Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7117 KiB  
Article
Thermal Modelling Utilizing Multiple Experimentally Measurable Parameters
by Anosh Mevawalla, Yasmin Shabeer, Manh Kien Tran, Satyam Panchal, Michael Fowler and Roydon Fraser
Batteries 2022, 8(10), 147; https://doi.org/10.3390/batteries8100147 - 29 Sep 2022
Cited by 64 | Viewed by 4720
Abstract
This paper presents three equivalent thermal circuit models with multiple input parameters, namely, the state of health (SOH), state of charge (SOC), current and temperature. Typical physiochemical models include parameters such as porosity and tortuosity, which are not easily experimentally available; this model [...] Read more.
This paper presents three equivalent thermal circuit models with multiple input parameters, namely, the state of health (SOH), state of charge (SOC), current and temperature. Typical physiochemical models include parameters such as porosity and tortuosity, which are not easily experimentally available; this model allows for model parameters such as the internal impedance to be easily estimated using more practical inputs. The paper models the internal impedance resistance of a LiFePO4 battery at five different ambient temperatures (5, 15, 25, 35, 45 °C), at three different discharge rates (1C, 2C, 3C) and at three different SOHs (90%, 83%, 65%). The internal impedance surface fit experimental measurements with a Pearson coefficient of 0.945. Three thermal models were then created that implemented the internal resistance model. The first two thermal models were 0D models that did not include the influence of the thermal conductivity of the battery. The first model assumed simple heating through internal resistance and convection energy loss, while the second also included the Bernardi Reversible heat term. The final third model was a 2D model that included all previous heat source terms as well as tab heating. The 2D model was solved using a simple Euler method and finite center difference. The R2 values for the 0D thermal models were 0.9964 and 0.9962 for the simple internal resistance and reversible heating models, respectively. The R2 value for the 2D thermal model was 0.996. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

15 pages, 6795 KiB  
Article
A Unified Power Converter for Solar PV and Energy Storage in dc Microgrids
by Sergio Coelho, Vitor Monteiro, Tiago J. C. Sousa, Luis A. M. Barros, Delfim Pedrosa, Carlos Couto and Joao L. Afonso
Batteries 2022, 8(10), 143; https://doi.org/10.3390/batteries8100143 - 25 Sep 2022
Cited by 5 | Viewed by 2786
Abstract
This paper deals with the development and experimental validation of a unified power converter for application in dc microgrids, contemplating the inclusion of solar photovoltaic (PV) panels and energy storage systems (ESS), namely batteries. Considering the limitations presented by the current structure of [...] Read more.
This paper deals with the development and experimental validation of a unified power converter for application in dc microgrids, contemplating the inclusion of solar photovoltaic (PV) panels and energy storage systems (ESS), namely batteries. Considering the limitations presented by the current structure of the power grid, mostly highlighted by the accentuated integration of emerging technologies (ESS, renewables, electric vehicles, and electrical appliances that natively operate in dc), it is extremely pertinent to adopt new topologies, architectures, and paradigms. In particular, decentralized power systems, unified topologies, and correspondent control algorithms are representative of a new trend towards a reduction in the number of power converters. Thus, the developed solution is designed to operaSAVE-15te at a nominal power of 3.6 kW, with a switching frequency of 100 kHz, and in four operation modes concerning power flow: (i) solar PV panels to batteries (PV2B); (ii) solar PV panels to dc grid (PV2G); (iii) batteries to dc grid (B2G); (iv) dc grid to batteries (G2B). Moreover, a dual active bridge converter guarantees galvanic isolation, while two back-end dc–dc converters are responsible for interfacing solar PV panels and batteries. The experimental validation of the proposed unified power converter proves its application value to self-consumption production units. Full article
(This article belongs to the Collection Advances in Battery Energy Storage and Applications)
Show Figures

Figure 1

19 pages, 2093 KiB  
Article
Organic Rankine Cycle as the Waste Heat Recovery Unit of Solid Oxide Fuel Cell: A Novel System Design for the Electric Vehicle Charging Stations Using Batteries as a Backup/Storage Unit
by Hossein Pourrahmani, Chengzhang Xu and Jan Van herle
Batteries 2022, 8(10), 138; https://doi.org/10.3390/batteries8100138 - 22 Sep 2022
Cited by 3 | Viewed by 2786
Abstract
The novelty of this study is to suggest a novel design for electric vehicle charging stations using fuel cell technology. The proposed system benefits from the Organic Rankine Cycle (ORC) to utilize the exhaust energy of the Solid Oxide Fuel Cell (SOFC) stacks [...] Read more.
The novelty of this study is to suggest a novel design for electric vehicle charging stations using fuel cell technology. The proposed system benefits from the Organic Rankine Cycle (ORC) to utilize the exhaust energy of the Solid Oxide Fuel Cell (SOFC) stacks in addition to the Lithium-Ion battery to improve the efficiency by partial-load operation of the stacks at night. The study is supported by the thermodynamic analysis to obtain the characteristics of the system in each state point. To analyze the operation of the system during the partial-load operation, the dynamic performance of the system was developed during the day. Furthermore, the environmental impacts of the system were evaluated considering eighteen parameters using a life-cycle assessment (LCA). LCA results also revealed the effects of different fuels and working fluids for the SOFC stacks and ORC, respectively. Results show that the combination of SOFC and ORC units can generate 264.02 kWh with the respective overall energy and exergy efficiencies of 48.96% and 48.51%. The suggested 264.02 kWh contributes to global warming (kg CO2 eq) by 5.17 × 105, 8.36 × 104, 2.5 × 105, 1.98 × 105, and 6.79 × 104 using methane, bio-methanol, natural gas, biogas, and hydrogen as the fuel of the SOFC stacks. Full article
Show Figures

Figure 1

12 pages, 3260 KiB  
Review
Redox Evolution of Li-Rich Layered Cathode Materials
by Liang Fang, Mingzhe Chen, Kyung-Wan Nam and Yong-Mook Kang
Batteries 2022, 8(10), 132; https://doi.org/10.3390/batteries8100132 - 21 Sep 2022
Cited by 11 | Viewed by 4384
Abstract
Li-rich layered oxides utilizing reversible oxygen redox are promising cathodes for high-energy-density lithium-ion batteries. However, they exhibit different electrochemical profiles before and after oxygen redox activation. Therefore, advanced characterization techniques have been developed to explore the fundamental understanding underlying their unusual phenomenon, such [...] Read more.
Li-rich layered oxides utilizing reversible oxygen redox are promising cathodes for high-energy-density lithium-ion batteries. However, they exhibit different electrochemical profiles before and after oxygen redox activation. Therefore, advanced characterization techniques have been developed to explore the fundamental understanding underlying their unusual phenomenon, such as the redox evolution of these materials. In this review, we present the general redox evolution of Li-rich layered cathodes upon activation of reversible oxygen redox. Various synchrotron X-ray spectroscopy methods which can identify charge compensation by cations and anions are summarized. The case-by-case redox evolution processes of Li-rich 3d/4d/5d transition metal O3 type layered cathodes are discussed. We highlight that not only the type of transition metals but also the composition of transition metals strongly affects redox behavior. We propose further studies on the fundamental understanding of cationic and anionic redox mixing and the effect of transition metals on redox behavior to excite the full energy potential of Li-rich layered cathodes. Full article
Show Figures

Figure 1

17 pages, 11524 KiB  
Article
Understanding Voltage Behavior of Lithium-Ion Batteries in Electric Vehicles Applications
by Foad H. Gandoman, Adel El-Shahat, Zuhair M. Alaas, Ziad M. Ali, Maitane Berecibar and Shady H. E. Abdel Aleem
Batteries 2022, 8(10), 130; https://doi.org/10.3390/batteries8100130 - 20 Sep 2022
Cited by 15 | Viewed by 6738
Abstract
Electric vehicle (EV) markets have evolved. In this regard, rechargeable batteries such as lithium-ion (Li-ion) batteries become critical in EV applications. However, the nonlinear features of Li-ion batteries make their performance over their lifetime, reliability, and control more difficult. In this regard, the [...] Read more.
Electric vehicle (EV) markets have evolved. In this regard, rechargeable batteries such as lithium-ion (Li-ion) batteries become critical in EV applications. However, the nonlinear features of Li-ion batteries make their performance over their lifetime, reliability, and control more difficult. In this regard, the battery management system (BMS) is crucial for monitoring, handling, and improving the lifespan and reliability of this type of battery from cell to pack levels, particularly in EV applications. Accordingly, the BMS should control and monitor the voltage, current, and temperature of the battery system during the lifespan of the battery. In this article, the BMS definition, state of health (SoH) and state of charge (SoC) methods, and battery fault detection methods were investigated as crucial aspects of the control strategy of Li-ion batteries for assessing and improving the reliability of the system. Moreover, for a clear understanding of the voltage behavior of the battery, the open-circuit voltage (OCV) at three ambient temperatures, 10 °C, 25 °C, and 45 °C, and three different SoC levels, 80%, 50%, and 20%, were investigated. The results obtained showed that altering the ambient temperature impacts the OCV variations of the battery. For instance, by increasing the temperature, the voltage fluctuation at 45 °C at low SoC of 50% and 20% was more significant than in the other conditions. In contrast, the rate of the OCV at different SoC in low and high temperatures was more stable. Full article
Show Figures

Figure 1

18 pages, 2468 KiB  
Article
A Novel Experimental Technique for Use in Fast Parameterisation of Equivalent Circuit Models for Lithium-Ion Batteries
by Mohammad Amin Samieian, Alastair Hales and Yatish Patel
Batteries 2022, 8(9), 125; https://doi.org/10.3390/batteries8090125 - 13 Sep 2022
Cited by 12 | Viewed by 3389
Abstract
Battery models are one of the most important tools for understanding the behaviour of batteries. This is particularly important for the fast-moving electrical vehicle industry, where new battery chemistries are continually being developed. The main limiting factor on how fast battery models can [...] Read more.
Battery models are one of the most important tools for understanding the behaviour of batteries. This is particularly important for the fast-moving electrical vehicle industry, where new battery chemistries are continually being developed. The main limiting factor on how fast battery models can be developed is the experimental technique used for collection of data required for model parametrisation. Currently, this is a very time-consuming process. In this paper, a fast novel parametrisation testing technique is presented. A model is then parametrised using this testing technique and compared to a model parametrised using current common testing techniques. This comparison is conducted using a WLTP (worldwide harmonised light vehicle test procedure) drive cycle. As part of the validation, the experiments were conducted at different temperatures and repeated using two different temperature control methods: climate chamber and a Peltier element temperature control method. The new technique introduced in this paper, named AMPP (accelerated model parametrisation procedure), is as good as GITT (galvanostatic intermittent titration technique) for parametrisation of ECMs (equivalent circuit models); however, it is 90% faster. When using experimental data from a climate chamber, a model parametrised using GITT was marginally better than AMPP; however, when using experimental data using conductive control, such as the ICP (isothermal control platform), a model parametrised using AMPP performed as well as GITT at 25 °C and better than GITT at 10 °C. Full article
Show Figures

