The Resonant Brain: A Themed Issue Dedicated to Professor Stephen Grossberg

A special issue of Information (ISSN 2078-2489). This special issue belongs to the section "Artificial Intelligence".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 24433

Special Issue Editors


E-Mail Website
Guest Editor
Centre National de la Recherche Scientifique (CNRS), ICube Lab UMR 7357 CNRS, Université de Strasbourg, F-67081 Strasbourg, France
Interests: cognitive neuroscience; brain; cognitive psychology; behavior; perceptual learning and memory; neural networks; consciousness; philosophy of artificial intelligence; principles of unsupervised learning; computing and philosophy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Psychology and Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA
Interests: neuroscience; emotion; motivation; attention; affective neuroscience

Special Issue Information

Dear Colleagues,

This Special Issue is centered on answering how the human brain processes information in all its complexity to give rise to what is called “the mind”. Information is a concept that reaches well beyond the realm of data, and in the largest possible sense it may be defined as everything that we are able to process in our brains to produce knowledge. Clearly, the concept of information per se would not exist without a human brain capable of perceiving and processing it, and there would be no definition of what is to be understood by the concept without a conscious mind capable of providing it. Information produces what we humans call knowledge, and knowledge is formed inside, and transformed by, what we call the human mind. Yet, how can a mind understand itself? How is it possible to understand the processes our brain uses to understand the world? Professor Stephen Grossberg’s book Conscious Mind, Resonant Brain: How Each Brain Makes a Mind, published in 2021, provides an introductory and self-contained description of some of the exciting answers to these questions that modern theories of mind and brain have recently proposed. Stephen Grossberg is broadly acknowledged to be among the pioneers and research leaders in the field of neural networks who has, for the past 50 years, modeled how brains give rise to minds, and notably how neural circuits in multiple brain regions interact together to generate psychological functions. This research has led to a unified understanding of how, where, and why our brains can consciously see, hear, feel, and know about the world, and effectively plan and act within it. His lifelong work has sought to clarify how autonomous adaptive intelligence is achieved. It provides mechanistic explanations of adaptive behaviors, and solutions to large-scale problems in machine learning, technology, and Artificial Intelligence that provide a blueprint for autonomously intelligent algorithms and robots. As brains embody a universal developmental code, unifying insights also emerge about shared laws that are found in all living cellular tissues, from the most primitive to the most advanced, notably how the laws governing networks of interacting cells support developmental and learning processes in all species. The fundamental brain design principles of complementarity, uncertainty, and resonance that Grossberg has discovered also reflect laws of the physical world with which our brains ceaselessly interact, and which enable our brains to incrementally learn to understand those laws, thereby enabling humans to understand the world scientifically.

This Special Issue is dedicated to Stephen Grossberg, Professor Emeritus with the Department of Biomedical Engineering of Boston University (BU), Wang Professor of Cognitive and Neural Systems, and former Director of the Center for Adaptive Systems of BU. Grossberg is an internationally acclaimed scientist and pioneer in fundamental principles, mechanisms, and model architectures that form the foundation of contemporary neural network research. Grossberg and his colleagues have built models that have been used to analyze and predict interdisciplinary data about mind and brain and suggest novel architectures for technological applications. In this Special Issue, we invite articles on interdisciplinary topics devoted to cooperative–competitive processes underlying brain integration for human information processing and the design of predictive Artificial Intelligence and/or conscious representation by the human mind.

Both research papers and review articles are welcome.

Prof. Dr. Birgitta Dresp-Langley
Prof. Dr. Luiz Pessoa
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Information is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

