Impact Welding Technology of Metal Alloys

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Welding and Joining".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 1780

Special Issue Editor


E-Mail Website
Guest Editor
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
Interests: impulse forming; welding; electromagnetic pulses; resistance welding; spot welds; dual-phase steel; impact welding; aluminum

Special Issue Information

Dear Colleagues,

Impact welding or collision welding is a solid-state welding method that has recently been gaining traction in industry as well as in the research realm. The ability to weld widely disparate materials while maintaining their parent material properties sets impact welding apart from fusion-based welding. Traditionally performed with explosives, this method also has other variants that are driven by electromagnetic pulse, pulsed laser ablation and vaporizing foil actuators, among others, which make the technology more accessible for application and research. This Special Issue welcomes research papers and reports on all aspects of impact welding, including—but not limited to—process innovation, testing, diagnostics, microstructure, simulation and industrial application.

Dr. Anupam Vivek
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • impact welding
  • solid-state welding
  • dissimilar metals
  • explosive
  • diagnostics
  • lightweighting
  • manufacturing
  • consumables
  • microstructure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4580 KiB  
Article
The Effects of Target Thicknesses and Backing Materials on a Ti-Cu Collision Weld Interface Using Laser Impact Welding
by Mohammed Abdelmaola, Brian Thurston, Boyd Panton, Anupam Vivek and Glenn Daehn
Metals 2024, 14(3), 342; https://doi.org/10.3390/met14030342 - 16 Mar 2024
Cited by 1 | Viewed by 1363
Abstract
This study demonstrates that the thickness of the target and its backing condition have a powerful effect on the development of a wave structure in impact welds. Conventional theories and experiments related to impact welds show that the impact angle and speed of [...] Read more.
This study demonstrates that the thickness of the target and its backing condition have a powerful effect on the development of a wave structure in impact welds. Conventional theories and experiments related to impact welds show that the impact angle and speed of the flyer have a controlling influence on the development of wave structure and jetting. These results imply that control of reflected stress waves can be effectively used to optimize welding conditions and expand the range of acceptable collision angle and speed for good welding. Impact welding and laser impact welding are a class of processes that can create solid-state welds, permitting the formation of strong and tough welds without the creation of significant heat affected zones, and can avoid the gross formation of intermetallic in dissimilar metal pairs. This study examined small-scale impact using a consistent launch condition for a 127 µm commercially pure titanium flyer impacted against commercially pure copper target with thicknesses between 127 µm and 1000 µm. Steel and acrylic backing layers were placed behind the target to change wave reflection characteristics. The launch conditions produced normal collision at about 900 m/s at the weld center, with decreasing impact speed and increasing angle moving toward the outer perimeter. The target thickness had a large effect on wave morphology, with the wave amplitude increasing with target thickness in both cases, peaking when target thickness is about twice flyer thickness, and then falling. The acrylic backing showed a consistently smaller unwelded central zone, indicating that impact welding is possible at a smaller angle in that case. Strength was measured in destructive tensile testing. Failure was controlled by the breakdown of the weaker of the two base metals over all thicknesses and backings. This demonstrates that laser impact welding is a robust method for joining dissimilar metals over a range of thicknesses. Full article
(This article belongs to the Special Issue Impact Welding Technology of Metal Alloys)
Show Figures

Figure 1

Back to TopTop