Figure 1

23 pages, 32545 KiB  
Review
Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects
by Zeyu Xu and Maochun Wu
Batteries 2022, 8(9), 117; https://doi.org/10.3390/batteries8090117 - 6 Sep 2022
Cited by 15 | Viewed by 7369
Abstract
Safe and low-cost zinc-based flow batteries offer great promise for grid-scale energy storage, which is the key to the widespread adoption of renewable energies. However, advancement in this technology is considerably hindered by the notorious zinc dendrite formation that results in low Coulombic [...] Read more.
Safe and low-cost zinc-based flow batteries offer great promise for grid-scale energy storage, which is the key to the widespread adoption of renewable energies. However, advancement in this technology is considerably hindered by the notorious zinc dendrite formation that results in low Coulombic efficiencies, fast capacity decay, and even short circuits. In this review, we first discuss the fundamental mechanisms of zinc dendrite formation and identify the key factors affecting zinc deposition. Then, strategies to regulate zinc deposition are clarified and discussed based on electrode, electrolyte, and membrane. The underlying mechanisms, advantages, and shortcomings of each strategy are elaborated. Finally, the remaining challenges and perspectives of zinc-based flow batteries are presented. The review may provide promising directions for the development of dendrite-free zinc-based flow batteries. Full article
(This article belongs to the Special Issue Redox Flow Batteries: Recent Advances and Perspectives)
Show Figures

Figure 1

26 pages, 11094 KiB  
Review
Echelon Utilization of Retired Power Lithium-Ion Batteries: Challenges and Prospects
by Ningbo Wang, Akhil Garg, Shaosen Su, Jianhui Mou, Liang Gao and Wei Li
Batteries 2022, 8(8), 96; https://doi.org/10.3390/batteries8080096 - 18 Aug 2022
Cited by 33 | Viewed by 5299
Abstract
The explosion of electric vehicles (EVs) has triggered massive growth in power lithium-ion batteries (LIBs). The primary issue that follows is how to dispose of such large-scale retired LIBs. The echelon utilization of retired LIBs is gradually occupying a research hotspot. Solving the [...] Read more.
The explosion of electric vehicles (EVs) has triggered massive growth in power lithium-ion batteries (LIBs). The primary issue that follows is how to dispose of such large-scale retired LIBs. The echelon utilization of retired LIBs is gradually occupying a research hotspot. Solving the issue of echelon utilization of large-scale retired power LIBs brings not only huge economic but also produces rich environmental benefits. This study systematically examines the current challenges of the cascade utilization of retired power LIBs and prospectively points out broad prospects. Firstly, the treatments of retired power LIBs are introduced, and the performance evaluation methods and sorting and regrouping methods of retired power LIBs are comprehensively reviewed for echelon utilization. Then, the problems faced by the scenario planning and economic research of the echelon utilization of retired power LIBs are analyzed, and value propositions are put forward. Secondly, this study summarizes the technical challenges faced by echelon utilization in terms of security, performance evaluation methods, supply and demand chain construction, regulations, and certifications. Finally, the future research prospects of echelon utilization are discussed. In the foreseeable future, technologies such as standardization, cloud technology, and blockchain are urgently needed to maximize the industrialization of the echelon utilization of retired power LIBs. Full article
(This article belongs to the Special Issue Trends and Prospects in Lithium-Ion Batteries)
Show Figures

Figure 1

18 pages, 2857 KiB  
Article
Effects of Cell Design Parameters on Zinc-Air Battery Performance
by Cian-Tong Lu, Zhi-Yan Zhu, Sheng-Wen Chen, Yu-Ling Chang and Kan-Lin Hsueh
Batteries 2022, 8(8), 92; https://doi.org/10.3390/batteries8080092 - 15 Aug 2022
Cited by 11 | Viewed by 4418
Abstract
Zn-air batteries have attracted considerable attention from researchers owing to their high theoretical energy density and the abundance of zinc on Earth. The modification of battery component materials represent a common approach to improve battery performance. The effects of cell design on cell [...] Read more.
Zn-air batteries have attracted considerable attention from researchers owing to their high theoretical energy density and the abundance of zinc on Earth. The modification of battery component materials represent a common approach to improve battery performance. The effects of cell design on cell performance are seldom investigated. In this study, we designed four battery structures as follows. Cell 1: close-proximity electrode, Cell 2: equal-area electrode, Cell 3: large zinc electrode, and Cell 4: air channel flow. The effects of four factors: (1) carbon paste, (2) natural and forced air convection, (3) anode/cathode area ratio, and (4) anode–cathode distance were also investigated. Results showed that the addition of carbon paste on the air side of 25BC increased cell power density under forced air convection. Moreover, cell performance also improved by increasing the anode/cathode ratio and by decreasing the anode–cathode distance. These four types of cells were compared based on the oxygen reduction reaction electrode area. Cell 3 displayed the highest power density. In terms of volumetric power density, the proximity cell (Cell 1) exhibited the highest power density among the cells. Therefore, this cell configuration may be suitable for portable applications. Full article
Show Figures

Figure 1

20 pages, 2663 KiB  
Article
Parameter Identification Method for a Fractional-Order Model of Lithium-Ion Batteries Considering Electrolyte-Phase Diffusion
by Yanbo Jia, Lei Dong, Geng Yang, Feng Jin, Languang Lu, Dongxu Guo and Minggao Ouyang
Batteries 2022, 8(8), 90; https://doi.org/10.3390/batteries8080090 - 14 Aug 2022
Cited by 7 | Viewed by 2926
Abstract
The physics-based fractional-order model (FOM) for lithium-ion batteries has shown good application prospects due to its mechanisms and simplicity. To adapt the model to higher-level applications, this paper proposes an improved FOM considering electrolyte-phase diffusion (FOMe) and then proposes a complete method for [...] Read more.
The physics-based fractional-order model (FOM) for lithium-ion batteries has shown good application prospects due to its mechanisms and simplicity. To adapt the model to higher-level applications, this paper proposes an improved FOM considering electrolyte-phase diffusion (FOMe) and then proposes a complete method for parameter identification based on three characteristic SOC intervals: the positive solid phase, negative solid phase, and electrolyte phase. The method mainly determines the above three characteristic intervals and identifies four thermodynamic parameters and five dynamic parameters. Furthermore, the paper describes a framework, which first verifies the model and parameter identification method separately based on pseudo two-dimensional model simulations, and secondly verifies FOMe and its parameters as a whole based on the experiments. The results, which are based on simulations and actual Li0.8Co0.1Mn0.1O2 lithium-ion batteries under multiple typical operating profiles and comparisons with other parameter identification methods, show that the proposed model and parameter identification method is highly accurate and efficient. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

15 pages, 4712 KiB  
Article
A Novel Evaluation Criterion for the Rapid Estimation of the Overcharge and Deep Discharge of Lithium-Ion Batteries Using Differential Capacity
by Peter Kurzweil, Bernhard Frenzel and Wolfgang Scheuerpflug
Batteries 2022, 8(8), 86; https://doi.org/10.3390/batteries8080086 - 9 Aug 2022
Cited by 8 | Viewed by 3339
Abstract
Differential capacity dQ/dU (capacitance) can be used for the instant diagnosis of battery performance in common constant current applications. A novel criterion allows state-of-charge (SOC) and state-of-health (SOH) monitoring of lithium-ion batteries during cycling. Peak values indicate impeding overcharge or [...] Read more.
Differential capacity dQ/dU (capacitance) can be used for the instant diagnosis of battery performance in common constant current applications. A novel criterion allows state-of-charge (SOC) and state-of-health (SOH) monitoring of lithium-ion batteries during cycling. Peak values indicate impeding overcharge or deep discharge, while dSOC/dU = dU/dSOC = 1 is close to “full charge” or “empty” and can be used as a marker for SOC = 1 (and SOC = 0) at the instantaneous SOH of the aging battery. Instructions for simple state-of-charge control and fault diagnosis are given. Full article
Show Figures

Figure 1

11 pages, 2266 KiB  
Article
Multi-Functional Potassium Ion Assists Ammonium Vanadium Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries
by Dan He, Tianjiang Sun, Qiaoran Wang, Tao Ma, Shibing Zheng, Zhanliang Tao and Jing Liang
Batteries 2022, 8(8), 84; https://doi.org/10.3390/batteries8080084 - 8 Aug 2022
Cited by 9 | Viewed by 3173
Abstract
Ammonium vanadium oxide (NH4V4O10) is a promising layered cathode for aqueous zinc-ion batteries owing to its high specific capacity (>300 mA h g−1). However, the structural instability causes serious cycling degradation through irreversible insertion/extraction of [...] Read more.
Ammonium vanadium oxide (NH4V4O10) is a promising layered cathode for aqueous zinc-ion batteries owing to its high specific capacity (>300 mA h g−1). However, the structural instability causes serious cycling degradation through irreversible insertion/extraction of NH4+. Herein, a new potassium ammonium vanadate Kx(NH4)1−xV4O10 (named KNVO) is successfully synthesized by a one-step hydrothermal method. The inserted of K+ can act as structural pillars, connect the adjacent layers closer and partially reduce the de-insertion of NH4+. Due to the multi-functional of K+, the prepared KNVO presents a high specific discharge capacity of 432 mA h g−1 at a current density of 0.4 A g−1, long cycle stability (2000 cycles, 94.2%) as well as impressive rate performance (200 mA h g−1 at 8 A g−1). Full article
(This article belongs to the Special Issue Zn-Ion and Zn–Air Batteries: Materials, Mechanisms and Applications)
Show Figures

Graphical abstract

18 pages, 2664 KiB  
Article
Influence of the Ambient Storage of LiNi0.8Mn0.1Co0.1O2 Powder and Electrodes on the Electrochemical Performance in Li-ion Technology
by Iratxe de Meatza, Imanol Landa-Medrano, Susan Sananes-Israel, Aitor Eguia-Barrio, Oleksandr Bondarchuk, Silvia Lijó-Pando, Iker Boyano, Verónica Palomares, Teófilo Rojo, Hans-Jürgen Grande and Idoia Urdampilleta
Batteries 2022, 8(8), 79; https://doi.org/10.3390/batteries8080079 - 28 Jul 2022
Cited by 6 | Viewed by 4427
Abstract
Nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the most promising Li-ion battery cathode materials and has attracted the interest of the automotive industry. Nevertheless, storage conditions can affect its properties and performance. In this work, both NMC811 [...] Read more.
Nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the most promising Li-ion battery cathode materials and has attracted the interest of the automotive industry. Nevertheless, storage conditions can affect its properties and performance. In this work, both NMC811 powder and electrodes were storage-aged for one year under room conditions. The aged powder was used to prepare electrodes, and the performance of these two aged samples was compared with reference fresh NMC811 electrodes in full Li-ion coin cells using graphite as a negative electrode. The cells were subjected to electrochemical as well as ante- and postmortem characterization. The performance of the electrodes from aged NM811 was beyond expectations: the cycling performance was high, and the power capability was the highest among the samples analyzed. Materials characterization revealed modifications in the crystal structure and the surface layer of the NMC811 during the storage and electrode processing steps. Differences between aged and fresh electrodes were explained by the formation of a resistive layer at the surface of the former. However, the ageing of NMC811 powder was significantly mitigated during the electrode processing step. These novel results are of interest to cell manufacturers for the widespread implementation of NMC811 as a state-of-the-art cathode material in Li-ion batteries. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms, 2nd Edition)
Show Figures

