradation in Benin caused by poor agricultural practices, including excessive use of chemical fertilizers, it is urgent to find solutions that take into account the microorganisms of interest. This study aimed to assess the effect of combining [...] Read more.
In the face of persistent soil degradation in Benin caused by poor agricultural practices, including excessive use of chemical fertilizers, it is urgent to find solutions that take into account the microorganisms of interest. This study aimed to assess the effect of combining three strains of indigenous arbuscular mycorrhizal fungi (AMF) on maize production in northern Benin. The study involved 34 growers in Ouénou, Bagou and Kokey. The experimental setup consisted of three elementary plots with three treatments. Growth parameters were measured every 15 days, from the 15th to the 60th day after sowing, on ten plants per plot. Plant nutritional status, grain yield and mycorrhization were measured. The results showed that biostimulant + 50% NPK_Urea (N = nitrogen, P = phosphorus and K = potassium) had similar positive effects on growth parameters to those induced by the application of 100% NPK_Urea. Gains of 30.25% to 36.35% were recorded in plant height at Kokey. On the other hand, biostimulant+ 50% NPK_Urea induced a better phosphorus uptake of 21.08% to 27.77%. In addition, the grain yield of mycorrhizal plants was 8.37% higher than that of plants receiving 100% NPK_Urea at Ouénou. These results show that this technology could be integrated into the agricultural system to promote sustainable maize growing in Benin. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

9 pages, 644 KiB  
Communication
The Effect of Combined Application of Biocontrol Microorganisms and Arbuscular Mycorrhizal Fungi on Plant Growth and Yield of Tomato (Solanum lycopersicum L.)
by Alaa Abdulkadhim A. Almuslimawi, Borbála Kuchár, Susana Estefania Araujo Navas, György Turóczi and Katalin Posta
Agriculture 2024, 14(5), 768; https://doi.org/10.3390/agriculture14050768 - 16 May 2024
Cited by 1 | Viewed by 1304
Abstract
Sustainable plant production requires less use of synthetic chemicals in plant nutrition and protection. Microbial products are among the most promising substitutes for chemicals. With the increasing popularity and availability of such products, it has become obligatory to use different microbes together. The [...] Read more.
Sustainable plant production requires less use of synthetic chemicals in plant nutrition and protection. Microbial products are among the most promising substitutes for chemicals. With the increasing popularity and availability of such products, it has become obligatory to use different microbes together. The effect of this has been tested in several studies, but their results have sometimes been contradictory depending on the microbial strains tested and the mode of application. We tested the effect of two commercially available antagonists and Funneliformis mosseae alone and in combination on tomato. Mycorrhizal treatment increased plant growth and yield, both alone and combined with the antagonists; however, mycorrhizal root colonization was not influenced by the antagonist. This treatment also led to a slight decrease in the occurrence of Trichoderma spp. on tomato roots but did not impede the colonization of roots by the applied Trichoderma strain. Our result confirmed that Trichoderma asperellum (T34) and Streptomyces griseoviridis (K61) can be safely combined with arbuscular mycorrhizal fungi (AMF), namely with F. mosseae. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

15 pages, 2699 KiB  
Article
Microbial Biomass and Rhizosphere Soil Properties in Response to Heavy Metal-Contaminated Flooding
by Tibor Szili-Kovács and Tünde Takács
Agriculture 2024, 14(5), 756; https://doi.org/10.3390/agriculture14050756 - 13 May 2024
Cited by 1 | Viewed by 1538
Abstract
Mining and metallurgy are the main sources of soil contamination with harmful metals, posing a significant threat to human health and ecosystems. River floodplains in the vicinity of metal mines or industrial plants are often subject to flooding with sediments containing heavy metals, [...] Read more.
Mining and metallurgy are the main sources of soil contamination with harmful metals, posing a significant threat to human health and ecosystems. River floodplains in the vicinity of metal mines or industrial plants are often subject to flooding with sediments containing heavy metals, which can be harmful to the soil ecosystem. This study aimed to investigate the microbial properties of the soil at a metal-contaminated site and to determine the significant relationships between the biological and chemical properties of the soil. The study site was located near the village of Gyöngyösoroszi, in the Mátra mountain region of Northwest Hungary. A phytoremediation experiment was conducted in a metal-polluted floodplain using willow and corn plantations. The soil basal respiration, substrate-induced respiration, soil microbial biomass carbon (MBC), acid phosphatase activities, and soil chemical properties were measured. The soil of the contaminated sites had significantly higher levels of As, Pb, Zn, Cu, Cd, and Ca, whereas the unpolluted sites had significantly higher levels of phosphorus and potassium. The substrate-induced respiration showed a positive correlation with MBC and negative correlations with the metabolic quotient (qCO2). The soil plasticity index and phosphorus showed a positive correlation with MBC, whereas salinity and the presence of Cd, Pb, Zn, As, and Cu showed a negative correlation. Acid phosphomonoesterase activity negatively correlated with the plant-available phosphorus content and MBC, but was positively correlated with the contents of toxic elements, including cadmium, lead, zinc, arsenic, and copper. This study found a significant correlation between the qCO2 and the toxic element content. This suggests that an enhanced metabolic quotient (qCO2), together with a decreased MBC/SOC ratio, could be used to indicate the harmful effect of soil contamination by heavy metals in floodplain soils. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

