Aerogel Catalyst
A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Catalytic Materials".
Deadline for manuscript submissions: closed (30 September 2012) | Viewed by 54543
Special Issue Editors
Interests: membrane reactors; carbon membranes; carbon dioxide capture; hydrogen
Special Issues, Collections and Topics in MDPI journals
Interests: synthesis, shaping, and large-scale production of nanomaterials; characterization of nanomaterials; applications of nanomaterials in catalysis, electrochemistry and separation; carbon xerogels, xerogels
Special Issue Information
Dear Colleagues,
The term aerogel describes a material obtained by supercritical extraction of the liquid of a gel, itself consisting of a solid three-dimensional network that ensnares a liquid medium. Drying by transition from the liquid to the supercritical phase does away with the capillary forces, which act in evaporation and cause partial or total collapse of the pore network. Hence, supercritical drying leads to materials with low density, high specific surface area, large pore volume and very versatile pore size. The first aerogels were produced from silica gels in 1937. Since then, the sol-gel technique has expanded to other inorganic materials such as alumina or titanium oxide, for instance, then to carbon in the late 1980s.
Extending the original definition, literature includes in aerogel-like materials a large variety of nanostructured porous solids. One can cite, for instance, materials obtained by supercritical drying of precipitates, which maintain a loose structure with non-agglomerated primary particles. Cryogels synthesized by freeze-drying of gels, or xerogels, i.e. materials prepared via subcritical drying but that nevertheless maintain a substantial fraction of the original gel pore texture, constitute an interesting alternative to the (costly) supercritical drying.
The inherent properties of aerogels and aerogel-like supports render them very attractive in catalytic applications, as shown by the constantly renewed interest of research groups for this technology through the years. Besides high dispersion of the active phase, made possible by high surface areas, the high pore volume and tunable pore size of aerogels lead to the possibility of designing catalyst supports that facilitate the diffusion of reactants and products to and from the active sites. The indubitable improvements in catalytic performance obtained through use of aerogel supports should of course outweigh their higher processing cost. To this end, the development of efficient manufacture processes is crucial and should constitute the last step towards large-scale use of catalysts supported on these fascinating engineered supports.
Dr. Theophilos Ioannides
Dr. Nathalie Job
Guest Editors
Keywords
- sol-gel
- aerogels
- xerogels
- cryogels
- catalysts
- catalyst supports
- cogelation
- nanostructured materials
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.