Figure 1

15 pages, 3366 KiB  
Article
Characteristics of Open Circuit Voltage Relaxation in Lithium-Ion Batteries for the Purpose of State of Charge and State of Health Analysis
by David Theuerkauf and Lukas Swan
Batteries 2022, 8(8), 77; https://doi.org/10.3390/batteries8080077 - 26 Jul 2022
Cited by 14 | Viewed by 10269
Abstract
Open circuit voltage relaxation to a steady state value occurs, and is measured, at the terminals of a lithium-ion battery when current stops flowing. It is of interest for use in determining state of charge and state of health. As voltage relaxation can [...] Read more.
Open circuit voltage relaxation to a steady state value occurs, and is measured, at the terminals of a lithium-ion battery when current stops flowing. It is of interest for use in determining state of charge and state of health. As voltage relaxation can take several hours, a representative model and curve fitting is necessary for practical usage. Previous studies of lithium-ion voltage relaxation investigate four characteristics: relationship between voltage relaxation magnitude and state of charge; length of relaxation required; model complexity for state of charge estimation; and model complexity for state of health evaluation. However, previous studies have inconsistent methodology or use only one type of lithium-ion cell, making comparison and generalization difficult. To address this, we conducted 3 h and 24 h voltage relaxation experiments over a range of states of charge on three different lithium ion chemistries (nickel cobalt aluminum NCA; nickel manganese cobalt NMC532; lithium iron phosphate LFP) and fitted them with a new voltage relaxation equivalent circuit model. It was found that a 3 h relaxation period was sufficient for NMC and LFP for state of charge and state of health investigations. Voltage relaxation of the NCA cell continued to evolve past 24 h. It was shown that voltage relaxation shape and magnitude changes as a function of state of charge, and the accuracy of estimating state of charge was explored. Strategically choosing a state of charge for state of health assessment can be optimized to accentuate voltage relaxation magnitude and this differs by chemistry. This suggested technique and experimental findings can be paired with battery degradation studies to determine accuracy of assessing state of health. Full article
(This article belongs to the Collection Recent Advances in Battery Management Systems)
Show Figures

Graphical abstract

23 pages, 7713 KiB  
Review
Recent Health Diagnosis Methods for Lithium-Ion Batteries
by Yaqi Li, Jia Guo, Kjeld Pedersen, Leonid Gurevich and Daniel-Ioan Stroe
Batteries 2022, 8(7), 72; https://doi.org/10.3390/batteries8070072 - 15 Jul 2022
Cited by 9 | Viewed by 4923
Abstract
Lithium-ion batteries have good performance and environmentally friendly characteristics, so they have great potential. However, lithium-ion batteries will age to varying degrees during use, and the process is irreversible. There are many aging mechanisms of lithium batteries. In order to better verify the [...] Read more.
Lithium-ion batteries have good performance and environmentally friendly characteristics, so they have great potential. However, lithium-ion batteries will age to varying degrees during use, and the process is irreversible. There are many aging mechanisms of lithium batteries. In order to better verify the internal changes of lithium batteries when they are aging, post-mortem analysis has been greatly developed. In this article, we summarized the electrical properties analysis and post-mortem analysis of lithium batteries developed in recent years and compared the advantages of varieties of both destructive and non-destructive methods, for example, open-circuit-voltage curve-based analysis, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. On this basis, new ideas could be proposed for predicting and diagnosing the aging degree of lithium batteries, at the same time, further implementation of these technologies will support battery life control strategies and battery design. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms, 2nd Edition)
Show Figures

Figure 1

25 pages, 3188 KiB  
Article
Determination of Internal Temperature Differences for Various Cylindrical Lithium-Ion Batteries Using a Pulse Resistance Approach
by Sebastian Ludwig, Marco Steinhardt and Andreas Jossen
Batteries 2022, 8(7), 60; https://doi.org/10.3390/batteries8070060 - 23 Jun 2022
Cited by 9 | Viewed by 6208
Abstract
The temperature of lithium-ion batteries is crucial in terms of performance, aging, and safety. The internal temperature, which is complicated to measure with conventional temperature sensors, plays an important role here. For this reason, numerous methods exist in the literature for determining the [...] Read more.
The temperature of lithium-ion batteries is crucial in terms of performance, aging, and safety. The internal temperature, which is complicated to measure with conventional temperature sensors, plays an important role here. For this reason, numerous methods exist in the literature for determining the internal cell temperature without sensors, which are usually based on electrochemical impedance spectroscopy. This study presents a method in the time domain, based on the pulse resistance, for determining the internal cell temperature by examining the temperature behavior for the cylindrical formats 18650, 21700, and 26650 in isothermal and transient temperature states for different states of charge (SOCs). A previously validated component-resolved 2D thermal model was used to analyze the location of the calculated temperature TR within the cell, which is still an unsolved question for pulse resistance-based temperature determination. The model comparison shows that TR is close to the average jelly roll temperature. The differences between surface temperature and TR depend on the SOC and cell format and range from 2.14K to 2.70K (18650), 3.07K to 3.85K (21700), and 4.74K to 5.45K (26650). The difference decreases for each cell format with increasing SOC and is linear dependent on the cell diameter. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Figure 1

17 pages, 4427 KiB  
Review
Recent Progress and Challenges of Flexible Zn-Based Batteries with Polymer Electrolyte
by Funian Mo, Binbin Guo, Wei Ling, Jun Wei, Lina Chen, Suzhu Yu and Guojin Liang
Batteries 2022, 8(6), 59; https://doi.org/10.3390/batteries8060059 - 18 Jun 2022
Cited by 18 | Viewed by 5645
Abstract
Zn-based batteries have been identified as promising candidates for flexible and wearable batteries because of their merits of intrinsic safety, eco-efficiency, high capacity and cost-effectiveness. Polymer electrolytes, which feature high solubility of zinc salts and softness, are especially advantageous for flexible Zn-based batteries. [...] Read more.
Zn-based batteries have been identified as promising candidates for flexible and wearable batteries because of their merits of intrinsic safety, eco-efficiency, high capacity and cost-effectiveness. Polymer electrolytes, which feature high solubility of zinc salts and softness, are especially advantageous for flexible Zn-based batteries. However, many technical issues still need to be addressed in Zn-based batteries with polymer electrolytes for their future application in wearable electronics. Recent progress in advanced flexible Zn-based batteries based on polymer electrolytes, including functional hydrogel electrolytes and solid polymer electrolytes, as well as the interfacial interactions between polymer electrolytes and electrodes in battery devices, is comprehensively reviewed and discussed with a focus on their fabrication, performance validation, and intriguing affiliated functions. Moreover, relevant challenges and some potential strategies are also summarized and analyzed to help inform the future direction of polymer-electrolyte-based flexible Zn-based batteries with high practicability. Full article
(This article belongs to the Special Issue Zn-Based Batteries: Recent Progresses and Challenges)
Show Figures

Figure 1

17 pages, 2919 KiB  
Article
Impact of Sulfur Infiltration Time and Its Content in an N-doped Mesoporous Carbon for Application in Li-S Batteries
by Jennifer Laverde, Nataly C. Rosero-Navarro, Akira Miura, Robison Buitrago-Sierra, Kiyoharu Tadanaga and Diana López
Batteries 2022, 8(6), 58; https://doi.org/10.3390/batteries8060058 - 17 Jun 2022
Cited by 11 | Viewed by 3403
Abstract
Li-S batteries are ideal candidates to replace current lithium-ion batteries as next-generation energy storage systems thanks to their high specific capacity and theoretical energy density. Composite electrodes based on carbon microstructures are often used as a host for sulfur. However, sulfur lixiviation, insoluble [...] Read more.
Li-S batteries are ideal candidates to replace current lithium-ion batteries as next-generation energy storage systems thanks to their high specific capacity and theoretical energy density. Composite electrodes based on carbon microstructures are often used as a host for sulfur. However, sulfur lixiviation, insoluble species formation, and how to maximize the sulfur-carbon contact in looking for improved electrochemical performance are still major challenges. In this study, a nitrogen doped mesoporous carbon is used as a host for sulfur. The S/C composite electrodes are prepared by sulfur melting-diffusion process at 155 °C. The effect of the sulfur melting-diffusion time [sulfur infiltration time] (1–24 h) and sulfur content (10–70%) is investigated by using XRD, SEM, TEM and TGA analyses and correlated with the electrochemical performance in Li-S cells. S/C composite electrode with homogeneous sulfur distribution can be reached with 6 h of sulfur melting-diffusion and 10 wt.% of sulfur content. Li-S cell with this composite shows a high use of sulfur and sufficient electronic conductivity achieving an initial discharge capacity of 983 mA h g−1 and Coulombic efficiency of 99% after 100 cycles. Full article
Show Figures

Figure 1

14 pages, 3600 KiB  
Article
Advanced Electrochemical Impedance Spectroscopy of Industrial Ni-Cd Batteries
by Nawfal Al-Zubaidi R-Smith, Manuel Kasper, Peeyush Kumar, Daniel Nilsson, Björn Mårlid and Ferry Kienberger
Batteries 2022, 8(6), 50; https://doi.org/10.3390/batteries8060050 - 29 May 2022
Cited by 5 | Viewed by 4461
Abstract
Advanced electrochemical impedance spectroscopy (EIS) was applied to characterize industrial Ni-Cd batteries and to investigate the electrochemical redox processes. A two-term calibration workflow was used for accurate complex impedance measurements across a broad frequency range of 10 mHz to 2 kHz, resulting in [...] Read more.
Advanced electrochemical impedance spectroscopy (EIS) was applied to characterize industrial Ni-Cd batteries and to investigate the electrochemical redox processes. A two-term calibration workflow was used for accurate complex impedance measurements across a broad frequency range of 10 mHz to 2 kHz, resulting in calibrated resistance and reactance values. The EIS calibration significantly improved the measurements, particularly at high frequencies above 200 Hz, with differences of 6–8% to the uncalibrated impedance. With an electromagnetic finite element method (FEM) model, we showed that the impedance is strongly influenced by the cable fixturing and the self-inductance of the wire conductors due to alternating currents, which are efficiently removed by the proposed calibration workflow. For single cells, we measured the resistance and the reactance with respect to the state-of-charge (SoC) at different frequencies and a given rest period. For Ni-Cd blocks that include two cells in series, we found good agreement of EIS curves with single cells. As such, EIS can be used as a fast and reliable method to estimate the cell or block capacity status. For electrochemical interpretation, we used an equivalent electric circuit (EEC) model to fit the impedance spectra and to extract the main electrochemical parameters based on calibrated EIS, including charge-transfer kinetics, mass transport, and ohmic resistances. From the charge-transfer resistance, we computed the exchange current density, resulting in 0.23 A/cm2, reflecting high intrinsic rates of the redox electron transfer processes in Ni-Cd cells. Full article
Show Figures

