Casting Process, Processing Deformation and Microstructure Optimization of Advanced Metallic Materials

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Casting, Forming and Heat Treatment".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 7266

Special Issue Editors


E-Mail Website
Guest Editor
The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Interests: special alloy casting; solidification control; processing innovation; material and process modeling; ceramic crucibles

E-Mail Website
Guest Editor
The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Interests: advanced steel rolling-heat treatment; new technology of reduced rolling; heat treatment process technology; material forming-heat treatment organization control
The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Interests: steel matrix composites; high entropy alloy; material composition design

Special Issue Information

Dear Colleagues,

Metal casting, as a traditional foundational technology, can directly manufacture various complex components required in the automotive, aerospace and other fields. However, problems such as pores and coarse grains that may occur during the metal casting process affect the performance of materials. In addition, some special metals are processed and deformed to satisfy the needs of industrial applications. However, specific microstructure evolution also occurs during the process of processing and deformation, which affects the quality of the product. Therefore, understanding and controlling the microstructural evolution of metals and alloys during casting or deformation processes will be able to effectively control the mechanical properties of the material. Optimizing and regulating the casting process and deformation ability of metals is one of the important directions for the future development of metal materials.

All articles concerning high-strength titanium alloys, nickel-based superalloys, high-entropy alloys, aluminum alloys, magnesium alloys, and their new casting methods or deformation technologies are welcome.

Dr. Guohuai Liu
Prof. Dr. Zhaodong Wang
Dr. Yanmei Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • high-temperature alloy
  • high-entropy alloys
  • high-strength Al and Mg alloys
  • new casting method
  • grain refinement
  • material and process modeling
  • thermal deformation
  • processing innovation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5899 KiB  
Article
Development of Heat Treatments for Structural Parts in Aluminium Alloys Produced by High-Pressure Die Casting (HPDC)
by Rui Gomes, Gonçalo Soares, Rui Madureira, Rui Pedro Silva, José Silva, Rui Neto, Ana Reis and Cristina Fernandes
Metals 2024, 14(9), 1059; https://doi.org/10.3390/met14091059 - 16 Sep 2024
Cited by 1 | Viewed by 956
Abstract
In this work, we intended to study the effect of heat treatments (T5 and flash T6) on blistering, mechanical properties and microstructure for different parts produced by vacuum-assisted HPDC. These parts were produced with primary and secondary aluminium alloys (AlSi10MnMg alloy and AlSi10Mg(Fe) [...] Read more.
In this work, we intended to study the effect of heat treatments (T5 and flash T6) on blistering, mechanical properties and microstructure for different parts produced by vacuum-assisted HPDC. These parts were produced with primary and secondary aluminium alloys (AlSi10MnMg alloy and AlSi10Mg(Fe) alloy, respectively). The parts presented blisters for all combinations of temperature (between 360 °C and 520 °C) and stage times (15 and 30 min) of solution heat treatments. However, when subjected to the T5 heat treatment, blisters were no longer visible. With this heat treatment, there was an increase in yield strength of 64% for both aluminium alloys and an increase in UTS of 31% in AlSi10Mg(Fe) alloy and of 24% in AlSi10MnMg alloy, when compared to the mechanical properties in the as-cast state. However, there was a decrease in ductility. The AlSi10Mg(Fe) alloy presented a lot of contaminations (especially iron), which impaired the mechanical properties compared to the primary aluminium alloy, AlSi10MnMg. Full article
Show Figures

Figure 1

22 pages, 8652 KiB  
Article
Development and Characterisation of a New Die-Casting Die Cooling System Based on Internal Spray Cooling
by Alexander Haban, Stefanie Felicia Kracun, Danny Noah Rohde and Martin Fehlbier
Metals 2024, 14(9), 956; https://doi.org/10.3390/met14090956 - 23 Aug 2024
Viewed by 1097
Abstract
Against the backdrop of climate policy goals and the EU’s aim for a resource-efficient economy, the foundry industry must rethink product range, energy consumption, and production technologies. Light metal casting, which is performed through processes like gravity die casting and high-pressure die casting, [...] Read more.
Against the backdrop of climate policy goals and the EU’s aim for a resource-efficient economy, the foundry industry must rethink product range, energy consumption, and production technologies. Light metal casting, which is performed through processes like gravity die casting and high-pressure die casting, requires effective thermal management, which is crucial for optimising mould filling, solidification, cycle times, and part quality. Against this background, this study presents the development and characterisation of a cooling system that completely dispenses with energy-intensive heating/cooling devices. The system is based on a mask shape combined with internal spray cooling. This paper shows the simulation workflow for developing the mould mask and the design of the cooling system and compares the performance with conventional temperature control using channels. In the tests, an 82% higher cooling rate was achieved with Cool-Spray than with conventional temperature control, which was approx. 2.5 mm below the cavity surface. In addition to the more dynamic temperature control, the potential for process control was utilised, and the component quality of the test part was significantly improved compared to conventional temperature control. Full article
Show Figures

