Static and Time-Dependent Density-Functional Theories for Strongly Correlated Materials
A special issue of Computation (ISSN 2079-3197). This special issue belongs to the section "Computational Chemistry".
Deadline for manuscript submissions: closed (31 August 2020) | Viewed by 6050
Special Issue Editor
Interests: computational and theoretical condensed matter physics; materials with strong electron-electron correlations; excitations in novel materials; ultrafast charge dynamics in Mott insulators and semiconductors; nanomagnetism
Special Issue Information
Dear Colleagues,
Recent developments of the static and time-dependent density functional theory (DFT and TDDFT) have led to a dramatic progress in the accurate description of the properties of various types of systems, from molecules and nanostructures and bulk materials. However, in the case of one of the most important and complicated groups of materials—systems with strong electron–electron correlations, the community is in desperate need of the ab initio tools, most notably with universal exchange-correlation (XC) potential. Strongly correlated materials are systems with partially-filled valence d- or/and f-orbital bands of electrons with rather localized charges. As a result of such a localization, in these systems the width of the corresponding bands (or kinetic energy) is often smaller or of the same order as the energy of the local on-site Coulomb repulsion between the electrons (or potential energy). The delicate interplay of the kinetic and potential energy effects results in many unusual and potentially useful properties of strongly correlated materials, like giant magneto-resistance and high-temperature superconductivity. Due to a strongly nonhomogeneous distribution of charges in these systems, LDA, GGA and other standard approaches fail to describe their properties. Thus, currently developers are exploring different alternative directions to construct the corresponding appropriate XC potentials for these systems in the static (DFT) and time-dependent (TDDFT) cases and to apply them to variety of strongly correlated systems.
We invite researchers working in the field to contribute to this Special Issue by submitting papers on their original research and reviews on the current state-of-the-art and prospects of the field.
Dr. Volodymyr Turkowski
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Computation is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.