Figure 1

14 pages, 3459 KiB  
Article
Impact of Full Prelithiation of Si-Based Anodes on the Rate and Cycle Performance of Li-Ion Capacitors
by Takuya Eguchi, Ryoichi Sugawara, Yusuke Abe, Masahiro Tomioka and Seiji Kumagai
Batteries 2022, 8(6), 49; https://doi.org/10.3390/batteries8060049 - 27 May 2022
Cited by 7 | Viewed by 3790
Abstract
The impact of full prelithiation on the rate and cycle performance of a Si-based Li-ion capacitor (LIC) was investigated. Full prelithiation of the anode was achieved by assembling a half cell with a 2 µm-sized Si anode (0 V vs. Li/Li+) [...] Read more.
The impact of full prelithiation on the rate and cycle performance of a Si-based Li-ion capacitor (LIC) was investigated. Full prelithiation of the anode was achieved by assembling a half cell with a 2 µm-sized Si anode (0 V vs. Li/Li+) and Li metal. A three-electrode full cell (100% prelithiation) was assembled using an activated carbon (AC) cathode with a high specific surface area (3041 m2/g), fully prelithiated Si anode, and Li metal reference electrode. A three-electrode full cell (87% prelithiation) using a Si anode prelithiated with 87% Li ions was also assembled. Both cells displayed similar energy density levels at a lower power density (200 Wh/kg at ≤100 W/kg; based on the total mass of AC and Si). However, at a higher power density (1 kW/kg), the 100% prelithiation cell maintained a high energy density (180 Wh/kg), whereas that of the 87% prelithiation cell was significantly reduced (80 Wh/kg). During charge/discharge cycling at ~1 kW/kg, the energy density retention of the 100% prelithiation cell was higher than that of the 87% prelithiation cell. The larger irreversibility of the Si anode during the initial Li-ion uptake/release cycles confirmed that the simple full prelithiation process is essential for Si-based LIC cells. Full article
(This article belongs to the Special Issue Li-Ion Capacitors: Materials, Devices and Systems)
Show Figures

Figure 1

14 pages, 3963 KiB  
Article
Numerical and Experimental Evaluation of a Battery Cell under Impact Load
by Adrian Daniel Muresanu and Mircea Cristian Dudescu
Batteries 2022, 8(5), 48; https://doi.org/10.3390/batteries8050048 - 20 May 2022
Cited by 10 | Viewed by 4815
Abstract
Impact damage is one of the most critical scenarios for the lithium-ion battery pack of an electrical vehicle, as it involves mechanical abusive loads with serious consequences on electrical and thermal stability. The development of a numerical model for an explicit dynamic simulation [...] Read more.
Impact damage is one of the most critical scenarios for the lithium-ion battery pack of an electrical vehicle, as it involves mechanical abusive loads with serious consequences on electrical and thermal stability. The development of a numerical model for an explicit dynamic simulation of a Li-ion battery pack under impact implies a significant computational effort if detailed models of a single battery cell are employed. The present paper presents a homogenized finite element model of a battery cell, validated by experimental tests of individual materials and an impact test of an entire cell. The macro model is composed of shell elements representing outside casing and elements with a homogenized and isotropic material for the jelly roll. The displacements and deformed shape of the numerical model of the battery cell were compared with those measured on real test specimens; full-field optical scanning was employed to reconstruct the 3D shape of the deformed battery. The overall deformation of the simulation and experimental results are comparable with a deviation of the maximum intrusion of 14.8% for impact direction and 19.5% for the perpendicular direction considering the cumulative effects of simplifying hypotheses of the numerical model and experimental side effects. The results are a starting point for future analyses of a battery pack and its protection systems under impact. The model presented in this paper, considering the low computing power needed for calculation and acceptable mesh size for crash, should be able to be used in bigger resources consuming crash simulation models. In this way, the cells’ deformation and behavior can be tracked more easily for safety management and diagnosis of the crashworthiness of the packs or car batteries. Full article
(This article belongs to the Topic Safety of Lithium-Ion Batteries)
Show Figures

Figure 1

15 pages, 2872 KiB  
Article
Calendering of Silicon-Containing Electrodes and Their Influence on the Mechanical and Electrochemical Properties
by Sören Scheffler, René Jagau, Nele Müller, Alexander Diener and Arno Kwade
Batteries 2022, 8(5), 46; https://doi.org/10.3390/batteries8050046 - 18 May 2022
Cited by 14 | Viewed by 5578
Abstract
The process chain of electrode production includes calendering as a crucial process step to enhance the volumetric energy density as well as to influence the particle-pore-structure and simultaneously the mechanical and electrochemical properties of the electrode coating. A further way to improve the [...] Read more.
The process chain of electrode production includes calendering as a crucial process step to enhance the volumetric energy density as well as to influence the particle-pore-structure and simultaneously the mechanical and electrochemical properties of the electrode coating. A further way to improve the volumetric energy density is the usage of other materials with higher specific capacity, such as silicon instead of graphite as the active material for anodes. In this study, both opportunities, calendering and using silicon-containing composites, are combined to investigate the relations between material, process and performance. The applied line loads for the compaction are correlated with the silicon mass fraction and lead to a silicon-dependent mathematical model to estimate further line loads for silicon-graphite-composite electrodes. On the basis of established analyzing methods for adhesion strength and deformation behavior, it is shown that with increasing silicon content, the elastic deformation of the electrode coating rises. In addition, the overall porosity of the electrodes is less affected by silicon than the pore size distribution compared to graphite electrodes. Furthermore, the electrical conductivity decreases at higher silicon contents independent of coating density. Moreover, the long-term electrochemical stability deteriorates with increasing silicon content and coating density. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

13 pages, 400 KiB  
Article
IBM Quantum Platforms: A Quantum Battery Perspective
by Giulia Gemme, Michele Grossi, Dario Ferraro, Sofia Vallecorsa and Maura Sassetti
Batteries 2022, 8(5), 43; https://doi.org/10.3390/batteries8050043 - 14 May 2022
Cited by 37 | Viewed by 6988
Abstract
We characterize for the first time the performances of IBM quantum chips as quantum batteries, specifically addressing the single-qubit Armonk processor. By exploiting the Pulse access enabled to some of the IBM Quantum processors via the Qiskit package, we investigate the advantages and [...] Read more.
We characterize for the first time the performances of IBM quantum chips as quantum batteries, specifically addressing the single-qubit Armonk processor. By exploiting the Pulse access enabled to some of the IBM Quantum processors via the Qiskit package, we investigate the advantages and limitations of different profiles for classical drives used to charge these miniaturized batteries, establishing the optimal compromise between charging time and stored energy. Moreover, we consider the role played by various possible initial conditions on the functioning of the quantum batteries. As the main result of our analysis, we observe that unavoidable errors occurring in the initialization phase of the qubit, which can be detrimental for quantum computing applications, only marginally affect energy transfer and storage. This can lead counter-intuitively to improvements of the performances. This is a strong indication of the fact that IBM quantum devices are already in the proper range of parameters to be considered as good and stable quantum batteries comparable to state-of-the-art devices recently discussed in the literature. Full article
(This article belongs to the Special Issue Quantum Battery Applications)
Show Figures

Figure 1

29 pages, 16314 KiB  
Article
Comparison of Model-Based and Sensor-Based Detection of Thermal Runaway in Li-Ion Battery Modules for Automotive Application
by Jacob Klink, André Hebenbrock, Jens Grabow, Nury Orazov, Ulf Nylén, Ralf Benger and Hans-Peter Beck
Batteries 2022, 8(4), 34; https://doi.org/10.3390/batteries8040034 - 12 Apr 2022
Cited by 28 | Viewed by 7454
Abstract
In recent years, research on lithium–ion (Li-ion) battery safety and fault detection has become an important topic, providing a broad range of methods for evaluating the cell state based on voltage and temperature measurements. However, other measurement quantities and close-to-application test setups have [...] Read more.
In recent years, research on lithium–ion (Li-ion) battery safety and fault detection has become an important topic, providing a broad range of methods for evaluating the cell state based on voltage and temperature measurements. However, other measurement quantities and close-to-application test setups have only been sparsely considered, and there has been no comparison in between methods. In this work, the feasibility of a multi-sensor setup for the detection of Thermal Runaway failure of automotive-size Li-ion battery modules have been investigated in comparison to a model-based approach. For experimental validation, Thermal Runaway tests were conducted in a close-to-application configuration of module and battery case—triggered by external heating with two different heating rates. By two repetitions of each experiment, a high accordance of characteristics and results has been achieved and the signal feasibility for fault detection has been discussed. The model-based method, that had previously been published, recognised the thermal fault in the fastest way—significantly prior to the required 5 min pre-warning time. This requirement was also achieved with smoke and gas sensors in most test runs. Additional criteria for evaluating detection approaches besides detection time have been discussed to provide a good starting point for choosing a suitable approach that is dependent on application defined requirements, e.g., acceptable complexity. Full article
(This article belongs to the Topic Safety of Lithium-Ion Batteries)
Show Figures

Figure 1

19 pages, 4525 KiB  
Article
Online State-of-Health Estimation of Lithium-Ion Battery Based on Incremental Capacity Curve and BP Neural Network
by Hongye Lin, Longyun Kang, Di Xie, Jinqing Linghu and Jie Li
Batteries 2022, 8(4), 29; https://doi.org/10.3390/batteries8040029 - 23 Mar 2022
Cited by 34 | Viewed by 5022
Abstract
Lithium-ion batteries (LIBs) have been widely used in various fields. In order to ensure the safety of LIBs, it is necessary to accurately estimate of the state of health (SOH) of the LIBs. This paper proposes a SOH hybrid estimation method based on [...] Read more.
Lithium-ion batteries (LIBs) have been widely used in various fields. In order to ensure the safety of LIBs, it is necessary to accurately estimate of the state of health (SOH) of the LIBs. This paper proposes a SOH hybrid estimation method based on incremental capacity (IC) curve and back-propagation neural network (BPNN). The voltage and current data of the LIB during the constant current (CC) charging process are used to convert into IC curves. Taking into account the incompleteness of the actual charging process, this paper divides the IC curve into multiple voltage segments for SOH prediction. Corresponding BP neural network is established in multiple voltage segments. The experiment divides the LIBs into five groups to carry out the aging experiment under different discharge conditions. Aging experiment data are used to establish the non-linear relationship between the decline of SOH and the change of IC curve by BP neural network. Experimental results show that in all voltage segments, the maximum mean absolute error does not exceed 2%. The SOH estimation method proposed in this research makes it possible to embed the SOH estimation function in battery management system (BMS), and can realize high-precision SOH online estimation. Full article
(This article belongs to the Special Issue Batteries and Supercapacitors Aging Ⅱ)
Show Figures

Figure 1

16 pages, 2978 KiB  
Article
Durable Fast Charging of Lithium-Ion Batteries Based on Simulations with an Electrode Equivalent Circuit Model
by Robin Drees, Frank Lienesch and Michael Kurrat
Batteries 2022, 8(4), 30; https://doi.org/10.3390/batteries8040030 - 23 Mar 2022
Cited by 7 | Viewed by 4239
Abstract
Fast charging of lithium-ion batteries is often related to accelerated cell degradation due to lithium-plating on the negative electrode. In this contribution, an advanced electrode equivalent circuit model is used in order to simulate fast-charging strategies without lithium-plating. A novel parameterization approach based [...] Read more.
Fast charging of lithium-ion batteries is often related to accelerated cell degradation due to lithium-plating on the negative electrode. In this contribution, an advanced electrode equivalent circuit model is used in order to simulate fast-charging strategies without lithium-plating. A novel parameterization approach based on 3-electrode cell measurements is developed, which enables precise simulation fidelity. An optimized fast-charging strategy without evoking lithium-plating was simulated that lasted about 29 min for a 0–80% state of charge. This variable current strategy was compared in experiments to a conventional constant-current–constant-voltage fast-charging strategy that lasted 20 min. The experiments showed that the optimized strategy prevented lithium-plating and led to a 2% capacity fade every 100 fast-charging cycles. In contrast, the conventional strategy led to lithium-plating, about 20% capacity fade after 100 fast-charging cycles and the fast-charging duration extended from 20 min to over 30 min due to increased cell resistances. The duration of the optimized fast charging was constant at 29 min, even after 300 cycles. The developed methods are suitable to be applied for any given lithium-ion battery configuration in order to determine the maximum fast-charging capability while ensuring safe and durable cycling conditions. Full article
Show Figures