28 pages, 5912 KiB  
Article
Resonating with the World: Thinking Critically about Brain Criticality in Consciousness and Cognition
by Gerry Leisman and Paul Koch
Information 2024, 15(5), 284; https://doi.org/10.3390/info15050284 - 17 May 2024
Cited by 1 | Viewed by 2659
Abstract
Aim: Biofields combine many physiological levels, both spatially and temporally. These biofields reflect naturally resonant forms of synaptic energy reflected in growing and spreading waves of brain activity. This study aims to theoretically understand better how resonant continuum waves may be reflective of [...] Read more.
Aim: Biofields combine many physiological levels, both spatially and temporally. These biofields reflect naturally resonant forms of synaptic energy reflected in growing and spreading waves of brain activity. This study aims to theoretically understand better how resonant continuum waves may be reflective of consciousness, cognition, memory, and thought. Background: The metabolic processes that maintain animal cellular and physiological functions are enhanced by physiological coherence. Internal biological-system coordination and sensitivity to particular stimuli and signal frequencies are two aspects of coherent physiology. There exists significant support for the notion that exogenous biologically and non-biologically generated energy entrains human physiological systems. All living things have resonant frequencies that are either comparable or coherent; therefore, eventually, all species will have a shared resonance. An organism’s biofield activity and resonance are what support its life and allow it to react to stimuli. Methods: As the naturally resonant forms of synaptic energy grow and spread waves of brain activity, the temporal and spatial frequency of the waves are effectively regulated by a time delay (T) in inter-layer signals in a layered structure that mimics the structure of the mammalian cortex. From ubiquitous noise, two different types of waves can arise as a function of T. One is coherent, and as T rises, so does its resonant spatial frequency. Results: Continued growth eventually causes both the wavelength and the temporal frequency to abruptly increase. Two waves expand simultaneously and randomly interfere in an area of T values as a result. Conclusion: We suggest that because of this extraordinary dualism, which has its roots in the phase relationships of amplified waves, coherent waves are essential for memory retrieval, whereas random waves represent original cognition. Full article
Show Figures

Figure 1

30 pages, 1737 KiB  
Article
Analyzing Biomedical Datasets with Symbolic Tree Adaptive Resonance Theory
by Sasha Petrenko, Daniel B. Hier, Mary A. Bone, Tayo Obafemi-Ajayi, Erik J. Timpson, William E. Marsh, Michael Speight and Donald C. Wunsch II
Information 2024, 15(3), 125; https://doi.org/10.3390/info15030125 - 23 Feb 2024
Viewed by 1810
Abstract
Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, and altered proteins to changes in molecular functions and biological processes. It is desirable to gain new insights [...] Read more.
Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, and altered proteins to changes in molecular functions and biological processes. It is desirable to gain new insights from these data, especially with regard to the uncovering of hierarchical structures relating disease variants. However, analysis to this end has proven difficult due to the complexity of the connections between multi-categorical symbolic data. This article proposes symbolic tree adaptive resonance theory (START), with additional supervised, dual-vigilance (DV-START), and distributed dual-vigilance (DDV-START) formulations, for the clustering of multi-categorical symbolic data from biomedical datasets by demonstrating its utility in clustering variants of Charcot–Marie–Tooth disease using genomic, phenotypic, and proteomic data. Full article
Show Figures

Figure 1

23 pages, 3140 KiB  
Article
An ART Tour de Force on Mental Imagery: Vividness, Individual Bias Differences, and Complementary Visual Processing Streams
by Amedeo D’Angiulli, Christy Laarakker and Derrick Matthew Buchanan
Information 2024, 15(1), 59; https://doi.org/10.3390/info15010059 - 19 Jan 2024
Cited by 1 | Viewed by 2424
Abstract
Grossberg’s adaptive resonance theory (ART) provides a framework for understanding possible interactions between mental imagery and visual perception. Our purpose was to integrate, within ART, the phenomenological notion of mental image vividness and thus investigate the possible biasing effects of individual differences on [...] Read more.
Grossberg’s adaptive resonance theory (ART) provides a framework for understanding possible interactions between mental imagery and visual perception. Our purpose was to integrate, within ART, the phenomenological notion of mental image vividness and thus investigate the possible biasing effects of individual differences on visual processing. Using a Vernier acuity task, we tested whether indirect estimation of relative V1 size (small, medium, large) and self-reported vividness, in three subgroups of 53 observers, could predict significant effects of priming, interference, or more extreme Perky effects (negative and positive), which could be induced by imagery, impacting acuity performance. The results showed that small V1 was correlated with priming and/or negative Perky effects independently of vividness; medium V1 was related to interference at low vividness but priming at high vividness; and large V1 was related to positive Perky effects at high vividness but negative Perky effects at low vividness. Our interpretation of ART and related modeling based on ARTSCAN contributes to expanding Grossberg’s comprehensive understanding of how and why individually experienced vividness may drive the differential use of the dorsal and ventral complementary visual processing pathways, resulting in the observed effects of imagery on concurrent perception. Full article
Show Figures

