Implantable Microdevices, Volume II

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "B:Biology and Biomedicine".

Deadline for manuscript submissions: closed (30 June 2020) | Viewed by 34150

Special Issue Editors

Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, MI, USA
Interests: MEMS; microfluidics; biomimetic devices; implantable devices; sensors; integration and ackaging technologies
Special Issues, Collections and Topics in MDPI journals
Department of Biomedical Engineering, College of Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, USA
Interests: biomedical optics; MEMS/MOEMS; imaging; wearable and implantable medical devices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Implantable microdevices, providing accurate measurement of target analytes in animals and humans, have always been important in biological science, medical diagnostics, clinical therapy, and personal healthcare. Recently, there have been increasing unmet needs for developing high-performance implants that are small, minimally-invasive, biocompatible, long-term stable, and cost-effective. Therefore, the aim of this Special Issue is to bring together state-of-the-art research and development contributions that address key challenges and topics related to implantable microdevices. Applications of primary interest include but are not limited to miniaturized optical sensing and imaging tools, implantable sensors for detecting biochemical species and/or metabolites, transducers for measuring biophysical quantities (e.g., pressure and/or strain), and neural prosthetic devices.

This Special Issue solicits review articles, original research papers, and short communication on bio-optical sensors and imagers, sensing and actuating structures and transducers, modeling, biocompatible materials and interfaces, fabrication techniques, advanced packaging and coatings, biotelemetry, electronics, and algorithms that are inclusive of implantable microdevices themselves. Algorithms and hardware constructions designed to support implantable microdevices but not themselves implanted will not be considered. Authors are invited to contact the Guest Editors prior to submission if they are uncertain whether their work falls within the general scope of this Special Issue

Dr. Wen Li
Dr. Zhen Qiu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Implants
  • Implantable sensors
  • Bio-optical sensor
  • Bio-optical imager
  • Transducers
  • Neural prosthetic devices
  • Biocompatible materials and interfaces

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 7033 KiB  
Article
Stability Performance Analysis of Various Packaging Materials and Coating Strategies for Chronic Neural Implants under Accelerated, Reactive Aging Tests
by Yan Gong, Wentai Liu, Runyu Wang, Matthew Harris Brauer, Kristine Zheng and Wen Li
Micromachines 2020, 11(9), 810; https://doi.org/10.3390/mi11090810 - 26 Aug 2020
Cited by 4 | Viewed by 2897
Abstract
Reliable packaging for implantable neural prosthetic devices in body fluids is a long-standing challenge for devices’ chronic applications. This work studied the stability of Parylene C (PA), SiO2, and Si3N4 packages and coating strategies on tungsten wires using [...] Read more.
Reliable packaging for implantable neural prosthetic devices in body fluids is a long-standing challenge for devices’ chronic applications. This work studied the stability of Parylene C (PA), SiO2, and Si3N4 packages and coating strategies on tungsten wires using accelerated, reactive aging tests in three solutions: pH 7.4 phosphate-buffered saline (PBS), PBS + 30 mM H2O2, and PBS + 150 mM H2O2. Different combinations of coating thicknesses and deposition methods were studied at various testing temperatures. Analysis of the preliminary data shows that the pinholes/defects, cracks, and interface delamination are the main attributes of metal erosion and degradation in reactive aging solutions. Failure at the interface of package and metal is the dominating factor in the wire samples with open tips. Full article
(This article belongs to the Special Issue Implantable Microdevices, Volume II)
Show Figures

Figure 1

17 pages, 6565 KiB  
Article
A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device
by Yaoyao Jia, Yan Gong, Arthur Weber, Wen Li and Maysam Ghovanloo
Micromachines 2020, 11(6), 621; https://doi.org/10.3390/mi11060621 - 25 Jun 2020
Cited by 4 | Viewed by 5866
Abstract
Towards a distributed neural interface, consisting of multiple miniaturized implants, for interfacing with large-scale neuronal ensembles over large brain areas, this paper presents a mm-sized free-floating wirelessly-powered implantable opto-electro stimulation (FF-WIOS2) device equipped with 16-ch optical and 4-ch electrical stimulation for reconfigurable neuromodulation. [...] Read more.
Towards a distributed neural interface, consisting of multiple miniaturized implants, for interfacing with large-scale neuronal ensembles over large brain areas, this paper presents a mm-sized free-floating wirelessly-powered implantable opto-electro stimulation (FF-WIOS2) device equipped with 16-ch optical and 4-ch electrical stimulation for reconfigurable neuromodulation. The FF-WIOS2 is wirelessly powered and controlled through a 3-coil inductive link at 60 MHz. The FF-WIOS2 receives stimulation parameters via on-off keying (OOK) while sending its rectified voltage information to an external headstage for closed-loop power control (CLPC) via load-shift-keying (LSK). The FF-WIOS2 system-on-chip (SoC), fabricated in a 0.35-µm standard CMOS process, employs switched-capacitor-based stimulation (SCS) architecture to provide large instantaneous current needed for surpassing the optical stimulation threshold. The SCS charger charges an off-chip capacitor up to 5 V at 37% efficiency. At the onset of stimulation, the capacitor delivers charge with peak current in 1.7–12 mA range to a micro-LED (µLED) array for optical stimulation or 100–700 μA range to a micro-electrode array (MEA) for biphasic electrical stimulation. Active and passive charge balancing circuits are activated in electrical stimulation mode to ensure stimulation safety. In vivo experiments conducted on three anesthetized rats verified the efficacy of the two stimulation mechanisms. The proposed FF-WIOS2 is potentially a reconfigurable tool for performing untethered neuromodulation. Full article
(This article belongs to the Special Issue Implantable Microdevices, Volume II)
Show Figures