Figure 1

26 pages, 10295 KiB  
Article
Stationary Battery Thermal Management: Analysis of Active Cooling Designs
by Getu Hailu, Martin Henke and Todd Petersen
Batteries 2022, 8(3), 23; https://doi.org/10.3390/batteries8030023 - 1 Mar 2022
Cited by 9 | Viewed by 6119
Abstract
Stationary battery systems are becoming more prevalent around the world, with both the quantity and capacity of installations growing at the same time. Large battery installations and uninterruptible power supply can generate a significant amount of heat during operation; while this is widely [...] Read more.
Stationary battery systems are becoming more prevalent around the world, with both the quantity and capacity of installations growing at the same time. Large battery installations and uninterruptible power supply can generate a significant amount of heat during operation; while this is widely understood, current thermal management methods have not kept up with the increase of stationary battery installations. Active cooling has long been the default approach of thermal management for stationary batteries; however, there is no academic research or comparative studies available for this technology. The present work presents assessment of different active cooling methods through an experimentally validated computational fluid dynamics simulation. Following model validation, several cooling system configurations were analyzed, including effects from implementing either a perforated vent plate or vortex generators. The vent plate was observed to greatly increase cooling performance while simultaneously promoting temperature uniformity between batteries. Vortex generators were shown to marginally increase cooling performance, yet, future research is recommended to study the effects and improvement of the design. The average battery temperature for the vented model is reduced by approximately 5.2 °C, while the average temperature differential among the batteries was only 2.7 °C, less than the recommend value (3 °C) by ASHRAE/IEEE Standards. Full article
Show Figures

Figure 1

15 pages, 36162 KiB  
Article
Reduced Graphene Oxide Aerogels with Functionalization-Mediated Disordered Stacking for Sodium-Ion Batteries
by Jaehyeung Park, Jaswinder Sharma, Charl J. Jafta, Lilin He, Harry M. Meyer III, Jianlin Li, Jong K. Keum, Ngoc A. Nguyen and Georgios Polizos
Batteries 2022, 8(2), 12; https://doi.org/10.3390/batteries8020012 - 1 Feb 2022
Cited by 8 | Viewed by 3998
Abstract
Surface modified reduced graphene oxide (rGO) aerogels were synthesized using the hydrothermal method. Ethylene diamine (EDA) and α-cyclodextrin (CD) were used to functionalize the surface of the graphene oxide layers. The oxygen reduction and surface modification occurred in-situ during the hydrothermal self-assembly process. [...] Read more.
Surface modified reduced graphene oxide (rGO) aerogels were synthesized using the hydrothermal method. Ethylene diamine (EDA) and α-cyclodextrin (CD) were used to functionalize the surface of the graphene oxide layers. The oxygen reduction and surface modification occurred in-situ during the hydrothermal self-assembly process. The chemical functionality and structure of the resulting ethylene diamine modified (rGO-EDA) and cyclodextrin modified (rGO-CD) aerogels as well as of the pristine unmodified rGO aerogel were studied using XPS, SEM, XRD, and SANS techniques. The overall surface composition showed a significant decrease in the oxygen content for all synthesized aerogels. The surface modified aerogels were characterized by a disordered stacking of the assembled rGO layers. The surface functionalities resulted in a broad distribution of the interlayer spacing and introduced structural heterogeneities. Such disordered structures can enable a better adsorption mechanism of the sodium ions. Coin cells based on the synthesized aerogels and sodium metal were assembled and tested at several charge and discharge rates. The correlation between the surface functionality of the rGO, the induced structural heterogeneities due to the disordered stacking, and the electrochemical performance of sodium-ion batteries were investigated. Operando XRD measurements were carried out during the battery cycling to investigate the adsorption or intercalation nature of the sodiation mechanism. Full article
(This article belongs to the Special Issue Sodium-Ion Battery: Latest Advances and Prospects)
Show Figures

Figure 1

17 pages, 2296 KiB  
Article
Multiple Scenario Analysis of Battery Energy Storage System Investment: Measuring Economic and Circular Viability
by Benedikte Wrålsen and Bernhard Faessler
Batteries 2022, 8(2), 7; https://doi.org/10.3390/batteries8020007 - 21 Jan 2022
Cited by 8 | Viewed by 5659
Abstract
Circular business models for batteries have been revealed in earlier research to achieve economic viability while reducing total resource consumption of raw materials. The objective of this study is to measure the economic performance of the preferred business model by creating different scenarios [...] Read more.
Circular business models for batteries have been revealed in earlier research to achieve economic viability while reducing total resource consumption of raw materials. The objective of this study is to measure the economic performance of the preferred business model by creating different scenarios comparing second life (spent) and new battery investment for seven different European regions and four energy management strategies. Findings reveal levels of economic ability for a total of 34 scenarios simulated, including direct savings per kWh, a total change in energy costs per year, battery charge/discharge cycles, and comparative breakeven analyses. Regional effects are also measured based on day-ahead electricity prices and solar irradiation. The minimum payback time is 7 years before battery system investment costs are covered. The most viable energy management strategies also had the highest number of charge/discharge cycles, which decreases battery lifetime. Investment in a second life battery compared to a new battery reduced the payback time by 0.5 to 2 years due to lower investment costs. However, the estimated lifetime range (3 to 10 years) is lower compared to a new battery (5 to 15 years), which questions the circular business model viability for the scenarios studied. Energy management strategies should be combined and customized to increase economic benefits. Full article
Show Figures

Figure 1

19 pages, 6317 KiB  
Article
Development of a Matlab/Simulink Model for Monitoring Cell State-of-Health and State-of-Charge via Impedance of Lithium-Ion Battery Cells
by Jonghyeon Kim and Julia Kowal
Batteries 2022, 8(2), 8; https://doi.org/10.3390/batteries8020008 - 21 Jan 2022
Cited by 19 | Viewed by 11907
Abstract
Lithium-ion battery cells not only show different behaviors depending on degradation and charging states, but also overcharge and overdischarge of cells shorten battery life and cause safety problems, thus studies aiming to provide an accurate state of a cell are required. Measurements of [...] Read more.
Lithium-ion battery cells not only show different behaviors depending on degradation and charging states, but also overcharge and overdischarge of cells shorten battery life and cause safety problems, thus studies aiming to provide an accurate state of a cell are required. Measurements of battery cell impedance are used for cell SoH and SoC estimation techniques, but it generally takes a long time for a cell in each state to be prepared and cell voltage response is measured when charging and discharging under each condition. This study introduces an electrical equivalent circuit model of lithium-ion cells developed in the MATLAB/Simulink environment. Cell SoC, SoH, temperature, and C-rate are considered for more accurate cell impedance prediction, and the simulation results are verified with the measurement results. The developed model is suitable for use in cell SoC and SoH monitoring studies by successfully outputting cell impedance through real-time prediction of cell voltage during discharge. Full article
Show Figures

Figure 1

24 pages, 1944 KiB  
Article
Optimization of Disassembly Strategies for Electric Vehicle Batteries
by Sabri Baazouzi, Felix Paul Rist, Max Weeber and Kai Peter Birke
Batteries 2021, 7(4), 74; https://doi.org/10.3390/batteries7040074 - 7 Nov 2021
Cited by 32 | Viewed by 9615
Abstract
Various studies show that electrification, integrated into a circular economy, is crucial to reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs) is particularly relevant because of the resource intensity during manufacturing. After reaching the end-of-life phase, [...] Read more.
Various studies show that electrification, integrated into a circular economy, is crucial to reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs) is particularly relevant because of the resource intensity during manufacturing. After reaching the end-of-life phase, EVBs can be subjected to various circular economy strategies, all of which require the previous disassembly. Today, disassembly is carried out manually and represents a bottleneck process. At the same time, extremely high return volumes have been forecast for the next few years, and manual disassembly is associated with safety risks. That is why automated disassembly is identified as being a key enabler of highly efficient circularity. However, several challenges need to be addressed to ensure secure, economic, and ecological disassembly processes. One of these is ensuring that optimal disassembly strategies are determined, considering the uncertainties during disassembly. This paper introduces our design for an adaptive disassembly planner with an integrated disassembly strategy optimizer. Furthermore, we present our optimization method for obtaining optimal disassembly strategies as a combination of three decisions: (1) the optimal disassembly sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy at the component level. Finally, we apply the proposed method to derive optimal disassembly strategies for one selected battery system for two condition scenarios. The results show that the optimization of disassembly strategies must also be used as a tool in the design phase of battery systems to boost the disassembly automation and thus contribute to achieving profitable circular economy solutions for EVBs. Full article
(This article belongs to the Special Issue Battery Systems and Energy Storage beyond 2020)
Show Figures

Figure 1

12 pages, 2247 KiB  
Article
High-Potential Test for Quality Control of Separator Defects in Battery Cell Production
by Louisa Hoffmann, Manuel Kasper, Maik Kahn, Georg Gramse, Gabriela Ventura Silva, Christoph Herrmann, Michael Kurrat and Ferry Kienberger
Batteries 2021, 7(4), 64; https://doi.org/10.3390/batteries7040064 - 24 Sep 2021
Cited by 16 | Viewed by 12523
Abstract
Lithium-ion batteries are a key technology for electromobility; thus, quality control in cell production is a central aspect for the success of electric vehicles. The detection of defects and poor insulation behavior of the separator is essential for high-quality batteries. Optical quality control [...] Read more.
Lithium-ion batteries are a key technology for electromobility; thus, quality control in cell production is a central aspect for the success of electric vehicles. The detection of defects and poor insulation behavior of the separator is essential for high-quality batteries. Optical quality control methods in cell production are unable to detect small but still relevant defects in the separator layer, e.g., pinholes or particle contaminations. This gap can be closed by executing high-potential testing to analyze the insulation performance of the electrically insulating separator layer in a pouch cell. Here, we present an experimental study to identify different separator defects on dry cell stacks on the basis of electric voltage stress and mechanical pressure. In addition, finite element modeling (FEM) is used to generate physical insights into the partial discharge by examining the defect structures and the corresponding electric fields, including topographical electrode roughness, impurity particles, and voids in the separator. The test results show that hard discharges are associated with significant separator defects. Based on the study, a voltage of 350 to 450 V and a pressure of 0.3 to 0.6 N/mm2 are identified as optimum ranges for the test methodology, resulting in failure detection rates of up to 85%. Full article
Show Figures

