Exopolysaccharide Isolated from Marine Microorganisms

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Chemoecology for Drug Discovery".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 867

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy
Interests: lipopolysaccharides; glycoconjugates; extracellular polysaccharide; capsular polysaccharide; NMR spectroscopy; anti-biofilm molecules; mass spectrometry; cold-adapted bacteria
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We invite you to participate in this Special Issue about extracellular polysaccharides. These biopolymers surround the bacterial cell as a capsule or are released in the growth medium as free macromolecules. In addition, they contribute to the extracellular matrix of the biofilm. Marine extracellular polysaccharides are employed in many industrial applications, such as food, cosmetics, nutraceuticals, and pharmaceuticals. Therefore, the interest in finding new polymers or modifying existing ones is very wide.

The aim of this Special Issue, “Exopolysaccharide Isolated from Marine Microorganisms”, is to collect as much as possible original research and reviews concerning marine exopolysaccharide isolation, structural determination, physico-chemical properties, biological activity, structure/activity relationships, and applications such as hydrogels, films, or nanoparticles in the food, cosmetics, nutraceutical, and pharmaceutical fields.

Prof. Dr. Maria Michela Corsaro
Dr. Angela Casillo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • capsular polysaccharide
  • biofilm
  • hydrogels
  • biofouling
  • biological activity
  • biosurfactants
  • adhesion ability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 8075 KiB  
Article
Structure of a Sulfated Capsular Polysaccharide from the Marine Bacterium Cobetia marina KMM 1449 and a Genomic Insight into Its Biosynthesis
by Maxim S. Kokoulin, Yulia V. Savicheva, Alina P. Filshtein, Ludmila A. Romanenko and Marina P. Isaeva
Mar. Drugs 2025, 23(1), 29; https://doi.org/10.3390/md23010029 - 8 Jan 2025
Viewed by 636
Abstract
Some marine and extremophilic microorganisms are capable of synthesizing sulfated polysaccharides with a unique structure. A number of studies indicate significant biological properties of individual sulfated polysaccharides, such as antiproliferative activity, which makes them a promising area for further research. In this study, [...] Read more.
Some marine and extremophilic microorganisms are capable of synthesizing sulfated polysaccharides with a unique structure. A number of studies indicate significant biological properties of individual sulfated polysaccharides, such as antiproliferative activity, which makes them a promising area for further research. In this study, the capsular polysaccharide (CPS) was obtained from the bacterium Cobetia marina KMM 1449, isolated from a marine sediment sample collected along the shore of the Sea of Japan. The CPS was isolated by saline solution, purified by a series of chromatographic procedures, and studied by chemical methods along with 1D and 2D 1H and 13C NMR spectroscopy. The following new structure of the CPS from C. marina KMM 1449 was established and consisted of sulfated and simultaneously phosphorylated disaccharide repeating units: →4)-α-L-Rhap2S-(1→3)-β-D-Manp6PGro-(1→. To elucidate the genetic basis of the CPS biosynthesis, the whole genomic sequence of C. marina KMM 1449 was obtained. The CPS biosynthetic gene cluster (BGC) of about 70 genes composes four regions encoding nucleotide sugar biosynthesis (dTDP-Rha and GDP-Man), assembly (GTs genes), translocation (ABC transporter genes), sulfation (PAPS biosynthesis and sulfotransferase genes) and lipid carrier biosynthesis (wcb operon). Comparative analysis of the CPS BGCs from available Cobetia genomes showed the presence of KMM 1449-like CPS BGC among strains of all three Cobetia species. The study of new natural sulfated polysaccharides, as well as the elucidation of the pathways of their biosynthesis, provides the basis for the development of potential anticancer drugs. Full article
(This article belongs to the Special Issue Exopolysaccharide Isolated from Marine Microorganisms)
Show Figures

Figure 1

Back to TopTop