Figure 1

9 pages, 3326 KiB  
Article
Passive Wireless Pressure Sensing for Gastric Manometry
by Alexander Benken and Yogesh Gianchandani
Micromachines 2019, 10(12), 868; https://doi.org/10.3390/mi10120868 - 10 Dec 2019
Cited by 22 | Viewed by 3965
Abstract
We describe a wireless microsystem for gastrointestinal manometry that couples a microfabricated capacitive transducer to a dual-axis inductor, forming a resonant inductor-capacitor (LC) sensor within an ingestible 3D printed biocompatible capsule measuring ø 12 mm × 24 mm. An inductively coupled external telemetry [...] Read more.
We describe a wireless microsystem for gastrointestinal manometry that couples a microfabricated capacitive transducer to a dual-axis inductor, forming a resonant inductor-capacitor (LC) sensor within an ingestible 3D printed biocompatible capsule measuring ø 12 mm × 24 mm. An inductively coupled external telemetry unit wirelessly monitors the pressure dependent resonant frequency of the LC sensor, eliminating the need for integrated power sources within the ingested capsule. In vitro tests in saline show pressure response of −0.6 kHz/mmHg, interrogation distance up to 6 cm, and resolution up to 0.8 mmHg. In vivo functionality is validated with gastrointestinal pressure monitoring in a canine beagle over a 26-hour period. Full article
(This article belongs to the Special Issue Implantable Microdevices, Volume II)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 2274 KiB  
Review
Cardiac Implantable Electronic Miniaturized and Micro Devices
by Moshe Rav Acha, Elina Soifer and Tal Hasin
Micromachines 2020, 11(10), 902; https://doi.org/10.3390/mi11100902 - 29 Sep 2020
Cited by 20 | Viewed by 9682
Abstract
Advancement in the miniaturization of high-density power sources, electronic circuits, and communication technologies enabled the construction of miniaturized electronic devices, implanted directly in the heart. These include pacing devices to prevent low heart rates or terminate heart rhythm abnormalities (‘arrhythmias’), long-term rhythm monitoring [...] Read more.
Advancement in the miniaturization of high-density power sources, electronic circuits, and communication technologies enabled the construction of miniaturized electronic devices, implanted directly in the heart. These include pacing devices to prevent low heart rates or terminate heart rhythm abnormalities (‘arrhythmias’), long-term rhythm monitoring devices for arrhythmia detection in unexplained syncope cases, and heart failure (HF) hemodynamic monitoring devices, enabling the real-time monitoring of cardiac pressures to detect and alert for early fluid overload. These devices were shown to prevent HF hospitalizations and improve HF patients’ life quality. Pacing devices include permanent pacemakers (PPM) that maintain normal heart rates, defibrillators that are capable of fast detection and the termination of life-threatening arrhythmias, and cardiac re-synchronization devices that improve cardiac function and the survival of HF patients. Traditionally, these devices are implanted via the venous system (‘endovascular’) using conductors (‘endovascular leads/electrodes’) that connect the subcutaneous device battery to the appropriate cardiac chamber. These leads are a potential source of multiple problems, including lead-failure and systemic infection resulting from the lifelong exposure of these leads to bacteria within the venous system. One of the important cardiac innovations in the last decade was the development of a leadless PPM functioning without venous leads, thus circumventing most endovascular PPM-related problems. Leadless PPM’s consist of a single device, including a miniaturized power source, electronic chips, and fixating mechanism, directly implanted into the cardiac muscle. Only rare device-related problems and almost no systemic infections occur with these devices. Current leadless PPM’s sense and pace only the ventricle. However, a novel leadless device that is capable of sensing both atrium and ventricle was recently FDA approved and miniaturized devices that are designed to synchronize right and left ventricles, using novel intra-body inner-device communication technologies, are under final experiments. This review will cover these novel implantable miniaturized cardiac devices and the basic algorithms and technologies that underlie their development. Advancement in the miniaturization of high-density power sources, electronic circuits, and communication technologies enabled the construction of miniaturized electronic devices, implanted directly in the heart. These include pacing devices to prevent low heart rates or terminate heart rhythm abnormalities (‘arrhythmias’), long-term rhythm monitoring devices for arrhythmia detection in unexplained syncope cases, and heart failure (HF) hemodynamic monitoring devices, enabling the real-time monitoring of cardiac pressures to detect and alert early fluid overload. These devices were shown to prevent HF hospitalizations and improve HF patients’ life quality. Pacing devices include permanent pacemakers (PPM) that maintain normal heart rates, defibrillators that are capable of fast detection and termination of life-threatening arrhythmias, and cardiac re-synchronization devices that improve cardiac function and survival of HF patients. Traditionally, these devices are implanted via the venous system (‘endovascular’) using conductors (‘endovascular leads/electrodes’) that connect the subcutaneous device battery to the appropriate cardiac chamber. These leads are a potential source of multiple problems, including lead-failure and systemic infection that result from the lifelong exposure of these leads to bacteria within the venous system. The development of a leadless PPM functioning without venous leads was one of the important cardiac innovations in the last decade, thus circumventing most endovascular PPM-related problems. Leadless PPM’s consist of a single device, including a miniaturized power source, electronic chips, and fixating mechanism, implanted directly into the cardiac muscle. Only rare device-related problems and almost no systemic infections occur with these devices. Current leadless PPM’s sense and pace only the ventricle. However, a novel leadless device that is capable of sensing both atrium and ventricle was recently FDA approved and miniaturized devices designed to synchronize right and left ventricles, using novel intra-body inner-device communication technologies, are under final experiments. This review will cover these novel implantable miniaturized cardiac devices and the basic algorithms and technologies that underlie their development. Full article
(This article belongs to the Special Issue Implantable Microdevices, Volume II)
Show Figures