Figure 1

26 pages, 4361 KiB  
Article
Life Cycle Modelling of Extraction and Processing of Battery Minerals—A Parametric Approach
by Nelson Bunyui Manjong, Lorenzo Usai, Odne Stokke Burheim and Anders Hammer Strømman
Batteries 2021, 7(3), 57; https://doi.org/10.3390/batteries7030057 - 24 Aug 2021
Cited by 34 | Viewed by 9761
Abstract
Sustainable battery production with low environmental footprints requires a systematic assessment of the entire value chain, from raw material extraction and processing to battery production and recycling. In order to explore and understand the variations observed in the reported footprints of raw battery [...] Read more.
Sustainable battery production with low environmental footprints requires a systematic assessment of the entire value chain, from raw material extraction and processing to battery production and recycling. In order to explore and understand the variations observed in the reported footprints of raw battery materials, it is vital to re-assess the footprints of these material value chains. Identifying the causes of these variations by combining engineering and environmental system analysis expands our knowledge of the footprints of these battery materials. This article disaggregates the value chains of six raw battery materials (aluminum, copper, graphite, lithium carbonate, manganese, and nickel) and identifies the sources of variabilities (levers) for each process along each value chain. We developed a parametric attributional process-based life cycle model to explore the effect of these levers on the greenhouse gas (GHG) emissions of the value chains, expressed in kg of CO2e. The parametric life cycle inventory model is used to conduct distinct life cycle assessments (LCA) for each material value chain by varying the identified levers within defined engineering ranges. 570 distinct LCAs are conducted for the aluminum value chain, 450 for copper, 170 for graphite, 39 for lithium carbonate via spodumene, 20 for lithium carbonate via brine, 260 for manganese, and 440 for nickel. Three-dimensional representations of these results for each value chain in kg of CO2e are presented as contour plots with gradient lines illustrating the intensity of lever combinations on the GHG emissions. The results of this study convey multidimensional insights into how changes in the lever settings of value chains yield variations in the overall GHG emissions of the raw materials. Parameterization of these value chains forms a flexible and high-resolution backbone, leading towards a more reliable life cycle assessment of lithium-ion batteries (LIB). Full article
(This article belongs to the Special Issue Circular Battery Technologies)
Show Figures

Figure 1

15 pages, 3401 KiB  
Article
Carbon Monoliths with Hierarchical Porous Structure for All-Vanadium Redox Flow Batteries
by Jose Francisco Vivo-Vilches, Blagoj Karakashov, Alain Celzard, Vanessa Fierro, Ranine El Hage, Nicolas Brosse, Anthony Dufour and Mathieu Etienne
Batteries 2021, 7(3), 55; https://doi.org/10.3390/batteries7030055 - 10 Aug 2021
Cited by 8 | Viewed by 3827
Abstract
Carbon monoliths were tested as electrodes for vanadium redox batteries. The materials were synthesised by a hard-templating route, employing sucrose as carbon precursor and sodium chloride crystals as the hard template. For the preparation process, both sucrose and sodium chloride were ball-milled together [...] Read more.
Carbon monoliths were tested as electrodes for vanadium redox batteries. The materials were synthesised by a hard-templating route, employing sucrose as carbon precursor and sodium chloride crystals as the hard template. For the preparation process, both sucrose and sodium chloride were ball-milled together and molten into a paste which was hot-pressed to achieve polycondensation of sucrose into a hard monolith. The resultant material was pyrolysed in nitrogen at 750 °C, and then washed to remove the salt by dissolving it in water. Once the porosity was opened, a second pyrolysis step at 900 °C was performed for the complete conversion of the materials into carbon. The products were next characterised in terms of textural properties and composition. Changes in porosity, obtained by varying the proportions of sucrose to sodium chloride in the initial mixture, were correlated with the electrochemical performances of the samples, and a good agreement between capacitive response and microporosity was indeed observed highlighted by an increase in the cyclic voltammetry curve area when the SBET increased. In contrast, the reversibility of vanadium redox reactions measured as a function of the difference between reduction and oxidation potentials was correlated with the accessibility of the active vanadium species to the carbon surface, i.e., was correlated with the macroporosity. The latter was a critical parameter for understanding the differences of energy and voltage efficiencies among the materials, those with larger macropore volumes having the higher efficiencies. Full article
(This article belongs to the Special Issue Material Design and Development for Redox Flow Batteries II)
Show Figures

Figure 1

9 pages, 2223 KiB  
Article
Layered Iron Vanadate as a High-Capacity Cathode Material for Nonaqueous Calcium-Ion Batteries
by Munseok S. Chae, Dedy Setiawan, Hyojeong J. Kim and Seung-Tae Hong
Batteries 2021, 7(3), 54; https://doi.org/10.3390/batteries7030054 - 9 Aug 2021
Cited by 24 | Viewed by 5074
Abstract
Calcium-ion batteries represent a promising alternative to the current lithium-ion batteries. Nevertheless, calcium-ion intercalating materials in nonaqueous electrolytes are scarce, probably due to the difficulties in finding suitable host materials. Considering that research into calcium-ion batteries is in its infancy, discovering and characterizing [...] Read more.
Calcium-ion batteries represent a promising alternative to the current lithium-ion batteries. Nevertheless, calcium-ion intercalating materials in nonaqueous electrolytes are scarce, probably due to the difficulties in finding suitable host materials. Considering that research into calcium-ion batteries is in its infancy, discovering and characterizing new host materials would be critical to further development. Here, we demonstrate FeV3O9∙1.2H2O as a high-performance calcium-ion battery cathode material that delivers a reversible discharge capacity of 303 mAh g−1 with a good cycling stability and an average discharge voltage of ~2.6 V (vs. Ca/Ca2+). The material was synthesized via a facile co-precipitation method. Its reversible capacity is the highest among calcium-ion battery materials, and it is the first example of a material with a capacity much larger than that of conventional lithium-ion battery cathode materials. Bulk intercalation of calcium into the host lattice contributed predominantly to the total capacity at a lower rate, but became comparable to that due to surface adsorption at a higher rate. This stimulating discovery will lead to the development of new strategies for obtaining high energy density calcium-ion batteries. Full article
Show Figures

Figure 1

36 pages, 7869 KiB  
Review
In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review
by Purna C. Ghimire, Arjun Bhattarai, Tuti M. Lim, Nyunt Wai, Maria Skyllas-Kazacos and Qingyu Yan
Batteries 2021, 7(3), 53; https://doi.org/10.3390/batteries7030053 - 4 Aug 2021
Cited by 34 | Viewed by 11117
Abstract
Progress in renewable energy production has directed interest in advanced developments of energy storage systems. The all-vanadium redox flow battery (VRFB) is one of the attractive technologies for large scale energy storage due to its design versatility and scalability, longevity, good round-trip efficiencies, [...] Read more.
Progress in renewable energy production has directed interest in advanced developments of energy storage systems. The all-vanadium redox flow battery (VRFB) is one of the attractive technologies for large scale energy storage due to its design versatility and scalability, longevity, good round-trip efficiencies, stable capacity and safety. Despite these advantages, the deployment of the vanadium battery has been limited due to vanadium and cell material costs, as well as supply issues. Improving stack power density can lower the cost per kW power output and therefore, intensive research and development is currently ongoing to improve cell performance by increasing electrode activity, reducing cell resistance, improving membrane selectivity and ionic conductivity, etc. In order to evaluate the cell performance arising from this intensive R&D, numerous physical, electrochemical and chemical techniques are employed, which are mostly carried out ex situ, particularly on cell characterizations. However, this approach is unable to provide in-depth insights into the changes within the cell during operation. Therefore, in situ diagnostic tools have been developed to acquire information relating to the design, operating parameters and cell materials during VRFB operation. This paper reviews in situ diagnostic tools used to realize an in-depth insight into the VRFBs. A systematic review of the previous research in the field is presented with the advantages and limitations of each technique being discussed, along with the recommendations to guide researchers to identify the most appropriate technique for specific investigations. Full article
(This article belongs to the Special Issue Redox Flow Batteries for Large-Scale Energy Storage)
Show Figures

Figure 1

23 pages, 810 KiB  
Article
Combining the Distribution of Relaxation Times from EIS and Time-Domain Data for Parameterizing Equivalent Circuit Models of Lithium-Ion Batteries
by Leo Wildfeuer, Philipp Gieler and Alexander Karger
Batteries 2021, 7(3), 52; https://doi.org/10.3390/batteries7030052 - 2 Aug 2021
Cited by 33 | Viewed by 8914
Abstract
Equivalent circuit models (ECMs) are a widely used modeling approach for lithium-ion batteries in engineering applications. The RC elements, which display the dynamic loss processes of the cell, are usually parameterized by fitting the ECM to experimental data in either the time-domain or [...] Read more.
Equivalent circuit models (ECMs) are a widely used modeling approach for lithium-ion batteries in engineering applications. The RC elements, which display the dynamic loss processes of the cell, are usually parameterized by fitting the ECM to experimental data in either the time-domain or the frequency-domain. However, both types of data have limitations with regard to the observable time constants of electrochemical processes. This work proposes a method to combine time-domain and frequency-domain measurement data for parameterization of RC elements by exploiting the full potential of the distribution of relaxation times (DRT). Instead of using only partial information from the DRT to supplement a conventional fitting algorithm, we determine the parameters of an arbitrary number of RC elements directly from the DRT. The difficulties of automated deconvolution of the DRT, including regularization and the choice of an optimal regularization factor, is tackled by using the L-curve criterion for optimized calculation of the DRT via Tikhonov regularization. Three different approaches to merge time- and frequency-domain data are presented, including a novel approach where the DRT is simultaneously calculated from electrochemical impedance spectoscropy (EIS) and pulse relaxation measurements. The parameterized model for a commercial 18650 NCA cell was validated during a validation cycle consisting of constant current and real-world automotive cycling and yields a relative improvement of over 40% compared to a conventional EIS-fitting algorithm. Full article
Show Figures

Figure 1

15 pages, 2400 KiB  
Article
Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA
by Manh-Kien Tran, Andre DaCosta, Anosh Mevawalla, Satyam Panchal and Michael Fowler
Batteries 2021, 7(3), 51; https://doi.org/10.3390/batteries7030051 - 27 Jul 2021
Cited by 207 | Viewed by 33584
Abstract
Lithium-ion (Li-ion) batteries are an important component of energy storage systems used in various applications such as electric vehicles and portable electronics. There are many chemistries of Li-ion battery, but LFP, NMC, LMO, and NCA are four commonly used types. In order for [...] Read more.
Lithium-ion (Li-ion) batteries are an important component of energy storage systems used in various applications such as electric vehicles and portable electronics. There are many chemistries of Li-ion battery, but LFP, NMC, LMO, and NCA are four commonly used types. In order for the battery applications to operate safely and effectively, battery modeling is very important. The equivalent circuit model (ECM) is a battery model often used in the battery management system (BMS) to monitor and control Li-ion batteries. In this study, experiments were performed to investigate the performance of three different ECMs (1RC, 2RC, and 1RC with hysteresis) on four Li-ion battery chemistries (LFP, NMC, LMO, and NCA). The results indicated that all three models are usable for the four types of Li-ion chemistries, with low errors. It was also found that the ECMs tend to perform better in dynamic current profiles compared to non-dynamic ones. Overall, the best-performed model for LFP and NCA was the 1RC with hysteresis ECM, while the most suited model for NMC and LMO was the 1RC ECM. The results from this study showed that different ECMs would be suited for different Li-ion battery chemistries, which should be an important factor to be considered in real-world battery and BMS applications. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances and Prospects II)
Show Figures

