Innovation in Last-Mile and Long-Distance Transportation

Special Issue Editors


E-Mail Website
Guest Editor
Department of Transport and Regional Economics, University of Antwerp, Antwerp, Belgium
Interests: transport economics; port economics; urban logistics

Special Issue Information

Dear Colleagues,

Transport and logistics currently feature a lot of challenges and changes. The latter concern both the demand and supply side. On the demand side, new shopping and ordering habits have emerged, with the surge of e-commerce, stimulated also by the COVID-19 pandemic, being the main phenomenon. On the supply side, innovation is implemented in the form of automation and digitalization, and the uptake of new types of transport connections.

In addition, the transportation sector is facing significant challenges due to the combined effects the COVID-19 pandemic, the pressure for an accelerated decarbonization in order to mitigate climate change, the need to promote freight modal shifts away from the road network, and the disruptive effects of the digitalization and automation processes.

In this Special Issue, contributions are invited that tackle and combine the topics listed below, and that provide analyses on the economic feasibility of the proposed solutions. They can deal with last-mile as well as long-distance transportation, and on any topic related to freight transport and logistics, including but certainly not limited to the following:

  1. Urban logistics and sustainable transport, and the exploration of sustainable last-mile delivery solutions tailored to urban environments, including micro-mobility options (e.g., electric bikes, scooters), consolidation centers, and green logistics initiatives aimed at minimizing congestion and emissions, and improving safety;
  2. Last-mile delivery, focusing on innovative strategies and technologies to manage and control last-mile delivery, including route planning, vehicle routing and scheduling techniques, and the integration of data analytics to enhance efficiency and reduce delivery costs and impacts;
  3. Shopping mobility and e-commerce, including the analysis and the economic feasibility of delivery solutions;
  4. Digitalization of freight transport and innovation;
  5. Forecasting and modelling freight transport;
  6. Railway and maritime transport;
  7. External costs and assessment methodologies;
  8. Freight transport planning towards a more sustainable world.

The topics handled in this Special Issue perfectly match the journal, as each of the contributions looks at expanding the scope of their specific transport research domain, both from a methodological and a thematic point of view.

Dr. Antonio Comi
Prof. Dr. Thierry Vanelslander
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Future Transportation is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • last-mile transport
  • long-distance transport
  • e-commerce
  • transport modes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5882 KiB  
Article
CO2e Life-Cycle Assessment: Twin Comparison of Battery–Electric and Diesel Heavy-Duty Tractor Units with Real-World Data
by Hannes Piepenbrink, Heike Flämig and Alexander Menger
Future Transp. 2025, 5(1), 12; https://doi.org/10.3390/futuretransp5010012 - 2 Feb 2025
Viewed by 490
Abstract
In 2023, the EU set the target to reduce greenhouse gas (GHG) emissions by 55% until 2030 compared to 1990. The European Transport Policy sees battery–electric vehicles as a key technology to decarbonize the transport sector, so governments support the adoption through dedicated [...] Read more.
In 2023, the EU set the target to reduce greenhouse gas (GHG) emissions by 55% until 2030 compared to 1990. The European Transport Policy sees battery–electric vehicles as a key technology to decarbonize the transport sector, so governments support the adoption through dedicated funding programs. Battery–electric trucks hold great potential to decarbonize the transport sector, especially for high-impact, heavy-duty trucks. Theoretical life-cycle assessments (LCA) predict a lower CO2e emission impact from battery–electric trucks compared to conventional diesel trucks. Yet, one concern repeatedly mentioned by potential users is the doubt about the ecological advantage of battery–electric vehicles. This is rooted in the problem of a much higher CO2e impact of the lithium-ion batteries production process. As heavy-duty trucks have a much larger battery, the hypothec in the construction phase of the vehicle is significantly higher, which must be regained during the use phase. Although theoretical assessments exist, CO2e evaluations using real-world application data are almost nonexistent, as the technology is at the very start of the adoption curve. Exemplary is the fact that there were only 72 registered battery–electric heavy-duty tractor trucks throughout the whole of Germany at the start of 2023. This paper aims to deliver one of the first real-world quantifications using operational data for the actual reduction impact of battery–electric heavy-duty trucks compared to diesel trucks. This study uses the methodology of the life-cycle assessment approach according to ISO 14040/14044 to gain a systematic and holistic technology comparison. For this LCA, the system boundaries are considered from cradle to cradle. This includes the production of raw materials and energy, the manufacturing of the trucks, the use phase, and the recycling afterward. The research objects of this study are battery–electric and diesel Volvo FM trucks, which have been in use by the German freight company Nord-Spedition GmbH since May 2023. The GREET® database is used to assess the emission impact of the material production and manufacturing process. The Volvo tractor trucks resemble a critical case, as the vehicles have a battery size of 540 kWh—around 11 times larger than a usual passenger car. The operation data is directly provided by the logistics company to observe fuel/electricity consumption. Other factors are assessed through company interviews as well as a wide literature research. Finally, a large question mark concerning total emissions lies in the cradle-to-cradle capabilities of large-scale lithium-ion batteries and the electricity grid mix. Different scenarios are being considered to assess potential disposal or recycling paths as well as different electricity grid developments and their impact on the overall balance. The findings estimate the total emissions reduction potential to range between 34% and 69%, varying with assumptions on the electricity grid transition and recycling opportunities. This study displays one of the first successful early-stage integrations of battery–electric heavy-duty trucks into the daily operation of a freight company and can be used to showcase the ecological advantage of the technology. Full article
(This article belongs to the Special Issue Innovation in Last-Mile and Long-Distance Transportation)
Show Figures

Figure 1

Back to TopTop