Targeting Tumor Cells with Antibodies Enhances Anti-Tumor Immunity

A special issue of Antibodies (ISSN 2073-4468). This special issue belongs to the section "Antibody-Based Therapeutics".

Deadline for manuscript submissions: closed (20 November 2022) | Viewed by 5417

Special Issue Editor


E-Mail Website
Guest Editor
Department of Immunology, Peking University Health Science Center, Beijing, China
Interests: immunoglobulin; tumor immunotherapy; tumor microenvironment

Special Issue Information

Dear Colleagues,

In recent years, anti-tumor antibodies account for half of the approved antibody drugs in the world. With the research and development of new antibody drugs, and the continuous expansion of the indications of listed antibody drugs in the field of cancer, the market growth of anti-tumor antibody drugs is obvious. However, the antibody drugs that target tumor cells with antibodies to enhance anti-tumor immunotherapy are still severely insufficient. Currently, only  PD-1/PD-L1 and CTLA-4  antibodies were applied in clinical treatment. However, in fact, only 20–30% of patients benefit from this immunotherapy, so it is urgent to find new targets and therapeutic antibodies to enhance tumor immunotherapy. This Special Issue aims to publish the research findings of antibodies enhancing tumor immunotherapy drugs and novel strategies related to enhancing tumor immune antibodies, and promote the research and development of anti-tumor immune antibody drugs.

Prof. Dr. Xiaoyan Qiu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibodies is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • anti-tumor antibodies
  • tumor targets
  • tumor antigen
  • tumor immunotherapy
  • monoclonal antibodies
  • therapeutic antibodies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

24 pages, 3262 KiB  
Review
Delivery of Drugs into Cancer Cells Using Antibody–Drug Conjugates Based on Receptor-Mediated Endocytosis and the Enhanced Permeability and Retention Effect
by Toshihiko Tashima
Antibodies 2022, 11(4), 78; https://doi.org/10.3390/antib11040078 - 19 Dec 2022
Cited by 12 | Viewed by 4983
Abstract
Innumerable people worldwide die of cancer every year, although pharmaceutical therapy has actualized many benefits in human health. For background, anti-cancer drug development is difficult due to the multifactorial pathogenesis and complicated pathology of cancers. Cancer cells excrete hydrophobic low-molecular anti-cancer drugs by [...] Read more.
Innumerable people worldwide die of cancer every year, although pharmaceutical therapy has actualized many benefits in human health. For background, anti-cancer drug development is difficult due to the multifactorial pathogenesis and complicated pathology of cancers. Cancer cells excrete hydrophobic low-molecular anti-cancer drugs by overexpressed efflux transporters such as multiple drug resistance 1 (MDR1) at the apical membrane. Mutation-driven drug resistance is also developed in cancer. Moreover, the poor distribution of drug to cancer cells is a serious problem, because patients suffer from off-target side effects. Thus, highly selective and effective drug delivery into solid cancer cells across the membrane should be established. It is known that substances (10–100 nm in diameter) such as monoclonal antibodies (mAbs) (approximately 14.2 nm in diameter) or nanoparticles spontaneously gather in solid tumor stroma or parenchyma through the capillary endothelial fenestration, ranging from 200–2000 nm, in neovasculatures due to the enhanced permeability and retention (EPR) effect. Furthermore, cancer antigens, such as HER2, Nectin-4, or TROP2, highly selectively expressed on the surface of cancer cells act as a receptor for receptor-mediated endocytosis (RME) using mAbs against such antigens. Thus, antibody–drug conjugates (ADCs) are promising anti-cancer pharmaceutical agents that fulfill accurate distribution due to the EPR effect and due to antibody–antigen binding and membrane permeability owing to RME. In this review, I introduce the implementation and possibility of highly selective anti-cancer drug delivery into solid cancer cells based on the EPR effect and RME using anti-cancer antigens ADCs with payloads through suitable linkers. Full article
(This article belongs to the Special Issue Targeting Tumor Cells with Antibodies Enhances Anti-Tumor Immunity)
Show Figures

Figure 1

Back to TopTop