Figure 1

18 pages, 7849 KiB  
Article
Analysis and Investigation of Thermal Runaway Propagation for a Mechanically Constrained Lithium-Ion Pouch Cell Module
by Luigi Aiello, Ilie Hanzu, Gregor Gstrein, Eduard Ewert, Christian Ellersdorfer and Wolfgang Sinz
Batteries 2021, 7(3), 49; https://doi.org/10.3390/batteries7030049 - 19 Jul 2021
Cited by 12 | Viewed by 7964
Abstract
In this paper, tests and analysis of thermal runaway propagation for commercial modules consisting of four 41 Ah Li-ion pouch cells are presented. Module samples were tested at 100% state-of-charge and mechanically constrained between two steel plates to provide thermal and mechanical contact [...] Read more.
In this paper, tests and analysis of thermal runaway propagation for commercial modules consisting of four 41 Ah Li-ion pouch cells are presented. Module samples were tested at 100% state-of-charge and mechanically constrained between two steel plates to provide thermal and mechanical contact between the parts. Voltage and temperature of each cell were monitored during the whole experiment. The triggering of the exothermal reactions was obtained by overheating one cell of the stack with a flat steel heater. In preliminary studies, the melting temperature of the separator was measured (from an extracted sample) with differential scanning calorimetry and thermogravimetric analysis techniques, revealing a tri-layers separator with two melting points (≈135 °C and ≈170 °C). The tests on module level revealed 8 distinct phases observed and analyzed in the respective temperature ranges, including smoking, venting, sparkling, and massive, short circuit condition. The triggering temperature of the cells resulted to be close to the melting temperature of the separator obtained in preliminary tests, confirming that the violent exothermal reactions of thermal runaway are caused by the internal separator failure. Postmortem inspections of the modules revealed the internal electrical failure path in one cell and the propagation of the internal short circuit in its active material volume, suggesting that the expansion of the electrolyte plays a role in the short circuit propagation at the single cell level. The complete thermal runaway propagation process was repeated on 5 modules and ended on average 60 s after the first thermal runaway triggered cell reached a top temperature of 1100 °C. Full article
Show Figures

Figure 1

18 pages, 4459 KiB  
Article
Identification of Degradation Mechanisms by Post-Mortem Analysis for High Power and High Energy Commercial Li-Ion Cells after Electric Vehicle Aging
by Pierre Kuntz, Olivier Raccurt, Philippe Azaïs, Karsten Richter, Thomas Waldmann, Margret Wohlfahrt-Mehrens, Michel Bardet, Anton Buzlukov and Sylvie Genies
Batteries 2021, 7(3), 48; https://doi.org/10.3390/batteries7030048 - 16 Jul 2021
Cited by 25 | Viewed by 7669
Abstract
Driven by the rise of the electric automotive industry, the Li-ion battery market is in strong expansion. This technology does not only fulfill the requirements of electric mobility, but is also found in most portable electric devices. Even though Li-ion batteries are known [...] Read more.
Driven by the rise of the electric automotive industry, the Li-ion battery market is in strong expansion. This technology does not only fulfill the requirements of electric mobility, but is also found in most portable electric devices. Even though Li-ion batteries are known for their numerous advantages, they undergo serious performance degradation during their aging, and more particularly when used in specific conditions such as at low temperature or high charging current rates. Depending on the operational conditions, different aging mechanisms are favored and can induce physical and chemical modifications of the internal components, leading to performance decay. In this article, the identification of the degradation mechanisms was carried out thanks to an in-depth ante- and post mortem study on three high power and high energy commercial 18,650 cells. Li-ion cells were aged using a battery electric vehicle (BEV) aging profile at −20 °C, 0 °C, 25 °C, and 45 °C in accordance with the international standard IEC 62-660, and in calendar aging mode at 45 °C and SOC 100%. Internal components recovered from fresh and aged cells were investigated through different electrochemical (half-coin cell), chemical (EDX, GD-OES, NMR), and topological (SEM) characterization techniques. The influence of power and energy cells’ internal design and Si content in the negative electrode on cell aging has been highlighted vis-à-vis the capacity and power fade. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms, 2nd Edition)
Show Figures

Figure 1

13 pages, 3161 KiB  
Article
Detection of Lithium Plating in Li-Ion Cell Anodes Using Realistic Automotive Fast-Charge Profiles
by Matteo Dotoli, Emanuele Milo, Mattia Giuliano, Riccardo Rocca, Carlo Nervi, Marcello Baricco, Massimiliano Ercole and Mauro Francesco Sgroi
Batteries 2021, 7(3), 46; https://doi.org/10.3390/batteries7030046 - 7 Jul 2021
Cited by 14 | Viewed by 7394
Abstract
The widespread use of electric vehicles is nowadays limited by the “range anxiety” of the customers. The drivers’ main concerns are related to the kilometric range of the vehicle and to the charging time. An optimized fast-charge profile can help to decrease the [...] Read more.
The widespread use of electric vehicles is nowadays limited by the “range anxiety” of the customers. The drivers’ main concerns are related to the kilometric range of the vehicle and to the charging time. An optimized fast-charge profile can help to decrease the charging time, without degrading the cell performance and reducing the cycle life. One of the main reasons for battery capacity fade is linked to the Lithium plating phenomenon. This work investigates two methodologies, i.e., three-electrode cell measurement and internal resistance evolution during charging, for detecting the Lithium plating conditions. From this preliminary analysis, it was possible to develop new Multi-Stage Constant-Current profiles, designed to improve the performance in terms of charging time and cells capacity retention with respect to a reference profile. Four new profiles were tested and compared to a reference. The results coming from the new profiles demonstrate a simultaneous improvement in terms of charging time and cycling life, showing the reliability of the implemented methodology in preventing Lithium plating. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms, 2nd Edition)
Show Figures

Figure 1

13 pages, 34487 KiB  
Article
An ASIC-Based Miniaturized System for Online Multi-Measurand Monitoring of Lithium-Ion Batteries
by Giuseppe Manfredini, Andrea Ria, Paolo Bruschi, Luca Gerevini, Michele Vitelli, Mario Molinara and Massimo Piotto
Batteries 2021, 7(3), 45; https://doi.org/10.3390/batteries7030045 - 5 Jul 2021
Cited by 13 | Viewed by 5270
Abstract
To better asses the ageing and to reduce the hazards involved in the use of Lithium-Ion Batteries, multi-measurand monitoring units and strategies are urged. In this paper, a Cell Management Unit, based on the SENSIPLUS chip, a recently introduced multichannel, multi-mode sensor interface, [...] Read more.
To better asses the ageing and to reduce the hazards involved in the use of Lithium-Ion Batteries, multi-measurand monitoring units and strategies are urged. In this paper, a Cell Management Unit, based on the SENSIPLUS chip, a recently introduced multichannel, multi-mode sensor interface, is described. SENSIPLUS is a single System on a Chip combined with a reduced number of external components, resulting in a highly miniaturized device, built on 20 × 8 mm2 printed circuit board. Thanks to SENSIPLUS’ versatility, the proposed system is capable of performing direct measurements (EIS, cell voltage) on the cell it is applied to, and reading different kinds of sensors. The SENSIPLUS versatile digital communication interface, combined with a digital isolator, enable connection of several devices to a single bus for parallel monitoring a large number of cells connected in series. Experiments performed by connecting the proposed system to a commercial Lithium-Ion Battery and to capacitive and resistive sensors are described. In particular, the capability of measuring the cell internal impedance with a resolution of 120 μΩ is demonstrated. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms, 2nd Edition)
Show Figures

Figure 1

19 pages, 5381 KiB  
Article
Absolute Local Quantification of Li as Function of State-of-Charge in All-Solid-State Li Batteries via 2D MeV Ion-Beam Analysis
by Sören Möller, Takahiro Satoh, Yasuyuki Ishii, Britta Teßmer, Rayan Guerdelli, Tomihiro Kamiya, Kazuhisa Fujita, Kota Suzuki, Yoshiaki Kato, Hans-Dieter Wiemhöfer, Kunioki Mima and Martin Finsterbusch
Batteries 2021, 7(2), 41; https://doi.org/10.3390/batteries7020041 - 20 Jun 2021
Cited by 7 | Viewed by 5894
Abstract
Direct observation of the lithiation and de-lithiation in lithium batteries on the component and microstructural scale is still difficult. This work presents recent advances in MeV ion-beam analysis, enabling quantitative contact-free analysis of the spatially-resolved lithium content and state-of-charge (SoC) in all-solid-state lithium [...] Read more.
Direct observation of the lithiation and de-lithiation in lithium batteries on the component and microstructural scale is still difficult. This work presents recent advances in MeV ion-beam analysis, enabling quantitative contact-free analysis of the spatially-resolved lithium content and state-of-charge (SoC) in all-solid-state lithium batteries via 3 MeV proton-based characteristic x-ray and gamma-ray emission analysis. The analysis is demonstrated on cross-sections of ceramic and polymer all-solid-state cells with LLZO and MEEP/LIBOB solid electrolytes. Different SoC are measured ex-situ and one polymer-based operando cell is charged at 333 K during analysis. The data unambiguously show the migration of lithium upon charging. Quantitative lithium concentrations are obtained by taking the physical and material aspects of the mixed cathodes into account. This quantitative lithium determination as a function of SoC gives insight into irreversible degradation phenomena of all-solid-state batteries during the first cycles and locations of immobile lithium. The determined SoC matches the electrochemical characterization within uncertainties. The presented analysis method thus opens up a completely new access to the state-of-charge of battery cells not depending on electrochemical measurements. Automated beam scanning and data-analysis algorithms enable a 2D quantitative Li and SoC mapping on the µm-scale, not accessible with other methods. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms)
Show Figures

Figure 1

14 pages, 3619 KiB  
Article
A Comparison of Lithium-Ion Cell Performance across Three Different Cell Formats
by Grace Bridgewater, Matthew J. Capener, James Brandon, Michael J. Lain, Mark Copley and Emma Kendrick
Batteries 2021, 7(2), 38; https://doi.org/10.3390/batteries7020038 - 8 Jun 2021
Cited by 28 | Viewed by 9155
Abstract
To investigate the influence of cell formats during a cell development programme, lithium-ion cells have been prepared in three different formats. Coin cells, single layer pouch cells, and stacked pouch cells gave a range of scales of almost three orders of magnitude. The [...] Read more.
To investigate the influence of cell formats during a cell development programme, lithium-ion cells have been prepared in three different formats. Coin cells, single layer pouch cells, and stacked pouch cells gave a range of scales of almost three orders of magnitude. The cells used the same electrode coatings, electrolyte and separator. The performance of the different formats was compared in long term cycling tests and in measurements of resistance and discharge capacities at different rates. Some test results were common to all three formats. However, the stacked pouch cells had higher discharge capacities at higher rates. During cycling tests, there were indications of differences in the predominant degradation mechanism between the stacked cells and the other two cell formats. The stacked cells showed faster resistance increases, whereas the coin cells showed faster capacity loss. The difference in degradation mechanism can be linked to the different thermal and mechanical environments in the three cell formats. The correlation in the electrochemical performance between coin cells, single layer pouch cells, and stacked pouch cells shows that developments within a single cell format are likely to lead to improvements across all cell formats. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances and Prospects II)
Show Figures