Figure 1

18 pages, 7831 KiB  
Article
New Insights into the Ingot Breakdown Mechanism of Near-β Titanium Alloy: An Orientation-Driven Perspective
by Xianghong Liu, Tao Wang, Xiaolong Ren, Jie Fu, Liang Cheng, Bin Zhu and Kaixuan Wang
Metals 2024, 14(7), 792; https://doi.org/10.3390/met14070792 - 7 Jul 2024
Cited by 1 | Viewed by 1160
Abstract
The ingot breakdown behavior of a typical near-β titanium alloy, Ti-55511, was investigated by various multi-pass upsetting processes. Particular emphasis was placed on the breakdown mechanism of the ultra-large β grains. The results showed that the upsetting far above the β-transus yielded uniform [...] Read more.
The ingot breakdown behavior of a typical near-β titanium alloy, Ti-55511, was investigated by various multi-pass upsetting processes. Particular emphasis was placed on the breakdown mechanism of the ultra-large β grains. The results showed that the upsetting far above the β-transus yielded uniform and refined macrostructure with relatively coarse grain size. In contrast, subtransus deformation within the (α + β) dual-phase field caused severe strain localization and macroscale shear bands. It was found that the static recrystallization during the post-deformation annealing was determined by the preferential grain orientations, which were closely related to the processing conditions. During β-working, the stable <001>-oriented grains were predominant and fragmentized mainly via a so-called “low-angle grain boundary merging” mechanism, even under a fairly low deformation. However, the vast <001> grain area was unbeneficial for microstructural conversion since it provided minor nucleation sites for the subsequent annealing. In contrast, the α/β-working produced the majority <111>-orientated grains, which were strongly inclined to strain localization. Highly misoriented deformation/shear bands were massively produced within the <111> grains, providing abundant nucleation sites for static recrystallization and, hence, were favorable for microstructural refinement. Furthermore, the intrinsic causes for deformation nonuniformity were discussed in detail, as well as the competition between microstructural homogeneity and refinement. Full article
Show Figures

Figure 1

14 pages, 4014 KiB  
Article
Development and Process Integration of an Alternative Demoulding System for High-Pressure Die Casting Using a Contoured Vacuum Mask
by Alexander Haban, Andreas Schilling, Martin Fehlbier, Toni Karalus and Stefanie Felicia Kracun
Metals 2024, 14(6), 691; https://doi.org/10.3390/met14060691 - 11 Jun 2024
Viewed by 1251
Abstract
This study presents the development and process integration of an alternative demoulding system for high-pressure die casting. The system is aimed at the removal of large structural castings, which are becoming increasingly popular in the industry under the terms mega- and gigacasting. The [...] Read more.
This study presents the development and process integration of an alternative demoulding system for high-pressure die casting. The system is aimed at the removal of large structural castings, which are becoming increasingly popular in the industry under the terms mega- and gigacasting. The development differs from conventional systems in the fact that it completely avoids ejectors and realises the demoulding via the principle of vacuum suction cups. Preliminary tests were carried out in which various established materials for vacuum cups were initially identified and the suitability of the selected cup concept was investigated by varying influencing variables from the high-pressure die casting. These tests showed that a suction pad material combination of an elastomer with a thermal barrier and an aramid felt on the surface provides the best results under the given process boundary conditions. Based on this, a multi-segmented vacuum mask with contour adaptation to the casting to be removed was developed. This vacuum mask is used to build up the holding force between the casting and the removal device. The necessary removal force is applied via pneumatic cylinders. The functional capability of the concept and the system integration was verified by experiments on a real die-casting mould for test specimens. The shrinkage and demoulding process can be successfully modelled in the simulation and the real measured demoulding force is only approx. 15% higher than in the simulation. During demoulding in the high-pressure die-casting process, vacuums of up to 88.7% were achieved at temperatures up to 395 °C. Full article
Show Figures

Figure 1

13 pages, 22964 KiB  
Article
The Influence of Cr Addition on the Microstructure and Mechanical Properties of Fe-25Mn-10Al-1.2C Lightweight Steel
by Rui Bai, Yunfei Du, Xiuli He and Yaqin Zhang
Metals 2024, 14(6), 687; https://doi.org/10.3390/met14060687 - 10 Jun 2024
Viewed by 1822
Abstract
The influence of Cr addition on the microstructure and tensile properties of Fe-25Mn-10Al-1.2C lightweight steel was investigated. The characteristics of the microstructures and deformation behavior were carried out through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron backscatter diffraction [...] Read more.
The influence of Cr addition on the microstructure and tensile properties of Fe-25Mn-10Al-1.2C lightweight steel was investigated. The characteristics of the microstructures and deformation behavior were carried out through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), and room temperature tensile testing. Fe-20Mn-12Al-1.5C steel without Cr exhibited a fully austenitic single phase. With the addition of Cr, the volume fraction of ferrite continuously increased. When the content of Cr exceeded 5 wt%, the precipitation of Cr7C3 carbides was observed. In the steel with 5 wt% Cr, the quantity of κ carbides remarkably decreased, indicating that the addition of 5 wt% Cr significantly inhibited the nucleation of κ-carbides. As the Cr content increases from 0 wt% to 5 wt%, the austenite grain sizes were 8.8 μm and 2.5 μm, respectively, demonstrating that Cr alloying is an effective method of grain refinement. Tensile strength increased slightly while elongation decreased with increasing Cr content. As the Cr content exceeded 5 wt%, the yield strength increased but the elongation drastically decreased. The steel with 2.5 wt% Cr achieved a synergistic improvement in strength and ductility, exhibiting the best tensile performance. Full article
Show Figures

Figure 1

Back to TopTop