Thin Film Photovoltaic and Photonic Based Materials and Devices

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D:Materials and Processing".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1299

Special Issue Editor

Special Issue Information

Dear Colleagues,

Photovoltaics and photonics are important key technologies used to enable a greener and more sustainable future for our society, given our primary dependence on energy to sustain good quality of life.

The novel understanding of the physical phenomena underlying light–matter interactions and propagation within materials could bridge the gap towards the major goals of green energy deals.

Indeed, recent developments have brought the efficiency of many solar cell technologies closer to the theoretical maximum, particularly by being able to capture (and trap) more light in a wider spectral range by reducing recombination and by decreasing the contact resistance.

This Special Issue aims to gather and showcase manuscripts on the latest developments concerning materials and techniques that boost solar cells’ efficiency independently of their base materials.

Experimental and theoretical works related, but not limited to, the following topics are welcome for submission:

  1. Photonics for solar cells;
  2. Light-managing systems;
  3. Passivation techniques;
  4. Multi-band solar cells;
  5. Quantum dot solar cells;
  6. Thin film solar cells;
  7. Up-and-down converters;
  8. Transparent conductive materials;
  9. New materials for solar cells;
  10. Novel configurations;
  11. Light coupler and focusing devices;
  12. Nanophotonics, meta-surfaces, and device designs.

Dr. Hugo Aguas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solar cells
  • photovoltaics
  • thin films
  • photonics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 7536 KiB  
Article
Novel Structures for PV Solar Cells: Fabrication of Cu/Cu2S-MWCNTs 1D-Hybrid Nanocomposite
by Sevinj Nuriyeva, Aynura Karimova, Habiba Shirinova, Sevinj Jafarova, Ghulam Abbas, Alexandr Zamchiy and Hugo Aguas
Micromachines 2024, 15(11), 1318; https://doi.org/10.3390/mi15111318 - 29 Oct 2024
Viewed by 1027
Abstract
The production of cost-effective novel materials for PV solar cells with long-term stability, high energy conversion efficiency, enhanced photon absorption, and easy electron transport has stimulated great interest in the research community over the last decades. In the presented work, Cu/Cu2S-MWCNTs [...] Read more.
The production of cost-effective novel materials for PV solar cells with long-term stability, high energy conversion efficiency, enhanced photon absorption, and easy electron transport has stimulated great interest in the research community over the last decades. In the presented work, Cu/Cu2S-MWCNTs nanocomposites were produced and analyzed in the framework of potential applications for PV solar cells. Firstly, the surface of the produced one-dimensional Cu was covered by Cu2S nanoflake. XRD data prove the formation of both Cu and Cu2S structures. The length and diameter of the one-dimensional Cu wire were 5–15 µm and 80–200 nm, respectively. The thickness of the Cu2S nanoflake layer on the surface of the Cu was up to 100 nm. In addition, the Cu/Cu2S system was enriched with MWCNTs. MWCNs with a diameter of 50 nm interact by forming a conductive network around the Cu/Cu2S system and facilitate quick electron transport. Raman spectra also prove good interfacial coupling between the Cu/Cu2S system and MWCNTs, which is crucial for charge separation and electron transfer in PV solar cells. Furthermore, UV studies show that Cu/Cu2S-MWCNTs nanocomposites have a wide absorption band. Thus, MWCNTs, Cu, and Cu2S exhibit an intense absorption spectrum at 260 nm, 590 nm, and 972 nm, respectively. With a broad absorption band spanning the visible–infrared spectrum, the Cu/Cu2S-MWCNTs combination can significantly boost PV solar cells’ power conversion efficiency. Furthermore, UV research demonstrates that the plasmonic character of the material is altered fundamentally when CuS covers the Cu surface. Additionally, MWCN-Cu/Cu2S nanocomposite exhibits hybrid plasmonic phenomena. The bandgap of Cu/Cu2S NWs was found to be approximately 1.3 eV. Regarding electron transfer and electromagnetic radiation absorption, the collective oscillations in plasmonic metal-p-type semiconductor–conductor MWCNT contacts can thus greatly increase energy conversion efficiency. The Cu/Cu2S-MWCNTs nanocomposite is therefore a promising new material for PV solar cell application. Full article
(This article belongs to the Special Issue Thin Film Photovoltaic and Photonic Based Materials and Devices)
Show Figures

Figure 1

Back to TopTop