Exploring Challenges and Innovations in 3D Point Cloud Processing
A special issue of Journal of Imaging (ISSN 2313-433X).
Deadline for manuscript submissions: 30 November 2024 | Viewed by 2292
Special Issue Editors
Interests: computer vision; photogrammetry; navigation; remote sensing
Interests: image orientation; 3D reconstruction; image-based modeling; terrestrial/UAV/fisheye photogrammetry; digital photography
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
The aim of this Special Issue is to provide an in-depth exploration of the complexities and advancements in 3D point cloud processing, with a focus on the use of artificial intelligence (AI) and advanced computational processing techniques. This Special Issue aims to bring together all the different steps of 3D point cloud processing, including algorithms for mesh model generation, geospatial mapping, semantic analysis, feature extraction, visualization, and real-world interpretation and case studies.
In the last few years, integrating AI methodologies has emerged as a central theme, driving innovations across various aspects of 3D point cloud processing. Contributions that explore novel algorithms and machine learning techniques for enhancing the quality of point cloud data and enabling more accurate registration, alignment, and fusion of multi-source datasets are welcome. Furthermore, a robust feature extraction methodology and segmentation facilitate the identification and categorization of objects within complex scenes.
Through advanced computational methods, researchers aim to improve the reliability and resolution of meshed models obtained by point clouds, enhancing their utility in several domains such as architecture, archaeology, and urban planning. Moreover, the geospatial mapping methods employ point cloud data to create high-resolution terrain models and 3D representations of geographic landscapes, aiding in environmental monitoring, disaster response, and urban development projects.
Finally, semantic analysis emerges as a pivotal area of research. Through semantic segmentation and classification techniques, point clouds can be marked with semantic labels, enabling automated object recognition, automated architectural element recognition, and improving scene interpretation. These analyses allow us to achieve enhanced decision-making capabilities and intelligent automation in applications ranging from autonomous driving to industrial robotics.
This Special Issue also aims to include advances in visualization and interpretation tools that allow users to interactively explore and analyze complex point cloud datasets. Addressing real-world case studies that highlight the practical implications and transformative potential of 3D point cloud processing in a variety of fields, from precision agriculture to forest management, from cultural heritage conservation to infrastructure inspection, the case studies demonstrate the tangible benefits and innovative applications of 3D point cloud technology.
In summary, this Special Issue aims to be a comprehensive compendium of research and innovation in 3D point cloud processing, offering insights into emerging trends, challenges, and opportunities. By promoting interdisciplinary collaboration and knowledge exchange, this Special Issue aims to advance the field, highlighting advances in AI-driven point cloud processing and opening new frontiers in research, industry, and social impact.
Dr. Silvio Del Pizzo
Dr. Luca Perfetti
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Imaging is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- 3D point cloud processing
- artificial intelligence
- mesh model generation
- feature extraction
- visualization
- machine learning techniques
- registration
- fusion of multi-source datasets
- segmentation
- object identification
- categorization
- architecture
- urban planning
- environmental monitoring
- geospatial mapping
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.