Marine Alkaloids: Sources, Discovery, Diversity, and Bioactivities

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Pharmacology".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 6019

Special Issue Editors


E-Mail Website
Guest Editor
Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
Interests: marine natural products; fungi; seaweeds; anti-neurodegenerative; bioactivities

E-Mail Website
Guest Editor
School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, China
Interests: biological activity; nature products; marine biochemistry; cell culture; mechanism

Special Issue Information

Dear Colleagues,

Alkaloids have been serving as an important drug source for a long time, with 80% of the top 200 marketed drugs globally being alkaloids. Likewise, alkaloids are the largest marine natural product family considering both the reported compound numbers and bioactive compound numbers. Structurally diverse alkaloids are isolated from various marine plants, invertebrates, microorganisms, fishes, etc. Their functions cover, but are not limited to, anti-cancer, anti-microbial, pesticidal, neuroprotective and anti-inflammatory activities, and preventing cardiovascular diseases. Regarding the investigation of marine alkaloids, studies are increasingly being performed on their new sources and structural diversity, application of new discovering approaches such as genome mining and metabolomics tools, and an in-depth revealing of signal transduction pathway-intervening diseases.

For this Special Issue, we invite academic and industry scientists to submit reviews and original and conceptual research articles highlighting the source, discovery, diversity and bioactivities of marine alkaloids. We particularly welcome articles that introduce new research methodologies in marine alkaloid discovery and the bioactivity study of marine alkaloids in neuronal system diseases.

Prof. Dr. Yi Zhang
Dr. Zhongji Qian
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine alkaloids
  • source
  • structural elucidation
  • metabolomics
  • molecular networking
  • NMR
  • methodology
  • bioactivities
  • mechanism of action
  • signal transduction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 6295 KiB  
Article
Chemical Investigation of the Mediterranean Sponge Crambe crambe by UHPLC-HRMS/MS via Manual and Computational Dereplication Approaches
by Pinelopi Vlachou, Nikolaos Tsafantakis, Nikola Milic, Alexandros Polyzois, Eirini Baira, Aikaterini Termentzi, Géraldine Le Goff, Jamal Ouazzani and Nikolas Fokialakis
Mar. Drugs 2024, 22(11), 522; https://doi.org/10.3390/md22110522 - 20 Nov 2024
Viewed by 367
Abstract
The CH2Cl2-MeOH extract of the Mediterranean sponge Crambe crambe was investigated via UHPLC-HRMS/MS employing manual dereplication and in silico mass spectrometry tools. A deconvolution approach was implemented for the extensive metabolic characterization of the sample, resulting in the annotation [...] Read more.
The CH2Cl2-MeOH extract of the Mediterranean sponge Crambe crambe was investigated via UHPLC-HRMS/MS employing manual dereplication and in silico mass spectrometry tools. A deconvolution approach was implemented for the extensive metabolic characterization of the sample, resulting in the annotation of 53 compounds. The analysis of data-dependent HRMS/MS scans was conducted to establish fragmentation patterns characteristic of each crambescin A, B, and C sub-families. Among the 39 compounds identified from these groups, 22 analogues were reported for the first time including 4 new homologous series that differed by the ratio of methylene units in the upper (n + 2) and lower (m + 2) alkyl side chains. More specifically, crambescins presenting m = 5 or 6 and n = 5 (compounds 7, 11, 22 and 24) as well as m = 5 or 6 and n = 4 (compounds 5, 6, 8, 9, 12 and 14) were characterized. Additionally, four new features, potentially corresponding to new crambescidin analogues (compounds 13, 15, 35, and 39), were also reported. The identity of the dereplicated features was further validated by studying crambescins’ spectral similarities through a feature-based molecular networking approach. Overall, this study suggests UHPLC-HRMS/MS—through the integration of manual and computational dereplication approaches—as a valuable tool for the investigation and high-throughput characterization of the C. crambe metabolome. Full article
(This article belongs to the Special Issue Marine Alkaloids: Sources, Discovery, Diversity, and Bioactivities)
Show Figures

Graphical abstract

15 pages, 3407 KiB  
Article
In Vitro In Silico Screening Strategy and Mechanism of Novel Tyrosinase Inhibitory Peptides from Nacre of Hyriopsis cumingii
by Haisheng Lin, Fei Li, Jiaao Kang, Shaohe Xie, Xiaoming Qin, Jialong Gao, Zhongqin Chen, Wenhong Cao, Huina Zheng and Wenkui Song
Mar. Drugs 2024, 22(9), 420; https://doi.org/10.3390/md22090420 - 15 Sep 2024
Viewed by 1176
Abstract
For thousands of years, pearl and nacre powders have been important traditional Chinese medicines known for their skin whitening effects. To prepare the enzymatic hydrolysates of Hyriopsis cumingii nacre powder (NP-HCH), complex enzymatic hydrolysis by pineapple protease and of neutral protease was carried [...] Read more.
For thousands of years, pearl and nacre powders have been important traditional Chinese medicines known for their skin whitening effects. To prepare the enzymatic hydrolysates of Hyriopsis cumingii nacre powder (NP-HCH), complex enzymatic hydrolysis by pineapple protease and of neutral protease was carried out after the powder was pre-treated with a high-temperature and high-pressure method. The peptides were identified using LC-MS/MS and picked out through molecular docking and molecular dynamics simulations. Subsequently, the tyrosinase inhibitory and antioxidant properties of novel tyrosinase inhibitory peptides were investigated in vitro. In addition, the enzymatic activity of tyrosinase in B16F10 cells as well as melanin content and antioxidant enzyme levels were also examined. The results showed that a tyosinase inhibitory peptide (Tyr-Pro-Asn-Pro-Tyr, YPNPY) with an efficient IC50 value of 0.545 ± 0.028 mM was identified. The in vitro interaction results showed that YPNPY is a reversible competitive inhibitor of tyrosinase, suggesting that it binds to the free enzyme. The B16F10 cell whitening test revealed that YPNPY can reduce the melanin content of B16F10 cells by directly inhibiting the activity of intracellular tyrosinase. Additionally, it indirectly affects melanin production by acting as an antioxidant. These results suggest that YPNPY could be widely used as a tyrosinase inhibitor in whitening foods and drugs. Full article
(This article belongs to the Special Issue Marine Alkaloids: Sources, Discovery, Diversity, and Bioactivities)
Show Figures

