Biology, Ecology and Control of Synanthropic Flies

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 13474

Special Issue Editor


E-Mail Website
Guest Editor
Center for Medical, Agricultural and Veterinary Entomology, USDA–ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
Interests: stable flies; management; behavior; dispersal; biocontrol; feeding mechanisms; disease transmission; repellents; at-tractants; trapping; ecology; biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The biology, ecology and control of synanthropic flies are very important research topics. As more is learned about the biology and ecology of pest species, control techniques can be more species-specific and environmentally friendly. House flies, Musca domestica, stable flies, Stomoxys calcitrans, and horn flies, Haematobia irritans, are the “big 3” in many parts of the world, but there are other synanthropic species that would qualify to fit into this Special Issue.

The flies to be highlighted in the Special Issue should be pests of humans and/or animals. They may or may not transmit pathogens, and their control would help to improve the welfare of humans and animals alike. Authors who conduct traditional research as well as authors who are working on topics in genetics and semiochemicals are invited to submit their work.

Dr. Jerome A Hogsette
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • trapping systems
  • genetics
  • larval development parameters
  • attractants and repellents

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2336 KiB  
Article
Wing Phenotypic Variation among Stomoxys calcitrans (Diptera: Muscidae) Populations in Thailand
by Tanawat Chaiphongpachara, Gerard Duvallet and Tanasak Changbunjong
Insects 2022, 13(5), 405; https://doi.org/10.3390/insects13050405 - 23 Apr 2022
Cited by 7 | Viewed by 3238
Abstract
Stomoxys calcitrans (Linnaeus, 1758) (Diptera: Muscidae) is a cosmopolitan hematophagous ectoparasite of veterinary and medical importance. It is an important mechanical vector of several animal pathogens and can cause significant economic losses. However, the morphological variation of this species remains unknown. This study [...] Read more.
Stomoxys calcitrans (Linnaeus, 1758) (Diptera: Muscidae) is a cosmopolitan hematophagous ectoparasite of veterinary and medical importance. It is an important mechanical vector of several animal pathogens and can cause significant economic losses. However, the morphological variation of this species remains unknown. This study aimed to investigate the phenotypic variation in the wing size and shape of S. calcitrans populations in Thailand based on a landmark-based geometric morphometric approach. Specimens were collected from five populations in five geographical regions in Thailand. A total of 490 left wings of S. calcitrans (245 female and 245 male individuals) were used for geometric morphometric analysis. Wing size differences were detected between some populations of S. calcitrans, whereas wing shape differences were found among populations. Therefore, the phenotypic variation in S. calcitrans populations indicated that these populations are adaptive responses to local environmental pressures, suggesting the presence of phenotypic plasticity in this species. Full article
(This article belongs to the Special Issue Biology, Ecology and Control of Synanthropic Flies)
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 1543 KiB  
Review
Synanthropic Flies—A Review Including How They Obtain Nutrients, along with Pathogens, Store Them in the Crop and Mechanisms of Transmission
by John G. Stoffolano, Jr.
Insects 2022, 13(9), 776; https://doi.org/10.3390/insects13090776 - 27 Aug 2022
Cited by 3 | Viewed by 9123
Abstract
An attempt has been made to provide a broad review of synanthropic flies and, not just a survey of their involvement in human pathogen transmission. It also emphasizes that the crop organ of calliphorids, sarcophagids, and muscids was an evolutionary development and has [...] Read more.
An attempt has been made to provide a broad review of synanthropic flies and, not just a survey of their involvement in human pathogen transmission. It also emphasizes that the crop organ of calliphorids, sarcophagids, and muscids was an evolutionary development and has served and assisted non-blood feeding flies in obtaining food, as well as pathogens, prior to the origin of humans. Insects are believed to be present on earth about 400 million years ago (MYA). Thus, prior to the origin of primates, there was adequate time for these flies to become associated with various animals and to serve as important transmitters of pathogens associated with them prior to the advent of early hominids and modern humans. Through the process of fly crop regurgitation, numerous pathogens are still readily being made available to primates and other animals. Several studies using invertebrate-derived DNA = iDNA meta-techniques have been able to identify, not only the source the fly had fed on, but also if it had fed on their feces or the animal's body fluids. Since these flies are known to feed on both vertebrate fluids (i.e., from wounds, saliva, mucus, or tears), as well as those of other animals, and their feces, identification of the reservoir host, amplification hosts, and associated pathogens is essential in identifying emerging infectious diseases. New molecular tools, along with a focus on the crop, and what is in it, should provide a better understanding and development of whether these flies are involved in emerging infectious diseases. If so, epidemiological models in the future might be better at predicting future epidemics or pandemics. Full article
(This article belongs to the Special Issue Biology, Ecology and Control of Synanthropic Flies)
Show Figures

Figure 1

Back to TopTop