Synthetic Studies of Marine Bioactive Natural Products and Analogs to Develop Novel Drug Leads

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Synthesis and Medicinal Chemistry of Marine Natural Products".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 907

Special Issue Editor


E-Mail Website
Guest Editor
College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
Interests: marine natural products; synthesis; molecular targeted anti-cancer drugs

Special Issue Information

Dear Colleagues,

Marine natural products are considered promising sources of drug candidates, especially in the field of anticancer drugs or antibiotics. However, the scarce supply of compounds from natural sources often limits further drug development. On the other hand, efficient total synthesis of marine natural products and their derivatives can overcome this drawback. In addition, the synthesis of truncated analogs based on structure–activity relationship (SAR) studies would facilitate the discovery of more accessible drug lead compounds with improved bioactive specificity or ADMET profiles.

Therefore, the Special Issue will focus on the synthetic studies of bioactive marine natural products and their derivatives. Submissions on the development of truncated analogs leading to novel drug leads are also welcome.

Prof. Dr. Naoyuki Kotoku
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine natural products
  • total synthesis
  • synthetic derivatives
  • truncated analogs
  • structure–activity relationship

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 4888 KiB  
Article
Design, Synthesis, and Evaluation of Novel Thiazole-Containing Algicides Inspired by Bacillamide A
by Xiaoxue Li, Huili Li, Lei Shi, Zuguang Yin, Yuguo Du, Hongxia Zhang, Xin Wang, Xinxin Wang, Kexin Xu, Weili Wang, Ronglian Xing and Yi Liu
Mar. Drugs 2024, 22(11), 494; https://doi.org/10.3390/md22110494 - 1 Nov 2024
Viewed by 780
Abstract
The pursuit of highly effective, low-toxicity, and eco-friendly algicides for controlling and eradicating harmful algal blooms (HABs) is of paramount importance. The natural allelochemical bacillamide A has displayed impressive algicidal activity against harmful algae with favorable safety profiles. However, the poor synthetic efficiency [...] Read more.
The pursuit of highly effective, low-toxicity, and eco-friendly algicides for controlling and eradicating harmful algal blooms (HABs) is of paramount importance. The natural allelochemical bacillamide A has displayed impressive algicidal activity against harmful algae with favorable safety profiles. However, the poor synthetic efficiency and large dose requirements of bacillamide A limit its further application. In this paper, 17 thiazole-containing bacillamide derivatives (BDs) were designed and synthesized in three linear steps as potential algicides. Eight compounds (6a, 6c, 6j, 7b, 7c, 7d, 7e, and 7g) displayed potent inhibitory effects against Prorocentrum minimum, Skeletonema costatum, and Alexandrium pacificum, and they had similar or better activity than the positive control (CuSO4) and bacillamide A. Compound 6a exhibited the most potent algicidal activity against S. costatum (half-maximal effective concentration [EC50] = 0.11 μg/mL), being 23-fold more potent than bacillamide A, 28-fold more potent than CuSO4, and 39-fold more potent than Diuron. Compound 6j exhibited significant algicidal activity against the toxic dinoflagellates P. minimum (EC50 = 1.0 μg/mL) and A. pacificum (EC50 = 0.47 μg/mL), being 3–5-fold more potent than natural bacillamide A, Diuron, and CuSO4. Micrographs and SEM images revealed that 6j induced cell wall rupture and cellular content leakage. Biochemical and physiological studies indicated that 6j might partially disrupt the antioxidant and photosynthetic systems in algal cells, resulting in morphological changes, cell wall rupture, and inclusion leakage. Our work suggests that 6j has a distinct mode of action from CuSO4 and provides a promising candidate for the development of new algicides, worthy of further investigation. Full article
Show Figures

Graphical abstract

Back to TopTop