Figure 1

21 pages, 5529 KiB  
Review
A Review and Perspective for the Development of Triboelectric Nanogenerator (TENG)-Based Self-Powered Neuroprosthetics
by Hao Wang, Tianzhun Wu, Qi Zeng and Chengkuo Lee
Micromachines 2020, 11(9), 865; https://doi.org/10.3390/mi11090865 - 18 Sep 2020
Cited by 29 | Viewed by 6560
Abstract
Neuroprosthetics have become a powerful toolkit for clinical interventions of various diseases that affect the central nervous or peripheral nervous systems, such as deep brain stimulation (DBS), functional electrical stimulation (FES), and vagus nerve stimulation (VNS), by electrically stimulating different neuronal structures. To [...] Read more.
Neuroprosthetics have become a powerful toolkit for clinical interventions of various diseases that affect the central nervous or peripheral nervous systems, such as deep brain stimulation (DBS), functional electrical stimulation (FES), and vagus nerve stimulation (VNS), by electrically stimulating different neuronal structures. To prolong the lifetime of implanted devices, researchers have developed power sources with different approaches. Among them, the triboelectric nanogenerator (TENG) is the only one to achieve direct nerve stimulations, showing great potential in the realization of a self-powered neuroprosthetic system in the future. In this review, the current development and progress of the TENG-based stimulation of various kinds of nervous systems are systematically summarized. Then, based on the requirements of the neuroprosthetic system in a real application and the development of current techniques, a perspective of a more sophisticated neuroprosthetic system is proposed, which includes components of a thin-film TENG device with a biocompatible package, an amplification circuit to enhance the output, and a self-powered high-frequency switch to generate high-frequency current pulses for nerve stimulations. Then, we review and evaluate the recent development and progress of each part. Full article
(This article belongs to the Special Issue Implantable Microdevices, Volume II)
Show Figures

Figure 1

11 pages, 1534 KiB  
Review
The Miniaturization of Cardiac Implantable Electronic Devices: Advances in Diagnostic and Therapeutic Modalities
by Richard G. Trohman, Henry D. Huang and Parikshit S. Sharma
Micromachines 2019, 10(10), 633; https://doi.org/10.3390/mi10100633 - 21 Sep 2019
Cited by 8 | Viewed by 4621
Abstract
The Fourth Industrial Revolution, characterized by an unprecedented fusion of technologies that is blurring the lines between the physical, digital, and biological spheres, continues the trend to manufacture ever smaller mechanical, optical and electronic products and devices. In this manuscript, we outline the [...] Read more.
The Fourth Industrial Revolution, characterized by an unprecedented fusion of technologies that is blurring the lines between the physical, digital, and biological spheres, continues the trend to manufacture ever smaller mechanical, optical and electronic products and devices. In this manuscript, we outline the way cardiac implantable electronic devices (CIEDs) have evolved into remarkably smaller units with greatly enhanced applicability and capabilities. Full article
(This article belongs to the Special Issue Implantable Microdevices, Volume II)
Show Figures

Figure 1

Back to TopTop