molecules-logo

Journal Browser

Journal Browser

Organoselenium Compounds: Synthesis, Catalysis and Biological Activities

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Organic Chemistry".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 1844

Special Issue Editor


E-Mail Website
Guest Editor
Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
Interests: organic synthesis; organoselenium compounds; heterocycles; multibond-forming reactions; drug-like molecules; environmentally friendly synthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Organoselenium compounds have a great impact on several research fields, such as organic synthesis, materials science, and bioorganic as well as medicinal chemistry. These reagents are well known as electrophiles, nucleophiles, and radicals, and their use as catalysts has been largely explored, introducing new important aspects to modern selenium chemistry. Moreover, owing to their characteristic redox behavior, they can be exploited in a variety of synthetically useful transformations and play crucial roles in several biologically processes. Extensive studies on selenium-containing species in biological and medicinal contexts are underway, with particular attention to small-molecule-containing species. Given the widespread interest, a number of new methodologies and applications of selenium compounds continue to appear every year in the literature. This Special Issue aims to present a collection of original research papers, reviews, and short communications focused on any of the abovementioned topics in organoselenium compound research.

Dr. Luana Bagnoli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organoselenium compounds
  • catalysis
  • sustainable synthesis
  • redox processes
  • asymmetric synthesis
  • bioorganic chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 1998 KiB  
Article
Synthesis of a New Class of β-Carbonyl Selenides Functionalized with Ester Groups with Antioxidant and Anticancer Properties—Part II
by Anna Laskowska, Agata J. Pacuła-Miszewska, Magdalena Obieziurska-Fabisiak, Aneta Jastrzębska, Angelika Długosz-Pokorska, Katarzyna Gach-Janczak and Jacek Ścianowski
Molecules 2024, 29(12), 2866; https://doi.org/10.3390/molecules29122866 - 16 Jun 2024
Cited by 1 | Viewed by 804
Abstract
A series of phenyl β-carbonyl selenides with o-ester functionality substituted on the oxygen atom with chiral and achiral alkyl groups was synthesized. All compounds are the first examples of this type of organoselenium derivatives with an ester substituent in the ortho position. [...] Read more.
A series of phenyl β-carbonyl selenides with o-ester functionality substituted on the oxygen atom with chiral and achiral alkyl groups was synthesized. All compounds are the first examples of this type of organoselenium derivatives with an ester substituent in the ortho position. The obtained derivatives were tested as antioxidants and anticancer agents to see the influence of an ester functionality on the bioactivity of β-carbonyl selenides by replacing the o-amide group with an o-ester group. The best results as an antioxidant agent were observed for O-((1R,2S,5R)-(−)-2-isopropyl-5-methylcyclohexyl)-2-((2-oxopropyl)selanyl)benzoate. The most cytotoxic derivative against breast cancer MCF-7 cell lines was O-(methyl)-2-((2-oxopropyl)selanyl)benzoate and against human promyelocytic leukemia HL-60 was O-(2-pentyl)-2-((2-oxopropyl)selanyl)benzoate. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

20 pages, 8814 KiB  
Review
The Chemistry of Selenosilanes: A Topic Overview
by Damiano Tanini and Antonella Capperucci
Molecules 2024, 29(19), 4595; https://doi.org/10.3390/molecules29194595 - 27 Sep 2024
Viewed by 667
Abstract
Selenium-containing molecules represent a valuable class of compounds with a variety of applications in chemical and biological fields. Selenated reagents are used as intermediates to introduce functional groups (e.g., double bonds) onto different substrates or in the synthesis of various selenated derivatives. Among [...] Read more.
Selenium-containing molecules represent a valuable class of compounds with a variety of applications in chemical and biological fields. Selenated reagents are used as intermediates to introduce functional groups (e.g., double bonds) onto different substrates or in the synthesis of various selenated derivatives. Among the variety of selenium-containing reagents, silyl selenides are frequently used to transfer a selenated moiety due to the smooth functionalization of the Se-Si bond, which allows for the generation of selenium nucleophilic species under mild conditions. While the use of the analogous sulfur nucleophiles, namely silyl sulfides, has been widely explored, a relatively limited number of reports on selenosilanes have been provided. This contribution will focus on the application of selenosilanes as nucleophiles in a variety of organic transformations, as well as under radical and redox conditions. The use of silyl selenides to prepare metal complexes and as selenium precursors of materials for atomic layer deposition will also be discussed. Full article
Show Figures

Graphical abstract

Back to TopTop