Graphical abstract

20 pages, 8211 KiB  
Article
Aspergillusidone G Potentiates the Anti-Inflammatory Effects of Polaprezinc in LPS-Induced BV2 Microglia: A Bioinformatics and Experimental Study
by Fangfang Ban, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
Mar. Drugs 2024, 22(7), 324; https://doi.org/10.3390/md22070324 - 19 Jul 2024
Viewed by 2788
Abstract
Neuroinflammation is one of the main mechanisms involved in the progression of neurodegenerative diseases (NDs), and microglial activation is the main feature of neuroinflammation. Polaprezinc (Pol), a chelator of L-carnosine and zinc, is widely used as a clinical drug for gastric ulcers. However, [...] Read more.
Neuroinflammation is one of the main mechanisms involved in the progression of neurodegenerative diseases (NDs), and microglial activation is the main feature of neuroinflammation. Polaprezinc (Pol), a chelator of L-carnosine and zinc, is widely used as a clinical drug for gastric ulcers. However, its potential effects on NDs remain unexplored. In LPS-induced BV-2 microglia, we found that Pol reduced the generation of NO and ROS and revealed inhibited expression of iNOS, COX-2, and inflammatory factors such as IL-6, TNF-α, and 1L-1β by Pol using qRT-PCR and Western blotting. These effects were found to be associated with the suppression of the NF-κB signaling pathway. Moreover, we evaluated the potential synergistic effects of aspergillusidone G (Asp G) when combined with Pol. Remarkably, co-treatment with low doses of Asp G enhanced the NO inhibition by Pol from approximately 30% to 80% in LPS-induced BV2 microglia, indicating a synergistic anti-inflammatory effect. A bioinformatics analysis suggested that the synergistic mechanism of Asp G and Pol might be attributed to several targets, including NFκB1, NRF2, ABL1, TLR4, and PPARα. These findings highlight the anti-neuroinflammatory properties of Pol and its enhanced efficacy when combined with Asp G, proposing a novel therapeutic strategy for managing neuroinflammation in NDs. Full article
(This article belongs to the Special Issue Marine Alkaloids: Sources, Discovery, Diversity, and Bioactivities)
Show Figures

Graphical abstract

16 pages, 6660 KiB  
Article
A Tripeptide (Ser-Arg-Pro, SRP) from Sipunculus nudus L. Improves Cadmium-Induced Acute Kidney Injury by Targeting the MAPK, Inflammatory, and Apoptosis Pathways in Mice
by Yanmei Pan, Zhilan Peng, Zhijia Fang, Lukman Iddrisu, Lijun Sun, Qi Deng and Ravi Gooneratne
Mar. Drugs 2024, 22(6), 286; https://doi.org/10.3390/md22060286 - 20 Jun 2024
Viewed by 1176
Abstract
Cadmium (Cd) is a toxic heavy metal that causes nephrosis, including acute kidney injury. To prevent and treat acute kidney injury (AKI) following Cd exposure, a tripeptide, Ser-Arg-Pro (SRP), from Sipunculus nudus L. was employed, and its potential efficacy in AKI was assessed. [...] Read more.
Cadmium (Cd) is a toxic heavy metal that causes nephrosis, including acute kidney injury. To prevent and treat acute kidney injury (AKI) following Cd exposure, a tripeptide, Ser-Arg-Pro (SRP), from Sipunculus nudus L. was employed, and its potential efficacy in AKI was assessed. Oral administration of SRP significantly alleviated Cd-induced kidney damage, leading to improved renal function and the attenuation of structural abnormalities. A network pharmacology analysis revealed the potential of SRP in renal protection by targeting various pathways, including mitogen-activated protein kinase (MAPK) signaling, inflammatory response, and apoptosis pathways. Mechanistic studies indicated that SRP achieves renal protection by inhibiting the activation of MAPK pathways (phosphorylation of p38, p56, ERK, and JNK) in the oxidative stress cascade, suppressing inflammatory responses (iNOS, Arg1, Cox2, TNF-α, IL-1β, and IL-6), and restoring altered apoptosis factors (caspase-9, caspase-3, Bax, and Bcl-2). Hence, SRP has the potential to be used as a therapeutic agent for the treatment of Cd-induced nephrotoxicity. Full article
(This article belongs to the Special Issue Marine Alkaloids: Sources, Discovery, Diversity, and Bioactivities)
Show Figures

Figure 1

Back to TopTop