11 pages, 1233 KiB  
Article
Growth Performance and Osmolyte Regulation of Drought-Stressed Walnut Plants Are Improved by Mycorrhiza
by Yue Wen, Li-Jun Zhou, Yong-Jie Xu, Abeer Hashem, Elsayed Fathi Abd_Allah and Qiang-Sheng Wu
Agriculture 2024, 14(3), 367; https://doi.org/10.3390/agriculture14030367 - 25 Feb 2024
Cited by 1 | Viewed by 1546
Abstract
This study aims to evaluate whether a selected arbuscular mycorrhizal fungus, Diversispora spurca, improves growth in drought-stressed walnut (Juglans regia L. cv. Qingxiang) plants and whether this improvement is associated with changes in osmolyte (fructose, glucose, sucrose, soluble protein, proline, and [...] Read more.
This study aims to evaluate whether a selected arbuscular mycorrhizal fungus, Diversispora spurca, improves growth in drought-stressed walnut (Juglans regia L. cv. Qingxiang) plants and whether this improvement is associated with changes in osmolyte (fructose, glucose, sucrose, soluble protein, proline, and betaine) levels. After 60 days of soil drought treatment (50% of maximum field water-holding capacity), root D. spurca colonization rate and soil mycelium length decreased by 13.57% and 64.03%, respectively. Soil drought also inhibited the growth performance of aboveground (stem diameter, leaf number, leaf biomass, and stem biomass) and underground (root projected area, surface area, and average diameter) parts, with uninoculated plants showing a stronger inhibition than D. spurca-inoculated plants. D. spurca significantly increased these growth variables, along with aboveground part variables and root areas being more prominent under drought stress versus non-stress conditions. Although drought treatment suppressed the chlorophyll index and nitrogen balance index in leaves, mycorrhizal inoculation significantly increased these indices. Walnut plants were able to actively increase leaf fructose, glucose, sucrose, betaine, and proline levels under such drought stress. Inoculation of D. spurca also significantly increased leaf fructose, glucose, sucrose, betaine, proline, and soluble protein levels under drought stress and non-stress, with the increasing trend in betaine and soluble protein being higher under drought stress versus non-stress. Drought stress dramatically raised leaf hydrogen peroxide (H2O2) levels in both inoculated and uninoculated plants, while mycorrhizal plants presented significantly lower H2O2 levels, with the decreasing trend higher under drought stress versus non-stress. In conclusion, D. spurca symbiosis can increase the growth of drought-stressed walnut plants, associated with increased osmolyte levels and decreased H2O2 levels. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

11 pages, 2404 KiB  
Article
Serendipita indica: A Biostimulant Enhancing Low-Temperature Tolerance and Active Constituent Levels in Polygonum cuspidatum
by Junhao Shen and Yongqin Chen
Agriculture 2024, 14(1), 7; https://doi.org/10.3390/agriculture14010007 - 20 Dec 2023
Viewed by 1383
Abstract
Polygonum cuspidatum is a traditional medicinal plant enriched with resveratrol and polydatin. However, low temperatures reduce the medicinal component contents of P. cuspidatum, and prolonged low temperatures also affect the growth and survival of P. cuspidatum at the seedling stage. It is [...] Read more.
Polygonum cuspidatum is a traditional medicinal plant enriched with resveratrol and polydatin. However, low temperatures reduce the medicinal component contents of P. cuspidatum, and prolonged low temperatures also affect the growth and survival of P. cuspidatum at the seedling stage. It is unclear whether a culturable endophytic fungus Serendipita indica is able to enhance P. cuspidatum’s low-temperature tolerance and medicinal components. The objective of this study was to examine the biomass, leaf gas exchange, antioxidant enzyme activity, proline levels, medicinal constituent levels, and the expression of the resveratrol synthase (PcRS) and resveratrol-forming stilbene synthase 11 (PcRS11) genes of potted P. cuspidatum plants inoculated with S. indica at low temperatures (10 °C/6 °C, 12 h/12 h, day/night temperature). The six-week low-temperature treatment significantly reduced the root fungal colonization, biomass production, and leaf gas exchange variables, whereas S. indica inoculation significantly increased shoot and root biomass, photosynthetic rate, stomatal conductance, and transpiration rate at low temperatures. S. indica inoculation significantly increased superoxide dismutase and catalase activity as well as proline levels in leaves at low temperatures. The magnitude of root chrysophanol, emodin, polydatin, and resveratrol levels decreased by low temperatures was greater in uninoculated plants than in inoculated plants. Inoculation of S. indica, on the other hand, significantly increased the four medicinal component levels in roots at low temperatures, with a greater magnitude rise in chrysophanol, polydatin, and resveratrol at low temperatures than at suitable temperatures. The low-temperature treatment down-regulated the expression of PcRS and PcRS11 genes in roots, while S. indica up-regulated the expression of PcRS and PcRS11 genes at low temperatures. This implies that S. indica acts as a powerful microbial stimulant on P. cuspidatum to promote low-temperature resistance and medicinal component levels. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

