Application of CFD Simulations to Marine Hydrodynamic Problems (2nd Edition)

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Ocean Engineering".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 3153

Special Issue Editors


E-Mail Website
Guest Editor
Laboratoire Roberval, Sorbonne Université, Université de Technology de Compiègne, Centre de recherches Royallieu, CS 60319, CEDEX, 60203 Compiègne, France
Interests: hydrodynamics; fluid–structure interaction; computational fluid mechanics, environmental fluid mechanics; coastal engineering; ocean engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Computational fluid dynamics (CFD) methods play important roles for the design and ability assessment of marine vehicles, structures, ships, etc. They are widely used in the fields of naval architecture and ocean engineering. Nowadays, CFD techniques have developed to a very high level. They can partly or even fully replace experiments in many cases.

This Special Issue aims to collect the cutting-edge developments in the fundamentals and applications of CFD methods, which can promote the discussion and developing of the new CFD methods.

In light of the success of this Special Issue and the hot topic, we would like to announce the 2nd Edition.

Dr. Peng Du
Prof. Dr. Abdellatif Ouahsine
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine hydrodynamics
  • fluid–structure interaction
  • computational fluid mechanics
  • environmental fluid mechanics
  • coastal engineering
  • ocean engineering
  • ship waves
  • waterway
  • waves hydrodynamics
  • naval hydrodynamics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4870 KiB  
Article
Research on Effect of Ship Speed on Unsteady Hydrodynamic Performance of Bow Thrusters in Berthing and Departure Directions
by He Cai, Xiaoqian Ma, Tan Wen, Yu Sun, Zhiyuan Yang, Yilong Tan and Jianyu Zhuo
J. Mar. Sci. Eng. 2024, 12(11), 2054; https://doi.org/10.3390/jmse12112054 - 13 Nov 2024
Viewed by 378
Abstract
With the continuous development of the shipping market, bow thrusters have become more important for ship maneuvering. Therefore, the performance of bow thrusters is studied in this paper. In order to obtain an unsteady performance of the bow thruster under different ship speed [...] Read more.
With the continuous development of the shipping market, bow thrusters have become more important for ship maneuvering. Therefore, the performance of bow thrusters is studied in this paper. In order to obtain an unsteady performance of the bow thruster under different ship speed conditions, the SST k-ω turbulence model is adopted to predict the hydrodynamics of the bow thruster. With the ship’s speed increasing gradually, the variation characteristics of hydrodynamic coefficients and the flow field distribution at key positions are analyzed. The results show that with an increase in ship speed to three knots, the thrust coefficient and torque coefficient of the bow thruster decrease by 2.69~4.07% and 2.34~3.08%. In addition, the blade vibration amplitude intensifies. In the departure direction, the propeller load is more susceptible to being influenced and decreases by an additional 2.34~4.16% compared with that in the berthing direction. Meanwhile, it is found that the velocity distribution is asymmetrical. The inlet velocity at the bow side is faster, which results in the maximum peak pressure being about three times the minimum peak pressure. In addition, the pressure’s nonuniformity in the tunnel increases gradually with the increase in ship speed. Compared with the pressure distribution in the berthing direction, the pressure distribution before and after the propeller is more uniform, which is consistent with the results of hydrodynamic change and velocity distribution. The research in this paper has a certain reference significance for understanding the hydrodynamic performance of bow thrust operation. Full article
Show Figures

Figure 1

14 pages, 4116 KiB  
Article
Numerical Simulation of Resistance and Flow Field for Submarines near Ice Surface
by Pengcheng Ye, Yijie Zhou, Hao Zhang, Yao Shi, Qiaogao Huang, Guang Pan and Dong Song
J. Mar. Sci. Eng. 2024, 12(11), 1920; https://doi.org/10.3390/jmse12111920 - 28 Oct 2024
Viewed by 634
Abstract
When a submarine operates in polar regions, the polar environment inevitably impacts its resistance and flow field characteristics, especially when the submarine navigates near the ice surface. This paper investigates the hydrodynamic characteristics of a submarine sailing near the free water surface and [...] Read more.
When a submarine operates in polar regions, the polar environment inevitably impacts its resistance and flow field characteristics, especially when the submarine navigates near the ice surface. This paper investigates the hydrodynamic characteristics of a submarine sailing near the free water surface and the ice surface using computational fluid dynamics (CFD) methods. In order to quantify the impact of ice on the resistance and flow field characteristics of the submarine, the resistance coefficients are calculated for both near ice surface and free surface. The resistance, velocity field, and pressure distribution around the submarine at different depths and speeds are analyzed. The results indicate that the total resistance of the submarine sailing near the ice surface is lower than the free water surface. When the submarine is sailing near the ice surface, its total resistance coefficient decreases with increased submergence depth at a constant Froude number. At a fixed depth, the resistance coefficient also decreases as the Froude number increases. Additionally, when the dimensionless depth relative to the maximum hull diameter (D) exceeds 3.5, it has little effect on the resistance coefficient. Full article
Show Figures

