Fabrication of Biomaterials to Develop Tissue Engineering Scaffolds and Medical Devices

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Nanobiotechnology and Biofabrication".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 4989

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Nano Bio Convergence, Pusan National University, Busan 46241, South Korea
Interests: biomaterials; tissue engineering; multi-functional nanomaterials and nanocomposites; electrospun nanofiber mats; hydrogels; bioinks
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The efficient fabrication of biomaterials for tissue regeneration and medical device applications has a significant impact on today's healthcare technology.

The tunable physicochemical properties, mechanical strength, elasticity, and inexpensive preparation methods have allowed researchers working with polymers and nanomaterials to create a variety of inspiring biomaterial scaffolds like electrospun nanofiber, printable ink, and thin film, using the appropriate features. Using advanced biofabrication technologies, including bioprinting, the biomaterials are formulated into several biomedical devices, such as organ-on-a-chip devices, microsystems, biomimetic organoids, photobiomodulation patches, and smart medical devices. These fabricated biomedical devices exhibit remarkable cell–biomaterial interaction, cell biocompatibility, controlled drug delivery, biosensing, etc. They aim to improve tissue regeneration potential, thereby making a significant impact on healthcare technology.

This Special Issue aims to provide readers with an innovative platform to better understand the most recent research developments and challenges in preparing inspiring biomaterials for diverse biomaterial scaffolds and medical devices within the biomedical sector. Researchers are encouraged to influence this endeavor by contributing papers, reviews, or communications on this general subject.

Dr. Iruthaya Pandi Selestin Raja
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tissue engineering
  • biocompatible polymers
  • nanomaterials
  • biofabrication
  • bioprinting
  • photobiomodulation patches
  • smart medical devices
  • cell–biomaterial interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 4281 KiB  
Article
Release Profile and Antibacterial Activity of Thymus sibthorpii Essential Oil-Incorporated, Optimally Stabilized Type I Collagen Hydrogels
by Caglar Ersanli, Ioannis Skoufos, Konstantina Fotou, Athina Tzora, Yves Bayon, Despoina Mari, Eleftheria Sarafi, Konstantina Nikolaou and Dimitrios I. Zeugolis
Bioengineering 2025, 12(1), 89; https://doi.org/10.3390/bioengineering12010089 - 19 Jan 2025
Viewed by 491
Abstract
Antimicrobial resistance is one of the drastically increasing major global health threats due to the misuse and overuse of antibiotics as traditional antimicrobial agents, which render urgent the need for alternative and safer antimicrobial agents, such as essential oils (EOs). Although the strong [...] Read more.
Antimicrobial resistance is one of the drastically increasing major global health threats due to the misuse and overuse of antibiotics as traditional antimicrobial agents, which render urgent the need for alternative and safer antimicrobial agents, such as essential oils (EOs). Although the strong antimicrobial activity of various EOs has already been studied and revealed, their characteristic high sensitivity and volatility drives the need towards a more efficient drug administration method via a biomaterial system. Herein, the potential of Thymus sibthorpii EO incorporated in functionalized antibacterial collagen hydrogels was investigated. At first, the optimally stabilized type I collagen hydrogels via six different multi-arm poly (ethylene glycol) succinimidyl glutarate (starPEG) crosslinkers were determined by assessing the free amine content and the resistance to enzymatic degradation. Subsequently, 0.5, 1, and 2% v/v of EO were incorporated into optimized collagen hydrogels, and the release profile, as well as release kinetics, were studied. Finally, biomaterial cytocompatibility tests were performed. Thymus sibthorpii EO was released from the hydrogel matrix via Fickian diffusion and showed sustained release and 0.5% v/v EO-loaded hydrogels showed adequate antibacterial activity against Staphylococcus aureus and did not show any statistically significant difference compared to penicillin (p < 0.05). Moreover, none of the fabricated composite antibacterial scaffolds displayed any cytotoxicity on NIH-3T3 fibroblasts. In conclusion, this work presents an innovative antibacterial biomaterial system for tissue engineering applications, which could serve as a promising alternative to antibiotics, contributing to coping with the issue of antimicrobial resistance. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

13 pages, 5054 KiB  
Review
Nanofibrous Material-Reinforced Printable Ink for Enhanced Cell Proliferation and Tissue Regeneration
by Iruthayapandi Selestin Raja, Bongju Kim and Dong-Wook Han
Bioengineering 2024, 11(4), 363; https://doi.org/10.3390/bioengineering11040363 - 11 Apr 2024
Cited by 1 | Viewed by 1303
Abstract
The three-dimensional (3D) printing of biomaterials, cells, and bioactive components, including growth factors, has gained interest among researchers in the field of tissue engineering (TE) with the aim of developing many scaffolds to sustain size, shape fidelity, and structure and retain viable cells [...] Read more.
The three-dimensional (3D) printing of biomaterials, cells, and bioactive components, including growth factors, has gained interest among researchers in the field of tissue engineering (TE) with the aim of developing many scaffolds to sustain size, shape fidelity, and structure and retain viable cells inside a network. The biocompatible hydrogel employed in 3D printing should be soft enough to accommodate cell survival. At the same time, the gel should be mechanically strong to avoid the leakage of cells into the surrounding medium. Considering these basic criteria, researchers have developed nanocomposite-based printable inks with suitable mechanical and electroconductive properties. These nanomaterials, including carbon family nanomaterials, transition metal dichalcogenides, and polymeric nanoparticles, act as nanofillers and dissipate stress across polymeric networks through their electroactive interactions. Nanofiber-reinforced printable ink is one kind of nanocomposite-based ink that comprises dispersed nanofiber components in a hydrogel matrix. In this current review, we compile various TE applications of nanofiber-reinforced printable ink and describe the 3D-printing parameters, classification, and impact of cross-linkage. Furthermore, we discuss the challenges and future perspectives in this field. Full article
Show Figures

Graphical abstract

Back to TopTop