Figure 1

23 pages, 6215 KiB  
Article
Calendar Aging of Li-Ion Cells—Experimental Investigation and Empirical Correlation
by Daniel Werner, Sabine Paarmann and Thomas Wetzel
Batteries 2021, 7(2), 28; https://doi.org/10.3390/batteries7020028 - 30 Apr 2021
Cited by 28 | Viewed by 13231
Abstract
The lifetime of the battery significantly influences the acceptance of electric vehicles. Calendar aging contributes to the limited operating lifetime of lithium-ion batteries. Therefore, its consideration in addition to cyclical aging is essential to understand battery degradation. This study consequently examines the same [...] Read more.
The lifetime of the battery significantly influences the acceptance of electric vehicles. Calendar aging contributes to the limited operating lifetime of lithium-ion batteries. Therefore, its consideration in addition to cyclical aging is essential to understand battery degradation. This study consequently examines the same graphite/NCA pouch cell that was the subject of previously published cyclic aging tests. The cells were aged at different temperatures and states of charge. The self-discharge was continuously monitored, and after each storage period, the remaining capacity and the impedance were measured. The focus of this publication is on the correlation of the measurements. An aging correlation is obtained that is valid for a wide range of temperatures and states of charge. The results show an accelerated capacity fade and impedance rise with increasing temperature, following the law of Arrhenius. However, the obtained data do also indicate that there is no path dependency, i.e., earlier periods at different temperature levels do not affect the present degradation rate. A large impact of the storage state of charge at 100% is evident, whereas the influence is small below 80%. Instead of the commonly applied square root of the time function, our results are in excellent agreement with an exponential function. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms)
Show Figures

Figure 1

27 pages, 10524 KiB  
Article
Experimental and Numerical Investigation of the Thermal Performance of a Hybrid Battery Thermal Management System for an Electric Van
by Franck Pra, Jad Al Koussa, Sebastian Ludwig and Carlo M. De Servi
Batteries 2021, 7(2), 27; https://doi.org/10.3390/batteries7020027 - 28 Apr 2021
Cited by 6 | Viewed by 4621
Abstract
The temperature and the temperature gradient within the battery pack of an electric vehicle have a strong effect on the life time of the battery cells. In the case of automotive applications, a battery thermal management (BTM) system is required to maintain the [...] Read more.
The temperature and the temperature gradient within the battery pack of an electric vehicle have a strong effect on the life time of the battery cells. In the case of automotive applications, a battery thermal management (BTM) system is required to maintain the temperature of the cells within a prescribed and safe range, and to prevent excessively high thermal gradients within the battery pack. This work documents the assessment of a thermal management system for a battery pack for an electric van, which adopts a combination of active/passive solutions: the battery cells are arranged in a matrix or composite made of expanded graphite and a phase change material (PCM), which can be actively cooled by forced air convection. The thermal dissipation of the cells was predicted based on an equivalent circuit model of the cells (LG Chem MJ1) that was empirically calibrated in a previous study. It resulted that, in order to keep the temperature of the battery pack at or below 40 °C during certain charge/discharge cycles, a purely passive BTM would require a considerable amount of PCM material that would unacceptably increase the battery pack weight. Therefore, the passive solution was combined with an air cooling system that could be activated when necessary. To assess the resulting hybrid BTM concept, CFD simulations were performed and an experimental test setup was built to validate the simulations. In particular, PCM melting and solidification times, the thermal discrepancy among the cells and the melting/solidification temperatures were examined. The melting time experimentally observed was higher than that predicted by the CFD model, but this discrepancy was not observed during the solidification of the PCM. This deviation between the CFD model results and the experimental data during PCM melting can be attributed to the thermal losses occurring through the mock-up casing as the heating elements are in direct contact with the external walls of the casing. Moreover, the temperature range over which the PCM solidifies was 6 °C lower than that estimated in the numerical simulations. This occurs because the simple thermodynamic model cannot predict the metastable state of the liquid phase which occurs before the onset of PCM solidification. The mockup was also used to emulate the heat dissipation of the cells during a highway driving cycle of the eVan and the thermal management solution as designed. Results showed that for this mission of the vehicle and starting from an initial temperature of the cells of 40 °C, the battery pack temperature could be maintained below 40 °C over the entire mission by a cooling air flow at 2.5 m/s and at a temperature of 30 °C. Full article
Show Figures

Figure 1

26 pages, 5776 KiB  
Article
Early Detection of Failing Automotive Batteries Using Gas Sensors
by Christiane Essl, Lauritz Seifert, Michael Rabe and Anton Fuchs
Batteries 2021, 7(2), 25; https://doi.org/10.3390/batteries7020025 - 12 Apr 2021
Cited by 53 | Viewed by 15539
Abstract
Safety for automotive lithium-ion battery (LIB) applications is of crucial importance, especially for electric vehicle applications using batteries with high capacity and high energy density. In case of a defect inside or outside the cell, serious safety risks are possible including extensive heat [...] Read more.
Safety for automotive lithium-ion battery (LIB) applications is of crucial importance, especially for electric vehicle applications using batteries with high capacity and high energy density. In case of a defect inside or outside the cell, serious safety risks are possible including extensive heat generation, toxic and flammable gas generation, and consequently fire and explosion. New regulations (GB 38031-2020) require a warning for passengers at least five minutes before serious incidents. This regulation can hardly be fulfilled with state-of-the-art battery monitoring. In this study, gases produced during battery failure before and during a thermal runaway (TR) are investigated in detail and the use of different gas sensors as early detectors of battery incidents is tested and proposed. The response of several commercially available gas sensors is tested in four battery failure cases: unwanted electrolysis of voltage carrying parts, electrolyte vapor, first venting of the cell and the TR. The experiments show that battery failure detection with gas sensors is possible but depends highly on the failure case. The chosen gas sensor can detect H2 produced by unwanted electrolysis and electrolyte vapor and gases produced by degassing of state-of-the-art LIBs. The results may contribute significantly to failure detection and improvement of battery safety. Full article
(This article belongs to the Special Issue Batteries and Electric Vehicles)
Show Figures

Figure 1

19 pages, 3515 KiB  
Article
Influence of Aging on the Failing Behavior of Automotive Lithium-Ion Batteries
by Christiane Essl, Andrey W. Golubkov and Anton Fuchs
Batteries 2021, 7(2), 23; https://doi.org/10.3390/batteries7020023 - 7 Apr 2021
Cited by 27 | Viewed by 7659
Abstract
Lithium-ion batteries (LIBs) are a dominant state-of-the-art energy storage system and have importance in the automotive sector. Still, LIBs suffer from aging effects and serious hazards from failing batteries are possible. These failures can lead to exothermic chemical reactions inside the cell, ending [...] Read more.
Lithium-ion batteries (LIBs) are a dominant state-of-the-art energy storage system and have importance in the automotive sector. Still, LIBs suffer from aging effects and serious hazards from failing batteries are possible. These failures can lead to exothermic chemical reactions inside the cell, ending up in thermal runaway (TR). TR has caused most electric vehicle (EV) fires. Since statistically most accidents with EVs happen after about one year of vehicle usage, in particular, the failing behavior of aged cells needs to be investigated. Little information is available in open literature about the influence of aging paths on the failing behavior and especially on the degassing behavior of large automotive LIBs. Therefore, this study investigates the influence of three different aging paths (cyclic at −10 °C and at 45 °C and calendric at 60 °C) on the thermal behavior, the vent gas emission, and the vent gas composition. The results show a clear effect of aging on the failing behavior. The aged cells showed a less violent failing reaction, reduced maximal temperatures, lower amount of produced gas, significantly lower amount of CO in the vent gas, and lower mass loss than fresh cells in the same overtemperature experiments. The results are valuable for the scientific and industrial community dealing with LIBs. Full article
Show Figures

Figure 1

13 pages, 1257 KiB  
Review
A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes
by Duygu Karabelli, Kai Peter Birke and Max Weeber
Batteries 2021, 7(1), 18; https://doi.org/10.3390/batteries7010018 - 5 Mar 2021
Cited by 52 | Viewed by 13532
Abstract
Electrolytes are key components in electrochemical storage systems, which provide an ion-transport mechanism between the cathode and anode of a cell. As battery technologies are in continuous development, there has been growing demand for more efficient, reliable and environmentally friendly materials. Solid-state lithium [...] Read more.
Electrolytes are key components in electrochemical storage systems, which provide an ion-transport mechanism between the cathode and anode of a cell. As battery technologies are in continuous development, there has been growing demand for more efficient, reliable and environmentally friendly materials. Solid-state lithium ion batteries (SSLIBs) are considered as next-generation energy storage systems and solid electrolytes (SEs) are the key components for these systems. Compared to liquid electrolytes, SEs are thermally stable (safer), less toxic and provide a more compact (lighter) battery design. However, the main issue is the ionic conductivity, especially at low temperatures. So far, there are two popular types of SEs: (1) inorganic solid electrolytes (InSEs) and (2) polymer electrolytes (PEs). Among InSEs, sulfide-based SEs are providing very high ionic conductivities (up to 10−2 S/cm) and they can easily compete with liquid electrolytes (LEs). On the other hand, they are much more expensive than LEs. PEs can be produced at less cost than InSEs but their conductivities are still not sufficient for higher performances. This paper reviews the most efficient SEs and compares them in terms of their performances and costs. The challenges associated with the current state-of-the-art electrolytes and their cost-reduction potentials are described. Full article
(This article belongs to the Special Issue Ionic Transportation Bases in All-Solid-State Batteries)
Show Figures

Figure 1

16 pages, 3398 KiB  
Article
State-of-Charge Monitoring and Battery Diagnosis of Different Lithium Ion Chemistries Using Impedance Spectroscopy
by Peter Kurzweil and Wolfgang Scheuerpflug
Batteries 2021, 7(1), 17; https://doi.org/10.3390/batteries7010017 - 4 Mar 2021
Cited by 8 | Viewed by 7265
Abstract
For lithium iron phosphate batteries (LFP) in aerospace applications, impedance spectroscopy is applicable in the flat region of the voltage-charge curve. The frequency-dependent pseudocapacitance at 0.15 Hz is presented as useful state-of-charge (SOC) and state-of-health (SOH) indicator. For the same battery type, the [...] Read more.
For lithium iron phosphate batteries (LFP) in aerospace applications, impedance spectroscopy is applicable in the flat region of the voltage-charge curve. The frequency-dependent pseudocapacitance at 0.15 Hz is presented as useful state-of-charge (SOC) and state-of-health (SOH) indicator. For the same battery type, the prediction error of pseudocapacitance is better than 1% for a quadratic calibration curve, and less than 36% for a linear model. An approximately linear correlation between pseudocapacitance and Ah battery capacity is observed as long as overcharge and deep discharge are avoided. We verify the impedance method in comparison to the classical constant-current discharge measurements. In the case of five examined lithium-ion chemistries, the linear trend of impedance and SOC is lost if the slope of the discharge voltage curve versus SOC changes. With nickel manganese cobalt (NMC), high impedance modulus correlates with high SOC above 70%. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances and Prospects II)
Show Figures

Figure 1

Back to TopTop