Fracture Mechanics of Metals (2nd Edition)

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Failure Analysis".

Deadline for manuscript submissions: 30 July 2025 | Viewed by 922

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, University of Western Macedonia, 50150 Kozani, Greece
Interests: machine elements; materials technology; mechanical processes; tribology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance. Fracture mechanics play a major role in many industrial sectors such as aerospace or automotive engineering, examines crack growth, crack propagation and crack arrest in a component or material under operating conditions. The determined material characteristics, taking into consideration the stress–time function, influence the design and production of a component. By estimating the lifetime or remaining useful life of crack-affected components, inspection and maintenance intervals can be defined in a targeted manner.

In this Special Issue, we welcome articles that focus on the mechanical and material factors of fracture in design analysis, material evaluation and failure prevention. Both fundamental and practical concepts of fracture are of interest in terms of stress analysis and the mechanical behavior of materials. Articles on the metallurgical aspects of deformation and fracture in metals are also welcome.

Prof. Dr. Stergios Maropoulos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ductile fracture
  • brittle fracture
  • intergranular fracture
  • fatigue
  • fracture toughness
  • stress concentration
  • crack growth
  • defects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 5792 KiB  
Article
Probabilistic Modelling of Fatigue Behaviour of 51CrV4 Steel for Railway Parabolic Leaf Springs
by Vítor M. G. Gomes, Felipe K. Fiorentin, Rita Dantas, Filipe G. A. Silva, José A. F. O. Correia and Abílio M. P. de Jesus
Metals 2025, 15(2), 152; https://doi.org/10.3390/met15020152 - 1 Feb 2025
Viewed by 212
Abstract
The longevity of railway vehicles is an important factor in their mechanical and structural design. Fatigue is a major issue that affects the durability of railway components, and therefore, knowledge of the fatigue resistance characteristics of critical components, such as the leaf springs, [...] Read more.
The longevity of railway vehicles is an important factor in their mechanical and structural design. Fatigue is a major issue that affects the durability of railway components, and therefore, knowledge of the fatigue resistance characteristics of critical components, such as the leaf springs, must be extensively investigated. This research covers the fatigue resistance of chromium–vanadium alloy steel, usually designated as 51CrV4, from the high-cycle regime (HCF) (103104) up to very high-cycle fatigue (VHCF) (109) under the bending loading conditions typical of leaf springs and under uniaxial tension/compression loading, respectively, for a stress ratio, Rσ, of −1. Different test frequencies were considered (23, 150, and 20,000 Hz) despite the material not exhibiting a relatively significant frequency effect. In order to create a new fatigue prediction model, two prediction models, the Basquin SN linear regression model and the Castillo–Fernandez–Cantelli (CFC) model, were evaluated. According to the analysis carried out, the CFC model provided a better prediction of the fatigue failures than the SN model, especially when outlier failure data were considered. The investigation also examined the failure modes, observing multiple cracks for higher loads and single cracks that initiated on the surface or from internal inclusions at lower loading. The present investigation aims to provide a fatigue resistance prediction model encompassing the HCF and VHCF regions for the fatigue design of railway wagon leaf springs, or even for other components made of 51CrV4 with a tempered martensitic microstructure. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

17 pages, 8254 KiB  
Article
Characteristics of Microstructure and Fracture Toughness According to the Groove Shape of Submerged Arc Welding
by Yong-Taek Shin, Chang-Ju Jung, Seong-Han Bae, Gyubaek An, Myungrak Son and Young-Il Park
Metals 2025, 15(1), 10; https://doi.org/10.3390/met15010010 - 27 Dec 2024
Viewed by 425
Abstract
This study investigates the effects of heat input on the microstructure and fracture toughness of SAW (Submerged Arc Welding) joints with K-groove and X-groove weld preparations using S460NL steel. Microstructural analysis focused on acicular ferrite, grain boundary ferrite, and MA (Martensite–Austenite) constituents to [...] Read more.
This study investigates the effects of heat input on the microstructure and fracture toughness of SAW (Submerged Arc Welding) joints with K-groove and X-groove weld preparations using S460NL steel. Microstructural analysis focused on acicular ferrite, grain boundary ferrite, and MA (Martensite–Austenite) constituents to assess their influence on CTOD (Crack Tip Opening Displacement). The results indicate that the K-groove achieved a higher CTOD value of 0.82 mm compared to 0.13 mm for the X-groove, attributed to differences in microstructural composition and cooling rates. The findings highlight the impact of groove geometry and heat input on weld performance. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

Back to TopTop