18 pages, 3056 KiB  
Article
Effects of Altitude and Continuous Cropping on Arbuscular Mycorrhizal Fungi Community in Siraitia grosvenorii Rhizosphere
by Limin Yu, Zhongfeng Zhang, Longwu Zhou and Kechao Huang
Agriculture 2023, 13(8), 1548; https://doi.org/10.3390/agriculture13081548 - 2 Aug 2023
Cited by 5 | Viewed by 4211
Abstract
Siraitia grosvenorii, a medicinal plant with continuous cropping, is cultivated in southern China. Changes in the soil microbial community during continuous cropping can cause soil-borne diseases in S. grosvenorii. This experimental study aimed to determine the differences in the arbuscular mycorrhizal [...] Read more.
Siraitia grosvenorii, a medicinal plant with continuous cropping, is cultivated in southern China. Changes in the soil microbial community during continuous cropping can cause soil-borne diseases in S. grosvenorii. This experimental study aimed to determine the differences in the arbuscular mycorrhizal fungi (AMF) community structure and root colonization in the rhizosphere soil of S. grosvenorii with different continuous cropping years and altitudes. We tested three altitude gradients (low, 200–300 m; middle, 500–600 m; and high, 700–800 m) and four continuous cropping years (1, 2, 3, and 5 years). AMF colonization, along with AMF spore density, and the soil physicochemical properties of S. grosvenorii roots at different altitudes and continuous cropping years were determined. Illumina high-throughput sequencing was used to determine the molecular diversity of AMF in the rhizosphere of S. grosvenorii as they exhibited a symbiotic relationship. The AMF species in the rhizosphere soil of S. grosvenorii included 28 species of nine genera, including Glomus, Claroideoglomus, Acaulospora, Paraglomus, Ambispora, and so on. With an increasing altitude, the AMF colonization of S. grosvenorii roots increased significantly (p < 0.01); available phosphorus (AP) content was negatively correlated with AMF colonization (p < 0.01). Glomus and Paraglomus were the common dominant genera in the rhizosphere soil of S. grosvenorii planted for 2–5 years at a low altitude and 1 year at middle and high altitudes. The average relative abundance of Glomus increased with increasing continuous cropping years and altitude in the low-altitude and 1-year S. grosvenorii areas, respectively. Slightly acidic rhizosphere soil contributed to AMF colonization and improved the richness and diversity of the AMF community. Our results showed that altitude, AP, and pH are essential factors for predicting AMF infection and community changes in the S. grosvenorii rhizosphere. Here, Illumina high-throughput sequencing was used to study the species resources and community composition of mycorrhizal fungi in S. grosvenorii in the hilly areas of Guangxi, China. This study provides a theoretical basis for the application and practice of mycorrhizal fungi including the isolation and screening of dominant strains, inoculation of mycorrhizal fungi, and exploration of the effects of mycorrhizal fungi on the growth and active ingredients of medicinal plants. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 1575 KiB  
Review
Rhizobia: A Promising Source of Plant Growth-Promoting Molecules and Their Non-Legume Interactions: Examining Applications and Mechanisms
by Sara Fahde, Said Boughribil, Badreddine Sijilmassi and Ahmed Amri
Agriculture 2023, 13(7), 1279; https://doi.org/10.3390/agriculture13071279 - 21 Jun 2023
Cited by 46 | Viewed by 13540
Abstract
For over a century, the scientific community has had a comprehensive understanding of how rhizobia can promote the growth of legumes by forming nitrogen fixing nodules. Despite this knowledge, the interaction of rhizobia with non-legumes has remained largely ignored as a subject of [...] Read more.
For over a century, the scientific community has had a comprehensive understanding of how rhizobia can promote the growth of legumes by forming nitrogen fixing nodules. Despite this knowledge, the interaction of rhizobia with non-legumes has remained largely ignored as a subject of study until more recent decades. In the last few years, research has shown that rhizobia can also associate with non-legume roots, which ultimately leads to the stimulation of growth through diverse direct and indirect mechanisms. For example, rhizobia can enhance growth through phytohormones production, the improvement of plant nutrient uptake, such as the solubilization of precipitated phosphorus, the production of siderophores to address iron needs, and also the reduction of ethylene levels through the ACC deaminase enzyme to cope with drought stress. Additionally, rhizobia can improve, indirectly, non-legume growth through biocontrol of pathogens and the induction of systemic resistance in the host plant. It can also increase root adherence to soil by releasing exopolysaccharides, which regulate water and soil nutrient movement. The objective of this review is to assess and analyze the existing knowledge and information regarding the mechanisms through which rhizobia promote the growth of non-legumes. By conducting a comprehensive analysis of these findings, we aim to gain new insights into the development of Rhizobium/non-legume interactions. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

Back to TopTop