Figure 1

14 pages, 1049 KiB  
Article
The Psychometric Function for Focusing Attention on Pitch
by Adam Reeves
Information 2023, 14(5), 279; https://doi.org/10.3390/info14050279 - 9 May 2023
Cited by 1 | Viewed by 1709
Abstract
What is the effect of focusing auditory attention on an upcoming signal tone? Weak signal tones, 40 ms in duration, were presented in 50 dB continuous white noise and were either uncued or cued 82 ms beforehand by a 12 dB SL cue [...] Read more.
What is the effect of focusing auditory attention on an upcoming signal tone? Weak signal tones, 40 ms in duration, were presented in 50 dB continuous white noise and were either uncued or cued 82 ms beforehand by a 12 dB SL cue tone of the same frequency and duration as the signal. Signal frequency was either constant for a block of trials or was randomly one of 11 frequencies from 632 to 3140 Hz. Slopes of psychometric functions for detection in single-interval (Yes/No) trials were obtained from three listeners by varying the signal level over a 1–9 dB range. Plots of log(d’) against signal dB were fit by linear functions. Slopes were similar whether signal frequency was constant or varied, as found by D. Green. Slopes for uncued tones increased by 14% to 20% more than predicted by signal energy (i.e., 0.10), as also found previously, whereas slopes for cued tones followed signal energy corrected for an 8 dB sensory threshold. That pre-cues help attention focus rapidly on signal frequency and permit listeners to act as near-ideal detectors of signal energy, which they do not do otherwise, supports a key hypothesis of Grossberg’s ART model that attention guided by conscious awareness can optimize perception. Full article
Show Figures

Figure 1

15 pages, 1602 KiB  
Article
The Grossberg Code: Universal Neural Network Signatures of Perceptual Experience
by Birgitta Dresp-Langley
Information 2023, 14(2), 82; https://doi.org/10.3390/info14020082 - 1 Feb 2023
Cited by 2 | Viewed by 3471
Abstract
Two universal functional principles of Grossberg’s Adaptive Resonance Theory decipher the brain code of all biological learning and adaptive intelligence. Low-level representations of multisensory stimuli in their immediate environmental context are formed on the basis of bottom-up activation and under the control of [...] Read more.
Two universal functional principles of Grossberg’s Adaptive Resonance Theory decipher the brain code of all biological learning and adaptive intelligence. Low-level representations of multisensory stimuli in their immediate environmental context are formed on the basis of bottom-up activation and under the control of top-down matching rules that integrate high-level, long-term traces of contextual configuration. These universal coding principles lead to the establishment of lasting brain signatures of perceptual experience in all living species, from aplysiae to primates. They are re-visited in this concept paper on the basis of examples drawn from the original code and from some of the most recent related empirical findings on contextual modulation in the brain, highlighting the potential of Grossberg’s pioneering insights and groundbreaking theoretical work for intelligent solutions in the domain of developmental and cognitive robotics. Full article
Show Figures