Figure 1

22 pages, 6893 KiB  
Article
Dynamic Characteristic Analysis of Underwater Suspended Docking Station for Resident UUVs
by Jingqian Guo, Lingshuai Meng, Mengmeng Feng, Jun Liu, Zheng Peng, Wei Feng and Jun-Hong Cui
J. Mar. Sci. Eng. 2024, 12(9), 1493; https://doi.org/10.3390/jmse12091493 - 29 Aug 2024
Cited by 1 | Viewed by 866
Abstract
The widespread use of Unmanned Underwater Vehicles (UUVs) in seafloor observatory networks highlights the need for docking stations to facilitate rapid recharging and effective data transfer. Floating docks are promising due to their flexibility, ease of deployment, and recoverability. To enhance understanding and [...] Read more.
The widespread use of Unmanned Underwater Vehicles (UUVs) in seafloor observatory networks highlights the need for docking stations to facilitate rapid recharging and effective data transfer. Floating docks are promising due to their flexibility, ease of deployment, and recoverability. To enhance understanding and optimize UUV docking with floating docks, we employ dynamic fluid body interaction (DFBI) to construct a seabed moored suspended dock (SMSD) model that features a guiding funnel, a suspended body, and a catenary of a mooring chain. This model simulates SMSD equilibrium stabilization in various ocean currents. Then, a UUV docking model with contact coupling is developed from the SMSD model to simulate the dynamic contact response during docking. The accuracy of the docking model was validated using previous experimental data. Through investigation of the UUV docking response results, sensitivity studies relating to volume, moment of inertia, mass, and catenary stiffness were conducted, thereby guiding SMSD optimization. Finally, sea tests demonstrated that the SMSD maintained stability before docking. During docking, the SMSD’s rotation facilitated smooth UUV entry. After the UUV docked, the SMSD was restored to its original azimuth, confirming its adaptability, stability, and reliability. Full article
Show Figures

Figure 1

18 pages, 5919 KiB  
Article
Dynamic Response of a Warship’s Metal-Jet-Damaged Double-Layer Plates Subjected to the Subsequent Underwater Explosion
by Xiao Huang, Jia-Wei Mao, Xiao Luo, Peng Du and Abdellatif Ouahsine
J. Mar. Sci. Eng. 2024, 12(6), 854; https://doi.org/10.3390/jmse12060854 - 22 May 2024
Cited by 2 | Viewed by 771
Abstract
This paper examines the response characteristics of a warship’s double-layer plates under a secondary near-field explosion after the ship’s outer plate has been perforated by shaped metal jets. First, the effectiveness of the Coupled Eulerian–Lagrangian (CEL) method was validated, showing numerical simulations to [...] Read more.
This paper examines the response characteristics of a warship’s double-layer plates under a secondary near-field explosion after the ship’s outer plate has been perforated by shaped metal jets. First, the effectiveness of the Coupled Eulerian–Lagrangian (CEL) method was validated, showing numerical simulations to be well aligned with experimental results. Subsequently, the damage inflicted on the outer plate by metal jets was simplified to a prefabricated orifice, further studying the explosive impact response of double-layer plates under different inter-compartmental water levels and charge distances. Our findings indicated the following: (1) shockwave and bubble pulsation loads are the main causes of deformation in the outer plate; (2) the driving of the outer plate and the flooding water between compartments are the main causes of deformation in the inner plate; and (3) deformation in the outer plate will decrease as the water level in the compartment increases, while deformation in the inner plate will increase with the increasing water level. Consequently, under certain specific damage, the ingress of water into a compartment effectively enhances the explosion resistance of the double-layer plates. Full article
Show Figures

Figure 1

Back to TopTop