Impulsive Control Systems and Complexity II
A special issue of Mathematics (ISSN 2227-7390). This special issue belongs to the section "Dynamical Systems".
Deadline for manuscript submissions: closed (15 August 2022) | Viewed by 8964
Special Issue Editors
Interests: impulsive control theory; hybrid systems; time-delay systems; neural networks and applied mathematics
Special Issues, Collections and Topics in MDPI journals
Interests: complex networks; neural networks; multi-agent systems engineering; stability dynamics; control time delay systems; computational intelligence; complex systems; intelligent control; nonlinear systems; applied mathematics
Interests: functional differential equations; qualitative theory of impulsive differential equations; analysis and control of complex dynamical systems
2. Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA
Interests: nonlinear analysis; control theory; mathematical modeling; differential equations; fractional calculus
Special Issues, Collections and Topics in MDPI journals
Interests: nonlinear analysis; mathematical modeling; fractional order systems
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Many complex real word phenomena exist under the conditions of disorder, chaos, randomness, uncertainty, or in general, under the conditions of entropy. The design of efficient impulsive controllers for such chaotic systems is the main objective of numerous researchers. The impulsive control of complex phenomena arises naturally in a wide variety of applications. Indeed, impulsive control dynamical systems are used for the mathematical simulation of processes which are subject to impulses during their evolution. Such types of processes are observed in numerous fields of science and technology: Control theory, population dynamics, biotechnologies, industrial robotics, etc.
The dynamic of impulsive control dynamical systems has long been and will continue to be one of the dominant themes in mathematics and mathematics applications due to its theoretical and practical significance. During the last couple of decades, the analysis of impulsive control complex systems and related models has attracted the attention of a wide audience of professionals, such as mathematicians, applied researchers, and practitioners. For example, impulsive control and synchronization are the most interesting and important collective behaviors of complex networking systems and have aroused great interest in researchers in fields such as secure communication and information processing. There are many cases where impulsive control can give a better performance than continuous control. Sometimes even only impulsive control can be used for control purposes. Impulsive control methodology is very effective and allows synchronization of a complex system using only small control impulses, even though the system’s behavior may follow unpredictable patterns.
In spite of the amount of published results recently focused on impulsive control complex systems, there remain many challenging open questions. The theory and applications of these systems are still very active areas of research.
In this Special Issue, we provide an international forum for researchers to contribute with original research as well as review papers focusing on the latest achievements in the theory and applications of impulsive control complex dynamical systems.
Prof. Dr. Xiaodi Li
Prof. Dr. Jinde Cao
Prof. Dr. Wei Zhu
Prof. Dr. Gani Stamov
Dr. Ivanka Stamova
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- complex dynamical systems
- impulsive control
- synchronization
- stability
- impulsive state feedback control
- chaos control
- complex networks
- cluster synchronization
- hybrid control
- time-varying delays
- finite-time synchronization
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.