Figure 1

13 pages, 2207 KiB  
Article
Inter-Brain Hemodynamic Coherence Applied to Interoceptive Attentiveness in Hyperscanning: Why Social Framing Matters
by Michela Balconi and Laura Angioletti
Information 2023, 14(2), 58; https://doi.org/10.3390/info14020058 - 17 Jan 2023
Cited by 9 | Viewed by 2359
Abstract
Grossberg’s classification of adaptive resonance mechanisms includes the cognitive-emotional resonances that support conscious feelings and recognition of them. In this regard, a relevant question concerns the processing of signals deriving from the internal body and their contribution to interpersonal synchronization. This study aims [...] Read more.
Grossberg’s classification of adaptive resonance mechanisms includes the cognitive-emotional resonances that support conscious feelings and recognition of them. In this regard, a relevant question concerns the processing of signals deriving from the internal body and their contribution to interpersonal synchronization. This study aims to assess hemodynamic inter-subject coherence in the prefrontal cortex (PFC) through functional near-infrared spectroscopy (fNIRS) hyperscan recording during dyadic synchronization tasks proposed with or without a social frame and performed in two distinct interoceptive conditions: focus and no focus on the breathing condition. Individuals’ hemodynamic data (oxygenated and de-oxygenated hemoglobin (O2Hb and HHb, respectively)) were recorded through fNIRS hyperscanning, and coherence analysis was performed. The findings showed a significantly higher O2Hb coherence in the left PFC when the dyads performed the synchronization tasks with a social frame compared with no social frame in the focus condition. Overall, the evidence suggests that the interoceptive focus and the presence of a social frame favor the manifestation of a left PFC interpersonal tuning during synchronization tasks. Full article
Show Figures

Figure 1

14 pages, 1675 KiB  
Article
“We Will Let You Know”: An Assessment of Digital vs. Face-to-Face Job Interviews via EEG Connectivity Analysis
by Michela Balconi, Davide Crivelli and Federico Cassioli
Information 2022, 13(7), 312; https://doi.org/10.3390/info13070312 - 27 Jun 2022
Cited by 4 | Viewed by 3231
Abstract
We focused on job interviews as critical examples of complex social interaction in organizational contexts. We aimed at investigating the effect of face-to-face vs. computer-mediated interaction, of role (candidate, recruiter), and of the interview phase (introductory, attitudinal, technical, conclusive) on intra-brain and inter-brain [...] Read more.
We focused on job interviews as critical examples of complex social interaction in organizational contexts. We aimed at investigating the effect of face-to-face vs. computer-mediated interaction, of role (candidate, recruiter), and of the interview phase (introductory, attitudinal, technical, conclusive) on intra-brain and inter-brain connectivity measures and autonomic synchronization. Twenty expert recruiters and potential candidates took part in a hyperscanning investigation. Namely, electroencephalography (delta, theta, alpha, beta bands) and autonomic (skin-conductance, heart-rate) data were collected in candidate-recruiter dyads during a simulated job interview and then concurrently analyzed. Analyses highlighted a link between face-to-face condition and greater intra-/inter-brain connectivity indices in delta and theta bands. Furthermore, intra-brain and inter-brain connectivity measures were higher for delta and theta bands in the final interview phases compared to the first ones. Consistently, autonomic synchronization was higher during the final interview phases, specifically in the face-to-face condition. Finally, recruiters showed higher intra-brain connectivity in the delta range over frontal and temporoparietal areas, while candidates showed higher intra-brain connectivity in the theta range over frontal areas. Findings highlight the value of hyperscanning investigations in exploring social attunement in professional contexts and hint at their potential to foster neuroscience-informed practices in human resource management processes. Full article
Show Figures

Figure 1

Review

Jump to: Research

35 pages, 8757 KiB  
Review
From Information to Knowledge: A Role for Knowledge Networks in Decision Making and Action Selection
by Jagmeet S. Kanwal
Information 2024, 15(8), 487; https://doi.org/10.3390/info15080487 - 15 Aug 2024
Viewed by 1287
Abstract
The brain receives information via sensory inputs through the peripheral nervous system and stores a small subset as memories within the central nervous system. Short-term, working memory is present in the hippocampus whereas long-term memories are distributed within neural networks throughout the brain. [...] Read more.
The brain receives information via sensory inputs through the peripheral nervous system and stores a small subset as memories within the central nervous system. Short-term, working memory is present in the hippocampus whereas long-term memories are distributed within neural networks throughout the brain. Elegant studies on the mechanisms for memory storage and the neuroeconomic formulation of human decision making have been recognized with Nobel Prizes in Physiology or Medicine and in Economics, respectively. There is a wide gap, however, in our understanding of how memories of disparate bits of information translate into “knowledge”, and the neural mechanisms by which knowledge is used to make decisions. I propose that the conceptualization of a “knowledge network” for the creation, storage and recall of knowledge is critical to start bridging this gap. Knowledge creation involves value-driven contextualization of memories through cross-validation via certainty-seeking behaviors, including rumination or reflection. Knowledge recall, like memory, may occur via oscillatory activity that dynamically links multiple networks. These networks may show correlated activity and interactivity despite their presence within widely separated regions of the nervous system, including the brainstem, spinal cord and gut. The hippocampal–amygdala complex together with the entorhinal and prefrontal cortices are likely components of multiple knowledge networks since they participate in the contextual recall of memories and action selection. Sleep and reflection processes and attentional mechanisms mediated by the habenula are expected to play a key role in knowledge creation and consolidation. Unlike a straightforward test of memory, determining the loci and mechanisms for the storage and recall of knowledge requires the implementation of a naturalistic decision-making paradigm. By formalizing a neuroscientific concept of knowledge networks, we can experimentally test their functionality by recording large-scale neural activity during decision making in awake, naturally behaving animals. These types of studies are difficult but important also for advancing knowledge-driven as opposed to big data-driven models of artificial intelligence. A knowledge network-driven understanding of brain function may have practical implications in other spheres, such as education and the treatment of mental disorders. Full article
Show Figures

Figure 1

40 pages, 5798 KiB  
Review
Global Realism with Bipolar Strings: From Bell Test to Real-World Causal-Logical Quantum Gravity and Brain-Universe Similarity for Entangled Machine Thinking and Imagination
by Wen-Ran Zhang
Information 2024, 15(8), 456; https://doi.org/10.3390/info15080456 - 1 Aug 2024
Viewed by 2904
Abstract
Following Einstein’s prediction that “Physics constitutes a logical system of thought” and “Nature is the realization of the simplest conceivable mathematical ideas”, this topical review outlines a formal extension of local realism limited by the speed of light to [...] Read more.
Following Einstein’s prediction that “Physics constitutes a logical system of thought” and “Nature is the realization of the simplest conceivable mathematical ideas”, this topical review outlines a formal extension of local realism limited by the speed of light to global realism with bipolar strings (GRBS) that unifies the principle of locality with quantum nonlocality. The related literature is critically reviewed to justify GRBS which is shown as a necessary and inevitable consequence of the Bell test and an equilibrium-based axiomatization of physics and quantum information science for brain–universe similarity and human-level intelligence. With definable causality in regularity and mind–light–matter unity for quantum superposition/entanglement, bipolar universal modus ponens (BUMP) in GRBS makes quantum emergence and submergence of spacetime logically ubiquitous in both the physical and mental worlds—an unexpected but long-sought simplification of quantum gravity with complete background independence. It is shown that GRBS forms a basis for quantum intelligence (QI)—a spacetime transcendent, quantum–digital compatible, analytical quantum computing paradigm where bipolar strings lead to bipolar entropy as a nonlinear bipolar dynamic and set–theoretic unification of order and disorder as well as linearity and nonlinearity for energy/information conservation, regeneration, and degeneration toward quantum cognition and quantum biology (QCQB) as well as information-conservational blackhole keypad compression and big bang data recovery. Subsequently, GRBS is justified as a real-world quantum gravity (RWQG) theory—a bipolar relativistic causal–logical reconceptualization and unification of string theory, loop quantum gravity, and M-theory—the three roads to quantum gravity. Based on GRBS, the following is posited: (1) life is a living bipolar superstring regulated by bipolar entropy; (2) thinking with consciousness and memory growth as a prerequisite for human-level intelligence is fundamentally mind–light–matter unitary QI logically equivalent to quantum emergence (entanglement) and submergence (collapse) of spacetime. These two posits lead to a positive answer to the question “If AI machine cannot think, can QI machine think?”. Causal–logical brain modeling (CLBM) for entangled machine thinking and imagination (EMTI) is proposed and graphically illustrated. The testability and falsifiability of GRBS are discussed. Full article
Show Figures

Figure 1

Back to TopTop